CN102809476A - 两共轴背对背固定光电成像系统的轴线误差标定方法 - Google Patents

两共轴背对背固定光电成像系统的轴线误差标定方法 Download PDF

Info

Publication number
CN102809476A
CN102809476A CN2012103006532A CN201210300653A CN102809476A CN 102809476 A CN102809476 A CN 102809476A CN 2012103006532 A CN2012103006532 A CN 2012103006532A CN 201210300653 A CN201210300653 A CN 201210300653A CN 102809476 A CN102809476 A CN 102809476A
Authority
CN
China
Prior art keywords
prime
imaging system
electric imaging
photo electric
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012103006532A
Other languages
English (en)
Other versions
CN102809476B (zh
Inventor
王霞
王晨如
路陆
金伟其
张勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201210300653.2A priority Critical patent/CN102809476B/zh
Publication of CN102809476A publication Critical patent/CN102809476A/zh
Application granted granted Critical
Publication of CN102809476B publication Critical patent/CN102809476B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种两背对背同轴固定光电成像系统轴线误差的标定方法,属于光电成像技术领域。本发明基于不同坐标系之间的转换原理,其技术方案为:将两背对背同轴固定的光电成像系统放置于由两束平行反向的十字型平行光束构成的光路中,用左右两侧光电成像系统分别采集左右两侧十字光斑,通过图像处理方法计算左十字光束坐标系与左光电成像系统坐标系的关系,右十字光束坐标系与右光电成像系统坐标系的关系。左右十字光束平行反向,存在简单的坐标变换关系。将上述三个变换关系联系起来,就可以获得左右光电成像系统坐标系的变换关系,进而得出两光电成像系统轴线之间的夹角。该方法适用于两背对背同轴固定的光电成像仪器轴线误差的标定。

