CN109633796A - 微透镜阵列加工系统与加工工艺 - Google Patents

微透镜阵列加工系统与加工工艺 Download PDF

Info

Publication number
CN109633796A
CN109633796A CN201811603192.XA CN201811603192A CN109633796A CN 109633796 A CN109633796 A CN 109633796A CN 201811603192 A CN201811603192 A CN 201811603192A CN 109633796 A CN109633796 A CN 109633796A
Authority
CN
China
Prior art keywords
processing
microlens array
planoconvex lens
laser beam
spatial light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811603192.XA
Other languages
English (en)
Other versions
CN109633796B (zh
Inventor
廖常锐
王义平
周鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201811603192.XA priority Critical patent/CN109633796B/zh
Publication of CN109633796A publication Critical patent/CN109633796A/zh
Application granted granted Critical
Publication of CN109633796B publication Critical patent/CN109633796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0025Machining, e.g. grinding, polishing, diamond turning, manufacturing of mould parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种微透镜阵列加工系统与加工工艺,加工系统包括激光光源、快门、半波片、格兰棱镜、偏振片、光阑、平凹镜、第一平凸镜、第一反射镜、空间光调制器、第二平凸镜、第三平凸镜、分色镜、图像传感器、物镜、位移平台。其中,利用空间光调制器对激光光源提供的激光光束进行整形分束,可以形成多束整形激光光束,有效的克服了传统的单光束激光加工方式效率低下的缺点;同时通过多束整形激光光束并行加工的方式,可以在普通玻璃载玻片的表面烧蚀出弹坑阵列,有效简化了微透镜阵列加工工艺流程,从而降低了生产成本。