Description

两共轴背对背固定光电成像系统的轴线误差标定方法
技术领域
本发明涉及一种两共轴背对背固定光电成像系统的轴线误差标定方法,尤其是一种针对组成基于数字图像的无标靶多光轴平行度检测系统中两共轴背对对背光电成像系统之间的轴线偏差标定方法,属于光电成像技术领域。
背景技术
本申请人于同日申请的专利“基于数字图像的无标靶多光轴平行度检测系统”提出了一种新型的基于数字图像处理方法的无标靶多光轴平行度检测系统,如附图4所示。在检测激光测距仪光轴与弹丸发射轴、观瞄光轴的平行度关系时,利用激光场景采集器中共轴背对背固定的第一光电成像系统和第二光电成像系统分别采集激光光斑图像和场景图像,将其输入融合模块进行图像融合,可得一幅激光场景融合图像(其中激光光斑位置对应着激光照射场景中的位置);再与弹丸发射轴上固定的弹丸发射轴光电成像系统和固定在瞄准镜后的观瞄光轴光电成像系统采集的带有十字分划的场景图像1和2进行图像配准(其中十字分划中心位置对应炮轴或观瞄光轴指向场景中的位置),通过一系列的图像处理方法,可获得激光光轴、弹丸发射轴和观瞄光轴间的两两平行度关系。
在理想情况下,基于数字图像的多光轴平行度检测系统的激光场景视频采集器中第一光电成像系统和第二光电成像系统是共轴,并且被背对背反向固定。但由于加工装调的精度问题,第一光电成像系统和第二光电成像系统的光轴不可能完全共轴反向。第一光电成像系统和第二光电成像系统光轴方向的偏差是系统误差,将严重影响基于数字图像的多光轴平行度检测系统的性能。这个系统误差是可以通过误差标定方法获取,为误差补偿提供可能。目前,在双目立体视觉中出现大量光电成像系统参数标定方法,但是其针对的都是同方向光电成像系统的标定,针对背对背固定的两个光电成像系统的光轴的标定还未见诸于市场和文献资料。
发明内容
本发明的目的提供一种两共轴背对背固定光电成像系统轴线误差的标定方法。该方法操作简单,有较高的误差标定精度。
为了达到上述目的,本发明的技术方案为:
一种两背对背同轴固定光电成像系统轴线误差的标定方法,具体步骤为:
步骤一、搭建由两束平行反向的十字型平行光束构成的检测光路;
搭建方法为:
步骤101、标定自准直仪出射的十字光束方向;
步骤102、将自准直仪与平行光管相向放置于平行光轨上,粗调使两者相对平行;
步骤103、打开平行光管背侧光源,发出平行光照射自准直仪,调节自准直仪位置,使得从自准直仪目镜观测到的由平行光管出射的十字光斑与自准直仪目镜中标定好的十字分划的中心重合;
步骤104、打开自准直仪的光源,根据自准直仪原理,可以认为自准直仪与平行光管出射的十字光束反向平行;
步骤二、将两共轴背对背固定的光电成像系统放置于所述由两束平行反向的十字型平行光束构成的检测光路中,用左光电成像系统采集左十字平行光束得到左十字光斑图像,用右光电成像系统采集右十字平行光束得到右十字光斑图像;
步骤三、对所述左光电成像系统采集的左十字光斑图像进行处理,建立左光电成像系统坐标系和左十字光束坐标系,并根据几何成像原理,求解左十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R1
以左光电成像系统镜头O1中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立左光电成像系统坐标系O1-x1y1z1,以左十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立左十字光束坐标系O3-u1v1w1,设左十字光束交左光电成像系统主平面于A点,经镜头会聚于左像面B点,且在左像面上的十字光斑中两条相交的直线分别沿
Figure BDA00002040764000031
Figure BDA00002040764000032
方向;
利用图像处理中的二值化和细化算法,提取左像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O1-x1y1z1中单位方向向量 m → = ( m 1 , m 2 , 0 ) T n → = ( n 1 , n 2 , 0 ) T ;
设B点在像面矩阵中行列坐标为(i,j),左光电成像系统的瞬时视场为p1×q1,则B点在O1-x1y1z1坐标系中的坐标为f1′(ip1,jq1,-1),其中f1′为左光电成像系统焦距,
R 1 = m 1 ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 n 1 ( n 1 ip 1 + n 2 jq 1 ) 2 + 1 ip 1 i 2 p 1 2 + j 2 q 1 2 + 1 m 2 ( m 1 ip 1 + m 2 jq 1 ) 2 + 1 n 2 ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 jq 1 i 2 p 1 2 + j 2 q 1 2 + 1 - ( m 1 ip 1 + m 2 jq 1 ) ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 - ( n 1 ip 1 + n 2 j q 1 ) ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 - 1 i 2 p 1 2 + j 2 q 1 2 + 1 ;
步骤四、对所述右光电成像系统采集的右十字光斑图像进行如下处理:
以右光电成像系统镜头O2中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立右光电成像系统坐标系O2-x2y2z2;以右十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立右十字光束坐标系O4-u2v2w2
设右十字光束交右光电成像系统主平面于D点,经镜头会聚于右像面C点,且在右像面上的十字光斑中两条相交的直线分别沿
Figure BDA00002040764000041
Figure BDA00002040764000042