Description

微透镜阵列加工系统与加工工艺
技术领域
本发明涉及透镜加工技术领域,尤其涉及一种微透镜阵列加工系统与加工工艺。
背景技术
微透镜阵列是一种光学微结构,具有结构单元小、集成度高、光学性能好等优势,能够满足现代科学技术的发展对光学元件所提出的更高性能要求,在光束整形、光存储、光学区通信、三维成像等领域具有广阔应用。
其中,模具表面微透镜结构的加工质量对最终的产品性能具有决定性作用,但是目前微透镜阵列的加工方式仍旧存在加工效率低下的问题,导致加工成本较高。
发明内容
本申请提供了一种微透镜阵列加工系统与加工工艺,可以解决现有技术中微透镜阵列的加工方式效率低下的技术问题。
本发明第一方面提供一种微透镜阵列加工系统,该系统包括激光光源、快门、半波片、格兰棱镜、偏振片、光阑、平凹镜、第一平凸镜、第一反射镜、空间光调制器、第二平凸镜、第三平凸镜、分色镜、图像传感器、物镜、位移平台;
所述激光光源用于提供符合预设条件的激光光束;
所述激光光束依次穿过所述快门、所述半波片、所述格兰棱镜、所述偏振片、光阑、所述平凹镜及所述第一平凸镜后,经所述第一反射镜反射至所述空间光调制器,所述空间光调制器加载有预设的相位全息图;
所述激光光束经所述空间光调制器反射之后,依次穿过所述第二平凸镜与所述第三平凸镜,并投射在所述分色镜上;
所述分色镜用于将投射在所述分色镜上的激光光束分为第一激光光束与第二激光光束,所述第一激光光束投射于所述图像传感器,所述图像传感器用于输出所述待加工玻璃载玻片对应的观测图像;
所述第二激光光束穿过所述物镜后投射至所述位移平台上固定的待加工玻璃载玻片,以在所述待加工玻璃载玻片上烧蚀出弹坑阵列。
可选的,还包括湿法腐蚀处理装置,所述湿法腐蚀处理装置用于对带有弹坑阵列的玻璃载玻片进行湿法腐蚀处理,以得到微透镜阵列。
可选的,所述平凹镜、第一平凸镜用于对所述激光光束进行扩束,使得投射至所述空间光调制器的激光光束的覆盖区域大小与所述空间光调制器的液晶面板大小相同。
可选的,投射至所述空间光调制器的激光光束与所述空间光调制器反射的激光光束之间的夹角小于10°。
可选的,还包括第一计算设备,所述第一计算设备与所述空间光调制器连接;
所述第一计算设备用于向所述空间光调制器发送所述相位全息图,所述相位全息图包括达曼光栅相位图与菲涅尔透镜相位图,所述达曼光栅相位图与菲涅尔透镜相位图相互叠加。
可选的,所述第二平凸镜与所述第三平凸镜之间还包括虚拟测试面,所述激光光束垂直穿过所述虚拟测试面;
所述空间光调制器与所述第二平凸镜之间的光程、所述第二平凸镜与所述虚拟测试面之间的光程,均与所述第二平凸镜的焦距相同;
所述虚拟测试面与所述第三平凸镜之间的光程、所述第三平凸镜与所述物镜之间的光程,均与所述第三平凸镜的焦距相同。
可选的,还包括第二计算设备,所述图像传感器、所述快门及所述位移平台,均与所述第二计算设备连接。
可选的,所述激光光束为飞秒激光光束,所述飞秒激光光束的能量取值范围为5mW~10mW。
可选的,所述物镜的数值孔径的取值范围为0.4~0.5。
本发明第二方面提供一种微透镜阵列加工工艺,该微透镜阵列加工工艺包括以下步骤:
建立微透镜阵列加工系统,所述微透镜阵列加工系统为本发明第一方面提供的微透镜阵列加工系统;
利用激光光源输出多束飞秒激光光束,以在待加工玻璃载玻片上烧蚀出弹坑阵列;
将带有弹坑阵列的玻璃载玻片置于氢氟酸稀释溶液中进行腐蚀,并利用超声波水浴加热辅助;
将腐蚀后的玻璃载玻片取出后,依次在丙酮、无水乙醇、去离子水中清洗,得到微透镜阵列。
本发明提供的微透镜阵列加工系统,包括激光光源、快门、半波片、格兰棱镜、偏振片、平凹镜、第一平凸镜、第一反射镜、空间光调制器、第二平凸镜、第三平凸镜、分色镜、图像传感器、物镜、位移平台。其中,利用空间光调制器对激光光源提供的激光光束进行整形分束,可以形成多束整形激光光束,有效的克服了传统的单光束激光加工方式效率低下的缺点;同时通过多束整形激光光束并行加工的方式,可以在普通玻璃载玻片的表面烧蚀出弹坑阵列,有效简化了微透镜阵列加工工艺流程,从而降低了生产成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中微透镜阵列加工系统的结构示意图;
图2为本发明实施例中微透镜阵列加工系统的另一结构示意图;
图3为本发明实施例中相位全息图的叠加示意图;
图4为本发明实施例中激光光束分束后的能量分布特征示意图。
具体实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,图1为本发明实施例中微透镜阵列加工系统的结构示意图,本实施例中,上述加工系统包括激光光源10、快门20、半波片30、格兰棱镜40、偏振片50、光阑51、平凹镜60、第一平凸镜70、第一反射镜、空间光调制器90、第二平凸镜100、第三平凸镜110、分色镜120、图像传感器130、物镜140、位移平台150。
具体的,激光光源10用于提供符合预设条件的激光光束,如提供1KHz飞秒激光光束作为光源,波长为800nm,脉冲宽度为100fs,能提供最大输出功率为4W,能量取值范围为5mW~10mW。上述激光光束依次穿过快门20、半波片30、格兰棱镜40、偏振片50、光阑51、平凹镜60、第一平凸镜70后,经第一反射镜反射至空间光调制器90。
其中,快门20用于控制激光在加工过程中的开关;半波片30和格兰棱镜40组合用于对激光光束的能量进行调节;偏振片50用于调节激光光束的偏振态;光阑51用于限制激光光束的大小。
平凹镜60与第一平凸镜70组合用于对激光光束进行扩束,使得投射至空间光调制器90的激光光束的覆盖区域大小与空间光调制器90的液晶面板大小相同。
第一反射镜包括反射镜81、反射镜82及反射镜83,用于将激光光束反射至空间光调制器90。可以理解的是,第一反射镜可以不限于包括上述反射镜81、反射镜82及反射镜83,也可以包括更多或更少的反射镜。另外,还可以采用其它可以改变激光光束传播方向的光学器件,来代替上述第一反射镜。
空间光调制器90上加载有预设的相位全息图,用于对激光光束进行整形分束。
进一步地,上述激光光束经空间光调制器90反射之后,依次穿过第二平凸镜100与第三平凸镜110,并投射在分色镜120上。
其中,第二平凸镜100与第三平凸镜110组合构成了一个4f系统,可对激光光束进行缩束。
分色镜120用于将投射在分色镜120上的激光光束分为第一激光光束与第二激光光束,第一激光光束投射于图像传感器130,图像传感器130用于输出待加工玻璃载玻片对应的观测图像,以便于实时观测激光加工情况。第二激光光束穿过物镜140后投射至位移平台150上固定的待加工玻璃载玻片;物镜140用于将激光聚焦作用于物体表面,以在待加工玻璃载玻片上烧蚀出弹坑阵列。
其中,物镜的数值孔径的取值范围为0.4~0.5,待加工玻璃载玻片固定于位移平台150上。另外,待加工玻璃载玻片优选抛光清洗过的玻璃载玻片。
进一步地,上述加工系统还包括湿法腐蚀处理装置,在得到带有弹坑阵列的玻璃载玻片之后,对带有弹坑阵列的玻璃载玻片进行湿法腐蚀处理。
本发明实施例所提供的微透镜阵列加工系统,包括激光光源、快门、半波片、格兰棱镜、偏振片、光阑、平凹镜、第一平凸镜、第一反射镜、空间光调制器、第二平凸镜、第三平凸镜、分色镜、图像传感器、物镜、位移平台。其中,利用空间光调制器对激光光源提供的激光光束进行整形分束,可以形成多束整形激光光束,有效的克服了传统的单光束激光加工方式效率低下的缺点;同时通过多束整形激光光束并行加工的方式,可以在普通玻璃载玻片的表面烧蚀出弹坑阵列,有效简化了微透镜阵列加工工艺流程,从而降低了生产成本。
进一步地,参照图2,图2为本发明实施例中微透镜阵列加工系统的另一结构示意图,本实施例中,上述加工系统还包括第一计算设备160,第一计算设备160与空间光调制器90连接,第一计算设备160用于向空间光调制器90发送相位全息图,相位全息图包括达曼光栅相位图与菲涅尔透镜相位图,该达曼光栅相位图与菲涅尔透镜相位图相互叠加。
其中,达曼光栅可以将一束激光分束为能量均匀分布的五束激光,为了去除零级光影响,在达曼光栅相位图基础上叠加了菲涅尔透镜相位图,得到最终可加载于空间光调制器的相位全息图。具体参照图3,图3为本发明实施例中相位全息图的叠加示意图。