方向;利用图像处理中的二值化和细化算法,提取右像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O2-x2y2z2中单位方向向量 n → ′ = ( n 1 ′ , n 2 ′ , 0 ) T ;
设C点在像面矩阵中行列坐标为(i',j'),右光电成像系统的瞬时视场为p2×q2
则参考步骤三中求解左十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R1的方法,得出右十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R2
R 2 = m 1 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 i ′ p 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 m 2 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 j ′ q 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 - ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 - ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 - 1 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 ;
步骤五、根据所述步骤三与步骤四得出R1、R2,令R12为左十字光束坐标系相对于右十字光束坐标系之间的旋转矩阵,
通过坐标系转换关系,得出左光电成像系统相对右光电成像系统的旋转矩阵R
R = R 2 R 12 R 1 - 1
其中左右十字光束平行反向,则
R 12 = - 1 0 0 0 1 0 0 0 - 1 ;
步骤六、以右光电成像系统为基准,计算左光电成像系统光轴相对右光电成像系统光轴的水平偏角α和竖直偏角β:
假设 R = r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 , 左光电成像系统光轴在左光电成像系统坐标系中用
Figure BDA00002040764000052
描述,变换到右光电成像系统坐标系中为
z → 1 ′ = R z → 1 = ( r 13 , r 23 , r 33 ) T
在坐标系O2-x2y2z2中O2-x2z2平面的投影为
z → h = ( r 13 , 0 , r 33 ) T
Figure BDA00002040764000056
在坐标系O2-x2y2z2中O2-y2z2平面的投影为
z → v = ( 0 , r 23 , r 33 ) T
右光电成像系统光轴在右光电成像系统坐标系中用
Figure BDA00002040764000058
描述,则左右光电成像系统在水平方向的夹角
α = arccos ( z → 2 · z → h | z → 2 | | z → h | ) = arccos ( r 33 r 13 2 + r 33 2 )
左右光电成像系统在竖直方向的夹角
β = arccos ( z → 2 · z → v | z → 2 | | z → v | ) = arccos ( r 33 r 23 2 + r 33 2 )
由左右光电成像系统在水平方向和在竖直方向的夹角可表示两共轴背对背固定光电成像系统的轴线误差。
本发明的有益效果:可以在实验室条件下对检测系统的两背对光电成像系统轴线误差进行标定,操作简单,精度高。
附图说明
图1为本发明的两共轴背对背固定光电成像系统轴线误差标定方法的流程图;
图2为本发明的两共轴背对背固定光电成像系统的测试方案示意图;
图3为本发明的两共轴背对背固定光电成像系统的轴线误差标定原理示意图;
图4为基于数字图像的无标靶多光轴平行度检测系统。
具体实施方式
本发明提供了一种两背对同轴固定的光电成像系统轴线误差的标定方法,可用于标定基于数字图像的无标靶多光轴平行度检测系统中两共轴背对背固定光电成像系统的轴线误差。
本发明基于不同坐标系之间的转换原理,其基本思路如下:将两共轴背对背固定的光电成像系统放置于由两束平行反向的十字型平行光束构成的光路中,用左右两侧光电成像系统分别采集左右两侧十字光斑,通过图像处理方法计算左十字光束坐标系与左光电成像系统坐标系的关系,右十字光束坐标系与右光电成像系统坐标系的关系。左右十字光束平行反向,存在简单的坐标变换关系。将上述三个变换关系联系起来,就可以获得左右光电成像系统坐标系的变换关系,进而得出两光电成像系统轴线之间的夹角。
可见,本发明在标定两背对光电成像系统轴线误差时,操作简单、精度高。
下面结合附图,针对本发明在标定两背对光电成像系统轴线误差时所采取的的具体实施步骤作详细描述:
步骤一、搭建由两束平行反向的十字型平行光束构成的检测光路。具体搭建方法如下:
步骤101、标定自准直仪出射的十字光束方向。将自准直仪放置于光学平台上,在自准直仪出光口前放置配套的二维可调节的平面反射镜。打开自准直仪光源,产生十字光束照明平面反射镜,十字光束被平面反射镜反射回自准直仪。在自准直仪目镜中,可同时观察到两个十字光斑,一个由反射镜前表面反射,一个由反射镜后表面反射。调节反射镜方向,使得自准直仪目镜中两个十字光斑完全重合。此时,反射镜表面垂直于自准直仪出射光方向,根据光路可逆原理,目镜中观察到的十字光斑位置可以表征自准直仪出射光方向。调节自准直仪目镜中的十字分划的位置,使其与十字光斑重合,记录十字光斑位置,即自准直仪出射光方向;
步骤102、关闭自准直仪光源,将自准直仪与平行光管相向放置于平行光轨上,粗调使两者相对平行;
步骤103、打开平行光管背侧光源,发出平行光照射自准直仪。调节自准直仪位置,使得从自准直仪目镜观测到的由平行光管出射的十字光斑与自准直仪目镜中标定好的十字分划的中心重合。
步骤104、打开自准直仪的光源,根据自准直仪原理,可以认为自准直仪与平行光管出射的十字光束反向平行。
步骤二、如图2所示,将两共轴背对背固定的光电成像系统放置于步骤一搭建的反向平行光路中,用左右光电成像系统分别采集左右十字平行光束,得到相应的十字光斑图像。
步骤三、对左光电成像系统采集的左十字光斑图进行处理,求解左十字光束相对左光电成像系统的旋转矩阵R1,其步骤如下:
步骤301、如说明书附图3所示,以左光电成像系统镜头O1中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立左光电成像系统坐标系O1-x1y1z1。以左十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立左十字光束坐标系O3-u1v1w1。设左十字光束交左光电成像系统主平面于A点,经镜头会聚于左像面B点,且在左像面上的十字光斑中两条相交的直线分别沿
Figure BDA00002040764000071
Figure BDA00002040764000072
方向。
步骤302、利用图像处理中的二值化和细化算法,提取左像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O1-x1y1z1中单位方向向量 m → = ( m 1 , m 2 , 0 ) T n → = ( n 1 , n 2 , 0 ) T .
步骤303、设B点在像面矩阵中行列坐标为(i,j),左光电成像系统的瞬时视场为p1×q1,则B点在O1-x1y1z1坐标系中的坐标为f1′(ip1,jq1-1),其中f1′为左光电成像系统焦距。由几何成像原理可知,
Figure BDA00002040764000083
w → 1 = ( ip 1 , j q 1 , - 1 ) T i 2 p 1 2 + j 2 q 1 2 + 1 - - - ( 1 )
步骤304、计算左十字坐标系相对左光电成像系统坐标系的旋转矩阵R1。由于
x 1 y 1 z 1 = R u 1 v 1 w 1 + T - - - ( 2 )
式中,(u1,v1,w1)为O3-u1v1w1坐标系坐标,(x1,y1,z1)为O1-x1y1z1坐标系坐标,T为平移向量。进而,有
u → 1 v → 1 w → 1 = R 1 I - - - ( 3 )
R 1 = u → 1 v → 1 w → 1 - - - ( 4 )
式中, I = 1 0 0 0 1 0 0 0 1 , 向量
Figure BDA00002040764000089
Figure BDA000020407640000810
分别表示O3-u1v1w1坐标系的单位向量在O1-x1y1z1坐标系中的方向。
u → 1 = ( a 1 , a 2 , a 3 ) T , v → 1 = ( b 1 , b 2 , b 3 ) T , w → 1 = ( c 1 , c 2 , c 3 ) T 为单位向量,则有
a 1 2 + a 2 2 + a 3 2 = 1 - - - ( 5 )
b 1 2 + b 2 2 + b 3 2 = 1 - - - ( 6 )
由于
Figure BDA000020407640000816
Figure BDA000020407640000817
相互垂直,有
u → 1 · w → 1 = a 1 c 1 + a 2 c 2 + a 3 c 3 = 0 - - - ( 7 )
v → 1 · w → 1 = b 1 c 1 + b 2 c 2 + b 3 c 3 = 0 - - - ( 8 )
u → 1 · v → 1 = a 1 b 1 + a 2 b 2 + a 3 b 3 = 0 - - - ( 9 )
由于
Figure BDA00002040764000092
Figure BDA00002040764000093
分别是
Figure BDA00002040764000094
Figure BDA00002040764000095
在像面上的投影,则有
m → = ( m 1 , m 2 , 0 ) T = ( a 1 , a 2 , 0 ) T / λ 1 - - - ( 10 )
n → = ( n 1 , n 2 , 0 ) T = ( b 1 , b 2 , 0 ) T / λ 2 - - - ( 11 )
其中,λ1、λ2为常数,可人为规定λ1>0和λ2>0,
m 1 2 + m 2 2 = n 1 2 + n 2 2 = 1 - - - ( 12 )
w → 1 = ( c 1 , c 2 , c 3 ) T = ( ip 1 , j q 1 , - 1 ) T / i 2 p 1 2 + j 2 q 1 2 + 1 - - - ( 13 )
联立式(5)~(13),解得
u → 1 = λ 1 ( m 1 , m 2 , - ( m 1 ip 1 + m 2 j q 1 ) ) T - - - ( 14 )
v → 1 = λ 2 ( n 1 , n 2 , - ( n 1 ip 1 + n 2 j q 1 ) ) T - - - ( 15 )
其中,
λ 1 = 1 ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 - - - ( 16 )
λ 2 = 1 ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 - - - ( 17 )
将式(13)~(17)代入式(4),得
R 1 = m 1 ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 n 1 ( n 1 ip 1 + n 2 jq 1 ) 2 + 1 ip 1 i 2 p 1 2 + j 2 q 1 2 + 1 m 2 ( m 1 ip 1 + m 2 jq 1 ) 2 + 1 n 2 ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 jq 1 i 2 p 1 2 + j 2 q 1 2 + 1 - ( m 1 ip 1 + m 2 jq 1 ) ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 - ( n 1 ip 1 + n 2 j q 1 ) ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 - 1 i 2 p 1 2 + j 2 q 1 2 + 1 - - - ( 18 )