进一步地,上述加工系统还包括第二计算设备170,图像传感器130、快门20及位移平台150均与第二计算设备170连接。其中,第二计算设备170可以通过控制快门20来控制激光在加工过程中的开关。图像传感器130可以采用CCD(Charge-coupled Device,电荷耦合元件),CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,即可实现图像的获取、存储、传输、处理和复现。第二计算设备170通过图像传感器130即可实时观测激光加工情况。另外,第二计算设备170还可以控制位移平台150位移,从而制作出符合需求的微透镜阵列。
进一步地,在第二平凸镜100与第三平凸镜110之间还包括虚拟测试面180,上述激光光束垂直穿过虚拟测试面180。其中,在虚拟测试面180检测激光光束的能量分布情况,具体可参照图4,图4为本发明实施例中激光光束分束后的能量分布特征示意图。
其中,空间光调制器90与第二平凸镜100之间的光程、第二平凸镜100与虚拟测试面180之间的光程,均与第二平凸镜100的焦距相同;虚拟测试面180与第三平凸镜110之间的光程、第三平凸镜110与物镜140之间的光程,均与第三平凸镜110的焦距相同。其中,在虚拟测试面180可对零级光进行遮挡。
其中,投射至空间光调制器90的激光光束与空间光调制器90反射的激光光束之间的夹角β小于10°。
本实施例中,利用空间光调制器90对激光光源10提供的激光光束进行整形分束,可以形成多束整形激光光束,有效的克服了传统的单光束激光加工方式效率低下的缺点;同时通过多束整形激光光束并行加工的方式,可以在普通玻璃载玻片的表面烧蚀出弹坑阵列,有效简化了微透镜阵列加工工艺流程,从而降低了生产成本。
进一步地,本实施例还提供一种微透镜阵列加工工艺,该微透镜阵列加工工艺包括以下步骤:
步骤一、建立微透镜阵列加工系统,该微透镜阵列加工系统即为上述图1或图2所示的微透镜阵列加工系统。
步骤二、利用激光光源输出多束飞秒激光光束,以在待加工玻璃载玻片上烧蚀出弹坑阵列。
步骤三、将带有弹坑阵列的玻璃载玻片置于氢氟酸稀释溶液中进行腐蚀,并利用超声波水浴加热辅助。
步骤四、将腐蚀后的玻璃载玻片取出后,依次在丙酮、无水乙醇、去离子水中清洗,得到微透镜阵列。
具体的,先建立上述微透镜阵列加工系统,调节空间光调制器的位置,使得投射至空间光调制器的激光光束与空间光调制器反射的激光光束之间的夹角小于10°,这样可以保证空间光调制器的衍射效率最大化,由于空间光调制器的衍射效率会直接影响激光能量的利用率,故减小投射至空间光调制器的激光光束与空间光调制器反射的激光光束之间的夹角,可以提升激光能量的利用率。
其次,计算可加载于空间光调制器的相位全息图。本实施例采用达曼光栅相位图将一束激光光束分束为能量均匀分布的多束激光光束;同时为避免零级光的影响,采用菲涅尔透镜相位图将零级光与目标光束焦平面错开;最终加载的相位全息图采用相互叠加的达曼光栅相位图与菲涅尔透镜相位图,以保证输出激光的能量均匀性。
进一步地,对激光光束进行分束后,需要对分束激光进行缩束,确保与物镜的入瞳孔径匹配;为此,搭建4f系统,该4f系统由两个平凸镜组成。
进一步地,将已抛光清洗的玻璃载玻片放置在位移平台上,将能量约为5mW-10mW的多束飞秒激光通过物镜聚焦,曝光时间控制在500ms到1000ms之间,即可在玻璃载玻片烧蚀形成弹坑阵列。
进一步地,将带有弹坑阵列的玻璃载玻片置于质量浓度为8%~10%的氢氟酸稀释溶液中,并且用超声波水浴加热辅助,加热温度为30~40摄氏度,时间为20~30分钟;将腐蚀后的玻璃载玻片取出后,依次在丙酮、无水乙醇、去离子水中清洗,清洗时间均为10-15分钟,即可得到微透镜阵列。
本实施例所提供的微透镜阵列加工工艺,可以有效提高微透镜阵列制备的效率,避免了使用复杂、昂贵的设备,有效的缩减了微透镜阵列制备流程,从而缩减了制备成本。
上述实施例所提供的微透镜阵列加工系统与加工工艺,在以下领域有潜在应用:
一、三维电视和虚拟显示:用二维微透镜阵列获得多方位视角的单元图像实现三维成像。
二、有机发光二极管(Organic Light-emitting Diode,OLED):将微透镜阵列置于普通结构的OLED上,可以改变光线的传播方向,打破基底表面的内全反射,使更多的光出射到空气中,提高取光效率。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述。