步骤四、对右光电成像系统采集的右十字光斑图像进行如下处理:
以右光电成像系统镜头O2中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立右光电成像系统坐标系O2-x2y2z2;以右十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立右十字光束坐标系O4-u2v2w2
设右十字光束交右光电成像系统主平面于D点,经镜头会聚于右像面C点,且在右像面上的十字光斑中两条相交的直线分别沿
Figure BDA00002040764000102
方向;利用图像处理中的二值化和细化算法,提取右像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O2-x2y2z2中单位方向向量
Figure BDA00002040764000103
n → ′ = ( n 1 ′ , n 2 ′ , 0 ) T ;
设C点在像面矩阵中行列坐标为(i',j'),右光电成像系统的瞬时视场为p2×q2;则参考步骤三中求解左十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R1的方法,得出右十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R2
R 2 = m 1 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 i ′ p 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 m 2 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 j ′ q 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 - ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 - ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 - 1 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 ;
步骤五、计算左右光电成像系统的旋转矩阵R。设
Figure BDA00002040764000106
表示左光电成像系统坐标系中的向量,向量
Figure BDA00002040764000107
为向量
Figure BDA00002040764000108
在左十字光束坐标系中的表示,则
U → 1 = R 1 - 1 X → 1 - - - ( 19 )
向量
Figure BDA000020407640001010
在右十字光束坐标系中的描述为
Figure BDA000020407640001011
U → 2 = R 12 U → 1 - - - ( 20 )
其中,R12为左十字光束坐标系相对于右十字光束坐标系之间的旋转矩阵,根据步骤一,左右十字光束平行反向,则
R 12 = - 1 0 0 0 1 0 0 0 - 1 - - - ( 21 )
向量在右光电成像系统坐标系中的描述为
X → 2 = R 2 U → 2 - - - ( 22 )
联立式(19)、(20)和(22)得
X → 2 = R 2 R 12 R 1 - 1 X → 1 = R X → 1 - - - ( 23 )
因此,左光电成像系统相对右光电成像系统的旋转矩阵R为
R = R 2 R 12 R 1 - 1 - - - ( 24 )
步骤六、以右光电成像系统为基准,计算左光电成像系统光轴相对右光电成像系统光轴的水平偏角α和竖直偏角β。右光电成像系统坐标系的建立过程如下:右光电成像系统镜头中心O2为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立右光电成像系统坐标系O2-x2y2z2,假设 R = r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 , 左光电成像系统光轴在左光电成像系统坐标系中用
Figure BDA00002040764000118
描述,变换到右光电成像系统坐标系中为
z → 1 ′ = R z → 1 = ( r 13 , r 23 , r 33 ) T - - - ( 25 )
在O2-x2z2平面的投影为
z → h = ( r 13 , 0 , r 33 ) T - - - ( 26 )
在O2-y2z2平面的投影为
z → v = ( 0 , r 23 , r 33 ) T - - - ( 27 )
右光电成像系统光轴在右光电成像系统坐标系中用
Figure BDA000020407640001112
描述,则左右光电成像系统在水平方向的夹角
α = arccos ( z → 2 · z → h | z → 2 | | z → h | ) = arccos ( r 33 r 13 2 + r 33 2 ) - - - ( 28 )
左右光电成像系统在竖直方向的夹角
β = arccos ( z → 2 · z → v | z → 2 | | z → v | ) = arccos ( r 33 r 23 2 + r 33 2 ) - - - ( 29 )
由左右光电成像系统在水平方向和在竖直方向的夹角可表示两共轴背对背固定光电成像系统的轴线误差。