以上为对本发明所提供的一种微透镜阵列加工系统与加工工艺的描述,对于本领域的技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种微透镜阵列加工系统,其特征在于,所述加工系统包括激光光源、快门、半波片、格兰棱镜、偏振片、光阑、平凹镜、第一平凸镜、第一反射镜、空间光调制器、第二平凸镜、第三平凸镜、分色镜、图像传感器、物镜、位移平台;
所述激光光源用于提供符合预设条件的激光光束;
所述激光光束依次穿过所述快门、所述半波片、所述格兰棱镜、所述偏振片、所述光阑、所述平凹镜及所述第一平凸镜后,经所述第一反射镜反射至所述空间光调制器,所述空间光调制器加载有预设的相位全息图;
所述激光光束经所述空间光调制器反射之后,依次穿过所述第二平凸镜与所述第三平凸镜,并投射在所述分色镜上;
所述分色镜用于将投射在所述分色镜上的激光光束分为第一激光光束与第二激光光束,所述第一激光光束投射于所述图像传感器,所述图像传感器用于输出所述待加工玻璃载玻片对应的观测图像;
所述第二激光光束穿过所述物镜后投射至所述位移平台上固定的待加工玻璃载玻片,以在所述待加工玻璃载玻片上烧蚀出弹坑阵列。
2.如权利要求1所述的微透镜阵列加工系统,其特征在于,还包括湿法腐蚀处理装置,所述湿法腐蚀处理装置用于对带有弹坑阵列的玻璃载玻片进行湿法腐蚀处理。
3.如权利要求1所述的微透镜阵列加工系统,其特征在于,所述平凹镜、第一平凸镜用于对所述激光光束进行扩束,使得投射至所述空间光调制器的激光光束的覆盖区域大小与所述空间光调制器的液晶面板大小相同。
4.如权利要求1所述的微透镜阵列加工系统,其特征在于,投射至所述空间光调制器的激光光束与所述空间光调制器反射的激光光束之间的夹角小于10°。
5.如权利要求1所述的微透镜阵列加工系统,其特征在于,还包括第一计算设备,所述第一计算设备与所述空间光调制器连接;
所述第一计算设备用于向所述空间光调制器发送所述相位全息图,所述相位全息图包括达曼光栅相位图与菲涅尔透镜相位图,所述达曼光栅相位图与菲涅尔透镜相位图相互叠加。
6.如权利要求1所述的微透镜阵列加工系统,其特征在于,所述第二平凸镜与所述第三平凸镜之间还包括虚拟测试面,所述激光光束垂直穿过所述虚拟测试面;
所述空间光调制器与所述第二平凸镜之间的光程、所述第二平凸镜与所述虚拟测试面之间的光程,均与所述第二平凸镜的焦距相同;
所述虚拟测试面与所述第三平凸镜之间的光程、所述第三平凸镜与所述物镜之间的光程,均与所述第三平凸镜的焦距相同。
7.如权利要求1所述的微透镜阵列加工系统,其特征在于,还包括第二计算设备,所述图像传感器、所述快门及所述位移平台,均与所述第二计算设备连接。
8.如权利要求1至7任意一项所述的微透镜阵列加工系统,其特征在于,所述激光光束为飞秒激光光束,所述飞秒激光光束的能量取值范围为5mW~10mW。
9.如权利要求8所述的微透镜阵列加工系统,其特征在于,所述物镜的数值孔径的取值范围为0.4~0.5。
10.一种微透镜阵列加工工艺,其特征在于,所述微透镜阵列加工工艺包括以下步骤:
建立微透镜阵列加工系统,所述微透镜阵列加工系统为权利要求1至9任意一项所述的微透镜阵列加工系统;
利用激光光源输出多束飞秒激光光束,以在待加工玻璃载玻片上烧蚀出弹坑阵列;
将带有弹坑阵列的玻璃载玻片置于氢氟酸稀释溶液中进行腐蚀,并利用超声波水浴加热辅助;
将腐蚀后的玻璃载玻片取出后,依次在丙酮、无水乙醇、去离子水中清洗,得到微透镜阵列。
CN201811603192.XA 2018-12-26 2018-12-26 微透镜阵列加工系统与加工工艺 Active CN109633796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811603192.XA CN109633796B (zh) 2018-12-26 2018-12-26 微透镜阵列加工系统与加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811603192.XA CN109633796B (zh) 2018-12-26 2018-12-26 微透镜阵列加工系统与加工工艺

Publications (2)

Publication Number Publication Date
CN109633796A true CN109633796A (zh) 2019-04-16
CN109633796B CN109633796B (zh) 2024-02-09

Family

ID=66077834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811603192.XA Active CN109633796B (zh) 2018-12-26 2018-12-26 微透镜阵列加工系统与加工工艺

Country Status (1)

Country Link
CN (1) CN109633796B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471135A (zh) * 2019-08-21 2019-11-19 吉林大学 制造曲面上微透镜阵列的方法以及包括由所述方法制成的曲面上微透镜阵列的光学装置
CN112163627A (zh) * 2020-10-09 2021-01-01 北京环境特性研究所 目标物体的融合图像生成方法、装置及系统
CN112846487A (zh) * 2021-01-11 2021-05-28 浙江师范大学 一种超快激光多焦点大间距并行加工装置及方法
CN113634882A (zh) * 2021-07-20 2021-11-12 广州大学 一种激光微纳加工图形的系统和方法
CN114326327A (zh) * 2021-12-31 2022-04-12 南方科技大学 光刻加工系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735171A (zh) * 2004-08-03 2006-02-15 精工爱普生株式会社 微型透镜用带有凹部的基板的制造方法以及透过型屏幕
CN102759800A (zh) * 2012-06-21 2012-10-31 西安交通大学 飞秒激光增强化学刻蚀制备微透镜阵列光束整形器的方法
CN102757014A (zh) * 2012-06-21 2012-10-31 西安交通大学 一种玻璃棒表面微透镜阵列的制备方法
CN103071930A (zh) * 2013-01-09 2013-05-01 南开大学 一种飞秒激光直写制备微孔阵列的系统与方法
CN106646895A (zh) * 2017-01-13 2017-05-10 湖北工业大学 一种基于空间光调制器的激光光束整形装置及方法
JP2017148829A (ja) * 2016-02-24 2017-08-31 サイバーレーザー株式会社 超短パルスレーザー加工装置
CN108519729A (zh) * 2018-04-24 2018-09-11 浙江师范大学 一种大尺寸高分辨率彩色菲涅尔全息制作方法与显示系统
CN108723586A (zh) * 2018-06-14 2018-11-02 清华大学 一种基于时空整形飞秒激光的聚合物微通道加工方法
CN209525479U (zh) * 2018-12-26 2019-10-22 深圳大学 微透镜阵列加工系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735171A (zh) * 2004-08-03 2006-02-15 精工爱普生株式会社 微型透镜用带有凹部的基板的制造方法以及透过型屏幕
CN102759800A (zh) * 2012-06-21 2012-10-31 西安交通大学 飞秒激光增强化学刻蚀制备微透镜阵列光束整形器的方法
CN102757014A (zh) * 2012-06-21 2012-10-31 西安交通大学 一种玻璃棒表面微透镜阵列的制备方法
CN103071930A (zh) * 2013-01-09 2013-05-01 南开大学 一种飞秒激光直写制备微孔阵列的系统与方法
JP2017148829A (ja) * 2016-02-24 2017-08-31 サイバーレーザー株式会社 超短パルスレーザー加工装置
CN106646895A (zh) * 2017-01-13 2017-05-10 湖北工业大学 一种基于空间光调制器的激光光束整形装置及方法
CN108519729A (zh) * 2018-04-24 2018-09-11 浙江师范大学 一种大尺寸高分辨率彩色菲涅尔全息制作方法与显示系统
CN108723586A (zh) * 2018-06-14 2018-11-02 清华大学 一种基于时空整形飞秒激光的聚合物微通道加工方法
CN209525479U (zh) * 2018-12-26 2019-10-22 深圳大学 微透镜阵列加工系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
苏亚辉;汪金礼;杨亮;李家文;黄文浩;: "飞秒激光全息并行加工中的多焦点均一性" *
苏亚辉;汪金礼;杨亮;李家文;黄文浩;: "飞秒激光全息并行加工中的多焦点均一性", 光学精密工程, vol. 21, no. 08, pages 1937 *
贺锋涛;周强;杨文正;龙学文;白晶;程光华;: "飞秒激光多光束干涉光刻硅表面减反微结构", vol. 42, no. 05 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110471135A (zh) * 2019-08-21 2019-11-19 吉林大学 制造曲面上微透镜阵列的方法以及包括由所述方法制成的曲面上微透镜阵列的光学装置
CN112163627A (zh) * 2020-10-09 2021-01-01 北京环境特性研究所 目标物体的融合图像生成方法、装置及系统
CN112163627B (zh) * 2020-10-09 2024-01-23 北京环境特性研究所 目标物体的融合图像生成方法、装置及系统
CN112846487A (zh) * 2021-01-11 2021-05-28 浙江师范大学 一种超快激光多焦点大间距并行加工装置及方法
CN113634882A (zh) * 2021-07-20 2021-11-12 广州大学 一种激光微纳加工图形的系统和方法
CN114326327A (zh) * 2021-12-31 2022-04-12 南方科技大学 光刻加工系统及方法