Claims (2)

1.一种两背对背同轴固定光电成像系统轴线误差的标定方法,其特征在于,具体步骤为:
步骤一、搭建由两束平行反向的十字型平行光束构成的检测光路;
步骤二、将两共轴背对背固定的光电成像系统放置于所述由两束平行反向的十字型平行光束构成的检测光路中,用左光电成像系统采集左十字平行光束得到左十字光斑图像,用右光电成像系统采集右十字平行光束得到右十字光斑图像;
步骤三、对所述左光电成像系统采集的左十字光斑图像进行处理,建立左光电成像系统坐标系和左十字光束坐标系,并根据几何成像原理,求解左十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R1
以左光电成像系统镜头O1中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立左光电成像系统坐标系O1-x1y1z1,以左十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立左十字光束坐标系O3-u1v1w1,设左十字光束交左光电成像系统主平面于A点,经镜头会聚于左像面B点,且在左像面上的十字光斑中两条相交的直线分别沿
Figure FDA00002040763900012
方向;
利用图像处理中的二值化和细化算法,提取左像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O1-x1y1z1中单位方向向量 m → = ( m 1 , m 2 , 0 ) T n → = ( n 1 , n 2 , 0 ) T ;
设B点在像面矩阵中行列坐标为(i,j),左光电成像系统的瞬时视场为p1×q1,则B点在O1-x1y1z1坐标系中的坐标为f1′(ip1,jq1,-1),其中f1′为左光电成像系统焦距;
解出左十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R1
R 1 = m 1 ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 n 1 ( n 1 ip 1 + n 2 jq 1 ) 2 + 1 ip 1 i 2 p 1 2 + j 2 q 1 2 + 1 m 2 ( m 1 ip 1 + m 2 jq 1 ) 2 + 1 n 2 ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 jq 1 i 2 p 1 2 + j 2 q 1 2 + 1 - ( m 1 ip 1 + m 2 jq 1 ) ( m 1 ip 1 + m 2 j q 1 ) 2 + 1 - ( n 1 ip 1 + n 2 j q 1 ) ( n 1 ip 1 + n 2 j q 1 ) 2 + 1 - 1 i 2 p 1 2 + j 2 q 1 2 + 1 ;
步骤四、对所述右光电成像系统采集的右十字光斑图像进行如下处理:
以右光电成像系统镜头O2中心为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立右光电成像系统坐标系O2-x2y2z2;以右十字光束的出射方向为w轴,以十字光束的水平和竖直线为u轴和v轴,建立右十字光束坐标系O4-u2v2w2
设右十字光束交右光电成像系统主平面于D点,经镜头会聚于右像面C点,且在右像面上的十字光斑中两条相交的直线分别沿
Figure FDA00002040763900022
Figure FDA00002040763900023
方向;利用图像处理中的二值化和细化算法,提取右像面上十字光斑的中心骨架,利用最小二乘法拟合两条直线,得到其在坐标系O2-x2y2z2中单位方向向量
Figure FDA00002040763900024
n → ′ = ( n 1 ′ , n 2 ′ , 0 ) T ;
设C点在像面矩阵中行列坐标为(i',j'),右光电成像系统的瞬时视场为p2×q2
解出右十字光束坐标系相对左光电成像系统坐标系的旋转矩阵R2
R 2 = m 1 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 i ′ p 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 m 2 ′ ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 n 1 ′ ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 j ′ q 2 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 - ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) ( m 1 ′ i ′ p 2 + m 2 ′ j ′ q 2 ) 2 + 1 - ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) ( n 1 ′ i ′ p 2 + n 2 ′ j ′ q 2 ) 2 + 1 - 1 i ′ 2 p 2 2 + j ′ 2 q 2 2 + 1 ;
步骤五、根据所述步骤三与步骤四得出R1、R2,令R12为左十字光束坐标系相对于右十字光束坐标系之间的旋转矩阵,
通过坐标系转换关系,得出左光电成像系统相对右光电成像系统的旋转矩阵R
R = R 2 R 12 R 1 - 1
其中左右十字光束平行反向,则
R 12 = - 1 0 0 0 1 0 0 0 - 1 ;
步骤六、以右光电成像系统为基准,计算左光电成像系统光轴相对右光电成像系统光轴的水平偏角α和竖直偏角β:
建立右光电成像系统坐标系,以右光电成像系统镜头中心O2为圆心,像面行方向为x轴,列方向为y轴,光轴方向为z轴,建立左光电成像系统坐标系O2-x2y2z2,假设 R = r 11 r 12 r 13 r 21 r 22 r 23 r 31 r 32 r 33 , 左光电成像系统光轴在左光电成像系统坐标系中用
Figure FDA00002040763900034
描述,变换到右光电成像系统坐标系中为
z → 1 ′ = R z → 1 = ( r 13 , r 23 , r 33 ) T
在O2-x2z2平面的投影为
z → h = ( r 13 , 0 , r 33 ) T
在O2-y2z2平面的投影为
z → v = ( 0 , r 23 , r 33 ) T
右光电成像系统光轴在右光电成像系统坐标系中用
Figure FDA000020407639000310
描述,则左右光电成像系统在水平方向的夹角
α = arccos ( z → 2 · z → h | z → 2 | | z → h | ) = arccos ( r 33 r 13 2 + r 33 2 )
左右光电成像系统在竖直方向的夹角
β = arccos ( z → 2 · z → v | z → 2 | | z → v | ) = arccos ( r 33 r 23 2 + r 33 2 )
由左右光电成像系统在水平方向和在竖直方向的夹角可表示两共轴背对背固定光电成像系统的轴线误差。
2.如权利要求1所述的一种两背对背同轴固定光电成像系统轴线误差的标定方法,其特征在于,所述由两束平行反向的十字型平行光束构成的检测光路的搭建方法为:
步骤101、标定自准直仪出射的十字光束方向;
步骤102、将自准直仪与平行光管相向放置于平行光轨上,粗调使两者相对平行;
步骤103、打开平行光管背侧光源,发出平行光照射自准直仪,调节自准直仪位置,使得从自准直仪目镜观测到的由平行光管出射的十字光斑与自准直仪目镜中标定好的十字分划的中心重合;
步骤104、打开自准直仪的光源,根据自准直仪原理,可以认为自准直仪与平行光管出射的十字光束反向平行。
CN201210300653.2A 2012-08-22 2012-08-22 两共轴背对背固定光电成像系统的轴线误差标定方法 Expired - Fee Related CN102809476B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210300653.2A CN102809476B (zh) 2012-08-22 2012-08-22 两共轴背对背固定光电成像系统的轴线误差标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210300653.2A CN102809476B (zh) 2012-08-22 2012-08-22 两共轴背对背固定光电成像系统的轴线误差标定方法

Publications (2)

Publication Number Publication Date
CN102809476A true CN102809476A (zh) 2012-12-05
CN102809476B CN102809476B (zh) 2014-10-22

Family

ID=47233240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210300653.2A Expired - Fee Related CN102809476B (zh) 2012-08-22 2012-08-22 两共轴背对背固定光电成像系统的轴线误差标定方法

Country Status (1)

Country Link
CN (1) CN102809476B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535296A (zh) * 2014-12-03 2015-04-22 中国科学院苏州生物医学工程技术研究所 一种多光束同轴检测与调整方法
CN106596077A (zh) * 2016-12-31 2017-04-26 歌尔科技有限公司 一种双镜头定位检测系统和一种双镜头定位检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086590A1 (en) * 2001-11-05 2003-05-08 Koninklijke Philips Electronics N.V. Method for computing optical flow under the epipolar constraint
CN1971206A (zh) * 2006-12-20 2007-05-30 北京航空航天大学 基于一维靶标的双目视觉传感器校准方法
CN101308012A (zh) * 2008-05-29 2008-11-19 上海交通大学 双单目白光三维测量系统标定方法
CN101320474A (zh) * 2008-06-25 2008-12-10 浙江工业大学 一种旋转立体视觉的摄像机外参数自标定方法
CN101581569A (zh) * 2009-06-17 2009-11-18 北京信息科技大学 双目视觉传感系统结构参数的标定方法
CN102589530A (zh) * 2012-02-24 2012-07-18 合肥工业大学 基于二维相机和三维相机融合的非合作目标位姿测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086590A1 (en) * 2001-11-05 2003-05-08 Koninklijke Philips Electronics N.V. Method for computing optical flow under the epipolar constraint
CN1971206A (zh) * 2006-12-20 2007-05-30 北京航空航天大学 基于一维靶标的双目视觉传感器校准方法
CN101308012A (zh) * 2008-05-29 2008-11-19 上海交通大学 双单目白光三维测量系统标定方法
CN101320474A (zh) * 2008-06-25 2008-12-10 浙江工业大学 一种旋转立体视觉的摄像机外参数自标定方法
CN101581569A (zh) * 2009-06-17 2009-11-18 北京信息科技大学 双目视觉传感系统结构参数的标定方法
CN102589530A (zh) * 2012-02-24 2012-07-18 合肥工业大学 基于二维相机和三维相机融合的非合作目标位姿测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
晁志超: "单目摄像机-激光测距传感器位姿测量系统", 《光学学报》, vol. 31, no. 3, 31 March 2011 (2011-03-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535296A (zh) * 2014-12-03 2015-04-22 中国科学院苏州生物医学工程技术研究所 一种多光束同轴检测与调整方法
CN104535296B (zh) * 2014-12-03 2017-04-05 中国科学院苏州生物医学工程技术研究所 一种多光束同轴检测与调整方法
CN106596077A (zh) * 2016-12-31 2017-04-26 歌尔科技有限公司 一种双镜头定位检测系统和一种双镜头定位检测方法
CN106596077B (zh) * 2016-12-31 2023-09-15 歌尔光学科技有限公司 一种双镜头定位检测系统和一种双镜头定位检测方法

Also Published As

Publication number Publication date
CN102809476B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
CN106443643B (zh) 一种用于高精度主被动探测系统的光轴监测方法及装置
CN102818543B (zh) 基于数字图像的无标靶多光轴平行度检测系统
CN103852878A (zh) 一种具有实时聚焦的显微切片快速数字扫描装置及其方法
CN104618709B (zh) 一种双双目红外与可见光融合立体成像系统
CN102494609A (zh) 一种基于激光探针阵列的三维摄影方法及装置
Ren et al. A review of available methods for the alignment of mirror facets of solar concentrator in solar thermal power system
CN105371960A (zh) 一种周扫成像控制方法和周扫成像系统
CN105954734B (zh) 大口径激光雷达光轴监测装置
CN102566075A (zh) 一种偏振旋转装置及激光器偏振合束方法与系统
CN109633796A (zh) 微透镜阵列加工系统与加工工艺
CN106254738A (zh) 双图像采集系统及图像采集方法
CN105572866A (zh) 一种可见光与红外复合成像装置
CN102809476B (zh) 两共轴背对背固定光电成像系统的轴线误差标定方法
CN107796337A (zh) 一种高精度反向双光轴以及多光轴平行性调校方法
CN106597422B (zh) 小型化光电被动测距装置
CN102507153B (zh) 一种航天相机红外镜头焦面标定方法
CN103235479A (zh) 3d镜头和3d摄像系统
CN107843413A (zh) 一种高精度反向双光轴以及多光轴平行性调校方法
Deng et al. Micro-prism type single-lens 3D aircraft telescope system
CN109342324A (zh) 一种飞机风挡玻璃光学角偏差测试系统
CN105737803B (zh) 航空双面阵立体测绘系统
CN104834102B (zh) 一种可将单摄像机变为立体摄像机的光学系统及其方法
JP2012042524A (ja) 画像処理装置および方法
US9817203B2 (en) Method and apparatus for optical alignment
CN105573007A (zh) 液晶透镜成像装置和液晶透镜成像方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141022

Termination date: 20180822