Also Published As

Publication number Publication date
CN109633796B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
CN109633796A (zh) 微透镜阵列加工系统与加工工艺
CN102023379B (zh) 三维光镊系统
CN102974936B (zh) 激光焦点定位系统及将材料定位于激光焦点处的方法
CN109270551B (zh) 一种面阵扫描式激光远距离三维测量系统
CN203599710U (zh) 一种可切换不同波长激光的激光打标装置
CN108459417B (zh) 一种单目窄带多光谱立体视觉系统及其使用方法
CN103862171A (zh) 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
CN107271984A (zh) 一种全固态激光雷达的扫描方法
CN209525479U (zh) 微透镜阵列加工系统
CN104142613B (zh) 一种大面积数字光刻光学系统
CN106289543B (zh) 大动态离焦范围单帧双幅图像光强采集装置及其采集方法
CN105717651A (zh) 一种基于合束棱镜与扩束场镜的多通道目标模拟系统
CN104991336B (zh) 一种用于纵向扫描的显微镜系统
CN201637928U (zh) 空间相干调制的光束整形光学系统
CN206960793U (zh) 一种产生多线优质激光的光学系统
CN206832985U (zh) 一种全固态激光雷达装置
CN106768342B (zh) 基于偏振复用实现不等间隔多平面成像的装置及方法
CN105092608A (zh) 终端光学元件损伤在线检测中孪生像的剔除方法
CN204881866U (zh) 一种实时定量相位恢复装置
CN104834102B (zh) 一种可将单摄像机变为立体摄像机的光学系统及其方法
CN109901302B (zh) 一种红外制冷型成像光学系统
Yang et al. Metasurface optics enabled computational sensing
CN207571380U (zh) 一种双视场单筒望远镜
CN102809476A (zh) 两共轴背对背固定光电成像系统的轴线误差标定方法
Colburn et al. Single-shot three-dimensional imaging with a metasurface depth camera

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant