CN102803618A - 用于移动采掘机的自动控制的控制数据的定义 - Google Patents

用于移动采掘机的自动控制的控制数据的定义 Download PDF

Info

Publication number
CN102803618A
CN102803618A CN2010800285576A CN201080028557A CN102803618A CN 102803618 A CN102803618 A CN 102803618A CN 2010800285576 A CN2010800285576 A CN 2010800285576A CN 201080028557 A CN201080028557 A CN 201080028557A CN 102803618 A CN102803618 A CN 102803618A
Authority
CN
China
Prior art keywords
scraper bowl
route
model
data
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800285576A
Other languages
English (en)
Other versions
CN102803618B (zh
Inventor
安蒂·雷亭恩
汉努·麦克拉
亚尔科·卢克雅尔维
约尼·西维拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Mining and Construction Oy
Original Assignee
Sandvik Tamrock Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Tamrock Oy filed Critical Sandvik Tamrock Oy
Publication of CN102803618A publication Critical patent/CN102803618A/zh
Application granted granted Critical
Publication of CN102803618B publication Critical patent/CN102803618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/431Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like
    • E02F3/434Control of dipper or bucket position; Control of sequence of drive operations for bucket-arms, front-end loaders, dumpers or the like providing automatic sequences of movements, e.g. automatic dumping or loading, automatic return-to-dig
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • E21F13/02Transport of mined mineral in galleries
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明涉及一种用于布置配备有铲斗的移动采掘机的自动控制的方法。所述方法包括生成通用铲斗卸空模型,所述模型至少定义用于卸空采掘机的铲斗的铲斗路径。铲斗卸空模型存储在存储装置上。响应于需要为路线定义卸空铲斗,从存储装置取出该铲斗卸空模型。将至少取出的铲斗卸空模型中定义铲斗的路径的数据附加到用于在采掘机的自动控制中使用的路径数据。

Description

用于移动采掘机的自动控制的控制数据的定义
技术领域
本发明涉及布置移动采掘机的自动控制,尤其涉及定义用于配备有铲斗的采掘机的控制数据,目的是为了布置采掘机的自动控制。
背景技术
在矿井中使用各种移动采掘机,诸如凿岩设备、装载设备和运输设备。采掘机可以是有人的或无人的。无人采掘机可从例如控制室遥控,并且可配备有适于确定定位的测量仪器。无人采掘装置可被控制沿着矿井中的期望路线,只要能够确定装置的定位。装置的定位可通过使用例如激光扫描器确定。例如,WO 2007/012198公开了一种用于自动引导采掘车辆的方法。通过人工或使用遥控操作驾驶采矿车辆,操作者向采掘车辆指导路线,采掘装置可在无需操作者干预的情况下沿着该路线移动。
除了定义路线点之外,还可以通过驾驶采掘机而指导其它控制数据。为了让配备有铲斗的采掘机自动地移动所挖掘的材料,也可以通过人工操作机械来指导铲斗的装料和卸空。重要的是正确地定义悬臂和铲斗的路径,特别是在铲斗卸空期间。然而,指导卸空移动易于出错。卸空移动常常以空铲斗来指导,因此机械以与满铲斗不同的方式动作。
发明内容
已经开发出一种改进的解决方案,用来定义用于配备有铲斗的移动采掘机的控制数据。该解决方案的特征在于独立权利要求中所描述的内容。从属权利要求阐述了本发明的一些优选实施例。
根据本发明的一个方面,为了定义用于配备有铲斗的移动采掘机的控制数据,生成通用铲斗卸空模型,该模型至少定义了用于卸空铲斗的铲斗路径。所述铲斗卸空模型存储在存储装置上,用于在定义用于包括一个或多个铲斗的采掘机的自动控制的控制数据中使用。响应于需要为用于自动控制采掘机的路线定义铲斗的卸空,从存储装置取出所述铲斗卸空模型。至少将从存储装置检索的铲斗卸空模型中的定义铲斗的路径的数据附加到在采掘机的自动控制中使用的路线数据。
本发明提供了若干优点,这些优点从详细描述中将变得显而易见。现在可以为新任务将获准的卸空移动存储为通用铲斗卸空模型,也就是说,存储为不限于具体路线的卸空模型。除了别的以外,可以加速新路线的引入,因为不再需要通过人工引导机械而为每个路线单独地指导铲斗的卸空。
附图说明
现在将通过一些优选实施例并结合附图更详细地描述本发明的一些实施例,在附图中:
图1是移动采掘装置的示意性侧视图,
图2从顶部示出根据实施例的用于定位和控制采掘机的布置,
图3示出根据实施例的用于定义采掘机的路线的设备,
图4示出根据实施例的方法,以及
图5示出根据实施例的方法。
具体实施方式
图1示出了移动采掘机1,在这种情况下为在前面具有用于运输和装载所挖掘材料的悬臂16和铲斗15的装载装置。采掘机1包括带有几个车轮3的可移动运输工具2,其中至少一个车轮是由马达4通过传动装置驱动的驱动轮。马达4可以是电动马达、内燃引擎、液压马达或用于提供旋转扭矩的任何其它装置。传动装置通常包括齿轮箱5和所需的万向节轴6、差速齿轮以及用于将旋转扭矩从马达4传递到驱动轮的其它动力传动构件。采掘机1还配备有至少包括第一控制单元7的控制系统,第一控制单元7被布置为控制采矿装置1内的伺服器以便控制和驾驶机械。
此外,采掘机1可具有数据传输单元8,利用数据传输单元8,第一控制单元7可通过使用由基站9提供的无线连接建立到采掘机1外部的第二控制单元10的数据传输连接。第二控制单元10可位于控制室11内,控制室11可布置在矿井外面。控制单元7和10可以是配备有合适软件的计算机。
应该指出的是,采掘机可泛指在地面或地下生产区内的岩石挖掘操作中使用的不同机械,并且这些机械也可在实际矿井以外的其它定位使用。图1是简化的图,并且采掘机1的控制系统通常包括用于执行不同控制功能的几个单元。采掘机1的控制系统可以是分散的实体,该实体由连接到例如管理机械的所有测量和控制的CAN(控制器局域网)总线的模块形成。控制室11的信息系统也可包括一个或多个服务器、数据库、操作员工作站和到其它网络及系统的连接。
采掘机1的控制系统包括定位系统或单元。根据实施例,定位系统包括可用来准确确定机械的方向以用于定位的至少一个陀螺仪12。定位系统还包括用于确定机械1已行驶的距离的装置。一个或多个传感器13可用来测量车轮3的旋转。基于测量数据,定位系统确定车轮的旋转动作,然后计算机械已行驶的距离。定位系统还可包括一个或多个扫描器14,诸如,激光扫描器或能够扫描采掘机1周围的空间和形状的对应装置。
图2示出了根据实施例的在定位中使用且基于扫描的路线的定义和使用的原理。在采掘机1的一侧或两侧上可存在激光扫描器14,利用激光扫描器14可确定矿井隧道20的轮廓和表面外形。
采掘机1的路线21可通过指导来建立。接着,采掘机1通过人工控制沿着所需路线驾驶,并且基于从处理扫描数据获得的定位数据确定的路线21的路线点22a、22b、22c被存储到存储器中。当已经指导了所需路线21并存储到控制系统的存储器中时,采掘机1可被控制为自主地行进在路线21上。通过使用例如激光扫描器14,可在自动控制期间确定移动采掘机1的定位。激光扫描器扫描隧道的壁轮廓以基于预存储的环境模型确定定位,而不需要在隧道壁上有单独的标签,诸如反射器或射频标签。控制系统基于确定的定位和路线的路线点数据控制采掘机的驾驶,从而使采掘机保持在路线21上。
如图2中所示,在路线点22c周围的铲斗卸空区内,可以在彼此间隔较短的距离内指导几个路线点,以便准确地对铲斗卸空动作建模。这些路线点中的每一个都可包含用于执行所指导的铲斗卸空动作所需的铲斗15和悬臂16的位置数据。当沿着这种类型的路线自主行进的采掘机1到达铲斗卸空区时,控制单元7基于与卸空区的路线点22c相关的铲斗和悬臂位置数据控制铲斗15和悬臂16,以便执行为该路线定义的卸空动作。
图3示出了根据实施例的一种设备。该设备至少包括单元30,单元30适于定义通用卸空模型和/或在定义包含铲斗使用的路线时使用卸空模型。以下称为路线定义单元的单元30可实现路线定义应用程序或工具,用户可经由用户接口32、33使用这些应用程序或工具。路线定义单元30可实现算法,该算法被布置成根据实施例基于第一路线数据定义通用铲斗卸空模型,和/或基于预存储的卸空模型对于新路线或待修改的第二路线的至少一个路线点定义用于铲斗15和悬臂16的位置数据。术语“路线”应被广义地理解为表示任何类型或长度的驾驶事件。其数据用来定义卸空模型的第一路线可以例如是用于将所挖掘材料从采掘场所运输到卸空场所的路线,或者只是在铲斗卸空场所执行的采掘机的指导行进。
路线定义单元30可以例如由通用数据处理装置的处理器实现,在所述处理装置中运行着执行路线定义功能的一个或多个计算机程序。计算机程序包括实现在下文中结合图4至5所示出的特征中的至少一些的代码。这些特征可以是路线定义应用软件的一部分,但它们也可以被实现为单独的应用程序,即,路线定义应用程序可具有用于生成和/或使用卸空模型的单独的应用程序或单元。计算机程序可存储在诸如存储器31或单独的存储装置的机械可读存储介质上,可以从该存储介质取出计算机程序以在处理器中执行。
路线定义单元30连接到存储器31,在存储器31中可存储在定义路线中使用的数据,诸如,环境模型、采掘机的属性数据以及影响路线定义的其它数据和设置。路线定义单元包括用于显示器32的接口和用于诸如键盘和/或鼠标的至少一个输入装置33的至少一个接口。该设备也可具有到其它系统的一个或多个其它接口。该设备通常包括可使用例如基于标准TCP/IP(传输控制协议/互联网协议)的网络协议的至少一个数据传输单元。
路线定义单元30在操作上可连接到定位系统34,定位系统34在采掘机1行进期间确定其定位。定位系统34可以是导航系统的一部分,该导航系统由移动采掘机1(诸如控制单元7)实现,并且也可以部分地由采掘机1的外部控制单元10实现。
路线定义单元30可例如在布置为矿井的信息系统的一部分的通用工作站上实现。然而,路线定义单元30不需要在用于控制采掘操作的数据处理设备中实现或者甚至不需要与其可连接,这意味着定义路线不固定到定位或具体设备。然而,应该指出的是,可以在移动采掘机1及其数据处理设备中实现与路线定义相关的本技术特征中的至少一些,例如路线定义单元30。
至少实现路线定义单元30的设备可以在不同的适当配置的数据处理装置中实现。实现路线定义单元30的软件应用可存储在例如便携式计算机中,路线数据可经由通信连接或通过使用存储装置从便携式计算机传输到例如控制室的控制单元10。
该系统也可具有特定的驾驶任务管理系统,例如,在位于控制室11内的控制单元10中执行的应用。驾驶任务管理系统基于来自操作者的输入定义驾驶任务,并且将驾驶任务数据发送到采掘机1的控制单元7。参照图3,驾驶任务管理系统可连接到存储器31,并且可从存储器取出预存储的路线数据并将路线数据和/或控制命令转发到移动采掘机1的控制单元7或导航系统。
图4示出了根据实施例的方法,该方法可在例如图3中所示路线定义单元30内执行。在步骤40中,需要定义示出铲斗卸空动作的模型。这可以例如结合路线指导进行,或者之后当发现为(第一)路线指导的铲斗卸空分布良好时作为单独的操作进行。可以在例如路线定义应用的使用者从路线定义应用的用户接口选择铲斗卸空模型的定义时进入步骤40。
在步骤41中,定义铲斗卸空模型的应用或单元接收铲斗和悬臂位置数据以及采掘机定位数据。数据可以通过取出由使用者选择的早先存储的路线文件并从其中检索至少与卸空铲斗相关的数据来获得。与卸空铲斗相关的路线的选择可被存储为例如单独的段,所以应用程序可取出在步骤41为该段定义的路线点数据。
根据一个替代实施例,步骤41作为指导新路线的一部分或在指导新路线之后立即进入。这样,数据甚至可以是处理从进行指导行进的采掘机1收到的数据的直接结果。
基于收到的位置数据和/或铲斗和悬臂位置数据,在步骤42中为铲斗和悬臂形成路径点数据。可以定义路径点,或者例如可以已经以预定间隔或在位置变为预定义的阈值范围时为早先的路线定义了路径点。根据实施例,路径点被定义为直接对应于路线数据的路线点,也就是说,为卸空模型定义的路径点与在与卸空铲斗相关的路线的对应部分上存在的一样多。
根据实施例,在通用铲斗卸空模型中,为路径点中的至少一些定义距路径起点或终点的距离数据。这意味着该系统不限于任何具体的坐标系。对于采掘机1的定位,接着从与卸空铲斗相关的路线的路线点中定义基准点。基准点优选地为与卸空铲斗相关的采掘机1路径的起点或终点。对于通用铲斗卸空模型来说,通过定义所述路线点和基准点之间的路径长度,可以为每个早先定义的路线的路径点定义距给定基准点的距离数据。换句话讲,计算与坐标无关的距离信息以定义路径点距基准点的距离,基准点优选地为路径的起点或终点。可为卸空模型的每个路径点定义距离信息。
应该指出的是,待定义的路径点不需要包括所有上述数据。可以在模型中存储仅包括例如铲斗和悬臂的位置数据或距离数据的路径点。
当定义了卸空模型的所有路径点时,可将包含卸空模型的文件存储43到例如存储器31中。文件可存储在为路线定义应用设置的库中,使用路线定义应用的人员在定义路线时可容易地从库中获取文件。文件被赋予标识符,例如描述卸空模型的名称。至少定义铲斗和悬臂的路径的铲斗和悬臂的位置数据被存储在文件中。
根据实施例,使用结构化的文件格式,其中包括铲斗的位置值、悬臂的位置值和距基准点的距离数据的每个路径点在文件中形成其自己的子元素。在定义时,路径点数据也可存储到例如临时文件中。
在铲斗卸空场所的功能和路径也可被划入两个或更多个单独的卸空模型中,在这些卸空模型中可单独地执行图4的步骤中的至少一些。例如,可以为卸空铲斗15和退出卸空场所而定义和存储单独的模型文件。应该指出的是,那么为了控制采掘机1离开卸空场所就没必要存储除了用于定义退出卸空场所的模型的距离数据之外的数据。
图5示出了在定义路线过程中对预定义的和存储的铲斗卸空模型的使用。图5中所示方法可以在例如路线定义单元30中使用。在步骤50中,需要定义在(第二)路线中的铲斗卸空。这种需要可以例如在下列情况下出现:当通过指导行进来定义新路线时;当用新卸空模型改变已经存在的路线时;或者当把卸空铲斗添加到已经定义的路线时。
从存储器中检索51预存储的通用卸空模型文件,例如从为使用路线定义单元30而定义的库中检索。待检索的卸空模型可基于通过输入装置33从使用者接收的输入来定义。
在步骤52中,将从存储器检索的卸空模型文件中获得的至少铲斗和悬臂位置数据添加到至少一个合适的路线点,以实现由卸空模型定义的卸空序列和铲斗路径。如下文所示,步骤52可包括几个子步骤。
根据实施例,卸空模型包括一组路径点,并且对于每一个路径点来说,定义了铲斗位置值、悬臂位置值和距基准点的距离,例如距定义的路径的第一点或最末点的距离。然后,例如从铲斗的卸空点开始定义路线点,并且可以为不同定位的每一个路径点定义路线点。
在步骤52中,可以例如基于不同的距离信息检测需要为不同路线点定义铲斗和悬臂的位置数据。
根据实施例,基于距离信息为每个路径点选择已经定义的路线点中最合适的,即与该路径点最佳对应的路线点。这样就没必要在路线上添加新路线点,但可以将卸空模型中的铲斗和悬臂的位置数据直接添加到最合适的路线点。
根据另一个实施例,可以在必要时为定位不同的每个路径点添加新路线点,也就是说,根据需要,基于不同定位处的路径点为路线获得新导航点。或者,也可以直接定义与卸空模型文件的路径点相对应的路线点。可以基于已经为新路线定义的至少一个路线点和在铲斗卸空模型中定义的距离数据来定义新路线点的坐标,并且这些坐标定义了距给定基准点的距离。从而,就计算出了每个新路线点的坐标。
包括与卸空铲斗相关的控制数据的路线点数据被附加53到路线数据。附加应被广义地理解为涵盖例如将铲斗路径数据存储到路线文件中或者存储引用或链接。根据实施方式,卸空模型文件的数据元可以按原样复制到路线数据中,或者仅从卸空模型文件中检索必要的铲斗和悬臂位置值,以便以适当的形式包含在定义路线的文件中。因此,步骤52和53中所示功能可在一个步骤中实现。如果要替换定义卸空的早先的路线部分,则可以用在步骤52中定义的路线点替换对应路线部分的早先的路线点。
根据实施例,对于卸空模型中的每个路径点,仅存储距卸空场所的距离和在该距离处的悬臂与铲斗的位置。当卸空模型与指导的路线组合52、53时,路线定义单元30可被布置成仅复制悬臂和铲斗的位置,但在该阶段不改变指导的路线的其它数据,诸如,路线点坐标、挡位或速度。为路线定义卸空序列的算法因此通过使用距卸空场所的距离而从卸空模型和指导的路线中搜索对应的点,并且仅复制铲斗和悬臂的位置数据。如果已经存储了几个模型,则使用者只需要选择合适的卸空模型。合适性可以例如基于铲斗将在多高处倾倒(即倾倒时悬臂的高度)来定义。
在步骤54中,存储最终路线数据。应该指出的是,图5是简化的图,未给出定义路线所需的其它可能动作,诸如定义路线点坐标和采掘机1的其它控制数据。
这使得能够在定义其它路径时使用为路线定义的悬臂和铲斗的获准路径。此外,不再需要通过人工控制机械为每个路线单独指导卸空动作,从而可以加速引入新的自动化路线和减少错误。当使用预存储的好用的卸空模型时,不再为定义卸空模型而需要专业的驾驶员。当指导新路线时,驾驶员将采掘机1驾驶到生产区内的卸空场所就足够了。例如,驾驶员不需要确保悬臂及时而足够高地升起。
此外,可以减少甚至完全避免对卸空模型的之后的修改,从而加速了新路线的引入。
可以在可供路线定义应用使用的库中预存储几种不同的卸空模型,诸如以高悬臂动作倾倒或通过晃动铲斗倾倒。因此,在规划到实际生产现场的自动化行进时,仅实现图5的特征的应用程序可能就足够了。
卸空模型优选地为通用模型,使得其不限于任何特定路线,换句话讲,可以基于卸空模型为任何路线定义倾倒路径。然而,应该指出的是,由于采掘机械模型的不同属性可以为不同的采掘机械模型定义和存储模型特有的卸空模型。结合路线定义应用,可以提供由采掘机1的制造商定义的卸空模型,从而进一步有利于在生产区引入自动化的控制。因此,应该指出的是,虽然上文示出了在制作路线期间或从路线数据生成铲斗卸空模型,但也可以其它方式和通过除路线定义应用之外的其它手段生成铲斗卸空模型。例如,铲斗卸空模型可以在完全没有早先定义的路线数据的情况下通过使用适于此目的的设计程序生成,并且甚至以无需驾驶采掘机以指导铲斗卸空模型的方式进行。
根据实施例,铲斗卸空模型存储在结构化的XML(可扩展标记语言)文件中。XML文件可以在路线定义单元30中以上文所示方式处理。定义路线的文件也可以具有XML格式。然而,应该指出的是,应用本发明的实施例不限于具体存储格式,也可以使用其它结构化的存储格式。
铲斗卸空模型的XML格式部分的示例如下所示。该示例示出了两个路径点的数据。
Figure BDA0000124814390000111
每个子元素<point>定义了定义铲斗和悬臂的路径的路径点的数据。定义路径点的每个子元素包括用于定义悬臂的位置值的子元素<bo>、用于定义铲斗的位置值的子元素<bu>、以及用于定义距路径的起点(如果是用于退出卸空场所的路径)或终点(如果是卸空路径)的距离的子元素<dist_from_end>。悬臂和铲斗的位置值可以被定义为例如极限值的百分比。然而,应该指出的是,可以以许多不同的方式并且通过使用与以上所示元素可能很不同的元素以结构化形式定义铲斗卸空模型的数据。
参照图4,在步骤42中,定义了所需数量的路径点子元素<point>,并且为它们定义了元素<bo>、<bu>和<dist_from_end>的值。参照图5,当在步骤52中定义新路线点时,路线定义单元30可被布置成例如首先定义从卸空路径的最末路径点开始的路线点。在该点处,铲斗和悬臂处于对于运输合适的位置,并且随后的点定义了位置值,使得遵循模型的采掘机1开始将铲斗15和悬臂16移动至更合适的位置以便卸空。然后可将单独的第二路径存储到卸空模型中,该第二路径定义了这样的路径点:采掘机1基于这些路径点从铲斗卸空场所退出(向后)。
以上描述了其中铲斗卸空模型将铲斗和悬臂位置数据定义为例如极限位置的百分比的一些实施例。然而,应该指出的是,可将悬臂和铲斗控制数据以许多不同方式定义在铲斗卸空模型中。
根据实施例,出于定义路线目的而存储的铲斗卸空模型包括可以是机械特有的铲斗和/或悬臂控制参数。这些控制参数可被定义为适当的形式,以这些控制参数可以直接控制采掘机1内的铲斗15和/或悬臂16控制构件。控制参数基于例如图4的步骤41中的指导行进来定义,并且它们可以在图5的步骤53中被添加到路线数据。铲斗卸空模型可包含例如定义影响铲斗15的动作的控制阀的控制信号的序列,其中控制阀诸如是压力介质缸的控制阀。
根据实施例,路线被定义为具有各自的识别码的互连的路线部分或段。对于每个段来说,又可以根据该段的属性定义驾驶速度和其它功能的(极限)值。通过使用以上所述的通用铲斗卸空模型,能够以使得不再需要为了指导用于段的卸空序列而将采掘机驾驶到该段以卸空铲斗的方式为新路线段快速定义铲斗卸空序列。
根据实施例,基于铲斗卸空模型定义用于通过计算生成的路线或路径的铲斗卸空序列。基于预存储的环境模型、从使用者接收的起点和终点数据以及采掘机的属性数据,可通过计算定义路线。这类路线定义在申请人的另一份专利申请“Determination of driving route forarranging automatic control of mobile mining machine(为布置移动采掘机的自动控制确定驾驶路线)”FI申请号20095712中更详细地描述,该申请关于在采掘机不行进的情况下定义路线的部分以引用方式并入本文中。以上结合例如图5描述的特征也可用于为这类路线定义路线点数据。在定义路线点的数据时,可将从铲斗卸空模型获得的铲斗和悬臂位置数据添加到通过计算定义的路线的铲斗卸空区的一个或多个路线点。如果需要,也可以基于卸空模型的距离数据添加新路线点,从而以由卸空模型定义的足够的准确度为路线定义铲斗卸空序列。这样,可以在定义路线中使用获准的铲斗卸空序列,并且不需要通过沿着该路线驾驶采掘机来指导卸空铲斗。
对于本领域的技术人员显而易见的是,随着技术的进步,可以以许多不同的方式实现本发明的基本思想。因此,本发明及其实施例并不局限于以上所述示例,而是可以在权利要求的保护范围内变化。因此,可以将不同的特征省略、修改或替换成等同特征,并且可以组合本专利申请中描述的特征以形成各种组合。

Claims (18)

1.一种用来定义用于布置配备有铲斗的移动采掘机(1)的自动控制的方法,所述方法包括为所述采掘机(1)定义控制数据,所述控制数据定义了所述铲斗的位置,其特征在于,生成(42)至少定义用于卸空所述采掘机的所述铲斗的铲斗路径的通用铲斗卸空模型,
将所述铲斗卸空模型存储(43)在用于在对控制数据的所述定义中使用的存储装置上,所述控制数据用于对包括一个或多个铲斗的采掘机的所述自动控制,
响应于需要为路线定义卸空所述铲斗,从所述存储装置取出(51)所述铲斗卸空模型,以及
至少将从所述存储装置取出的所述铲斗卸空模型中的定义了所述铲斗的所述路径的数据附加(53)到在所述采掘机(1)的所述自动控制中使用的所述路线的数据。
2.根据权利要求1所述的方法,其中所述铲斗卸空模型包括定义了所述采掘机的所述铲斗和悬臂的所述路径的路径点,并且为每个路径点定义至少铲斗控制数据和悬臂控制数据。
3.根据权利要求1或2所述的方法,包括从定义早先定义的第二路线的文件检索与卸空所述铲斗相关的路线点的数据,以及
基于从定义所述第二路线的所述文件检索的所述路线点数据,在所述铲斗卸空模型中定义路径点。
4.根据权利要求3所述的方法,包括根据在定义了所述早先定义的第二路线的所述文件中的与卸空所述铲斗相关的所述路线点为所述采掘机的定位定义基准点,
在所述铲斗卸空模型中,为一个或多个路径点定义距所定义的基准点的距离数据,以便确定所述采掘机(1)的所述定位,以及
基于所述距离数据,将所述铲斗卸空模型中至少定义所述铲斗路径的数据附加到所述路线的至少一个路线点。
5.根据前述权利要求中的任一项所述的方法,其中所述铲斗卸空模型包括用于执行铲斗卸空动作的控制数据和用于引导所述采掘机(1)离开所述卸空场所的控制数据。
6.根据前述权利要求中的任一项所述的方法,其中将所述铲斗卸空模型存储在XML(可扩展标记语言)格式文件中,所述文件包括至少一个路径的路径点子元素,其中每个路径点子元素都包括用于定义悬臂位置值的子元素、用于定义铲斗位置值的子元素、以及用于定义距所述路径的起点的距离的子元素。
7.一种包括用于定义控制数据的数据处理装置(30)的设备,所述控制数据用于移动采掘机(1)的自动控制,其特征在于,所述设备适于:
生成(42)通用铲斗卸空模型,所述通用铲斗卸空模型至少定义用于卸空所述采掘机的所述铲斗的所述铲斗的路径,并且
将所述铲斗卸空模型存储(43)在用于在对路线数据的所述定义中使用的存储装置(31)上,所述路线数据用于对包括一个或多个铲斗的移动采掘机的所述自动控制。
8.根据权利要求7所述的设备,其中所述设备被布置成在所述铲斗卸空模型中定义(42)路径点,这些路径点定义了所述采掘机(1)的所述铲斗和悬臂的所述路径,并且为每个路径点定义至少铲斗控制数据和悬臂控制数据。
9.根据权利要求7或8所述的设备,其中所述设备被布置成从定义了第一路线的文件中检索与卸空所述铲斗相关的路线点的数据,并且
所述设备被布置成基于从定义所述第一路线的所述文件中检索的所述路线点数据在所述铲斗卸空模型中定义路径点。
10.根据权利要求9所述的设备,其中所述设备被布置成根据在定义了所述第一路线的文件中的与卸空所述铲斗相关的所述路线点为所述采掘机的定位定义基准点,并且
所述设备被布置成在所述铲斗卸空模型中为一个或多个路径点定义距所定义的基准点的距离数据,以便确定所述采掘机(1)的所述定位。
11.根据权利要求7至10中的任一项所述的设备,其中所述设备被布置成在所述铲斗卸空模型中定义用于执行所述铲斗卸空动作的控制数据和用于引导所述采掘机(1)离开所述卸空场所的控制数据。
12.根据权利要求7至11中的任一项所述的设备,其中所述设备被布置成将所述铲斗卸空模型存储在XML(可扩展标记语言)格式文件中,所述文件包括至少一个路径的路径点子元素,其中每个路径点子元素都包括用于定义悬臂位置值的子元素、用于定义铲斗位置值的子元素、以及用于定义距所述路径的起点的距离的子元素。
13.一种计算机程序,其特征在于,所述计算机程序包括计算机程序代码装置,所述计算机程序代码装置被布置为当在计算机上执行所述程序时执行在权利要求1至6中任一项定义的所述方法的各步骤。
14.一种包括用于定义控制数据的数据处理装置(30)的设备,所述控制数据用于移动采掘机(1)的自动控制,其特征在于,所述设备被布置成:
响应于需要为路线定义铲斗卸空,从存储装置(31)中取出(51)预存储的通用铲斗卸空模型,所述铲斗卸空模型至少定义了用于卸空所述采掘机(1)的所述铲斗的所述铲斗的路径,以及
至少将从所述存储装置(31)取出的所述铲斗卸空模型中定义所述铲斗的所述路径的数据附加(53)到所述路线的数据。
15.根据权利要求14所述的设备,其中所述铲斗卸空模型包括定义所述采掘机(1)的所述铲斗和悬臂的所述路径的路径点,并且对于每个路径点都定义至少铲斗位置数据和悬臂位置数据,并且
所述设备被布置成基于所述铲斗卸空模型为所述路线的所述路线点数据定义(52)铲斗位置数据和悬臂位置数据。
16.根据权利要求14或15所述的设备,其中所述铲斗卸空模型定义了:为所述采掘机(1)定位的基准点、用于所述铲斗卸空模型的一个或多个路径点的距所定义的基准点的距离数据,以便确定所述采掘机(1)的所述定位,并且
所述设备被布置成基于所述距离数据将至少定义了所述铲斗卸空模型的所述铲斗路径的数据附加到所述路线的至少一个路线点。
17.根据权利要求14至16中的任一项所述的设备,其中所述铲斗卸空模型包括用于执行铲斗卸空动作的控制数据和用于引导所述采掘机(1)离开所述卸空场所的控制数据,并且
所述设备被布置成基于所述铲斗卸空模型为所述路线定义路线点数据,以用于执行所述铲斗卸空动作和用于引导所述采掘机(1)离开所述卸空场所。
18.根据权利要求14至17中的任一项所述的设备,其中所述设备被布置成将所述铲斗卸空模型存储在XML(可扩展标记语言)格式文件中,所述文件包括至少一个路径的路径点子元素,其中每个路径点子元素都包括用于定义悬臂位置值的子元素、用于定义铲斗位置值的子元素、以及用于定义距所述路径的起点的距离的子元素。
CN201080028557.6A 2009-06-24 2010-06-23 用于定义控制数据的方法和包括用于定义控制数据的数据处理装置的设备 Active CN102803618B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20095712 2009-06-24
FI20095712A FI20095712A (fi) 2009-06-24 2009-06-24 Ohjaustietojen määrittäminen liikkuvan kaivoskoneen automaattista ohjaamista varten
PCT/FI2010/050540 WO2010149857A1 (en) 2009-06-24 2010-06-23 Definition of control data for automatic control of mobile mining machine

Publications (2)

Publication Number Publication Date
CN102803618A true CN102803618A (zh) 2012-11-28
CN102803618B CN102803618B (zh) 2016-03-02

Family

ID=40825416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080028557.6A Active CN102803618B (zh) 2009-06-24 2010-06-23 用于定义控制数据的方法和包括用于定义控制数据的数据处理装置的设备

Country Status (10)

Country Link
US (1) US8571765B2 (zh)
EP (1) EP2446091B1 (zh)
CN (1) CN102803618B (zh)
AU (1) AU2010264557C1 (zh)
CA (1) CA2765144C (zh)
CL (1) CL2011003282A1 (zh)
ES (1) ES2719229T3 (zh)
FI (1) FI20095712A (zh)
WO (1) WO2010149857A1 (zh)
ZA (1) ZA201200572B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795705A (zh) * 2014-10-13 2017-05-31 山特维克矿山工程机械有限公司 用于控制工作机械的布置
CN112376521A (zh) * 2020-11-10 2021-02-19 安徽省六安恒源机械有限公司 一种抓臂式清污机器人智能搜索清污系统
CN114851209A (zh) * 2022-06-21 2022-08-05 上海大学 一种基于视觉的工业机器人工作路径规划优化方法及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2760725C (en) * 2009-05-01 2018-08-14 The University Of Sydney Planning system for autonomous operation
FI20095714A (fi) 2009-06-24 2010-12-25 Sandvik Mining & Constr Oy Ajoreitin määrittäminen liikkuvan kaivoskoneen automaattisen ohjaamisen järjestämiseksi
FI20095712A (fi) 2009-06-24 2010-12-25 Sandvik Mining & Constr Oy Ohjaustietojen määrittäminen liikkuvan kaivoskoneen automaattista ohjaamista varten
AU2012202213B2 (en) * 2011-04-14 2014-11-27 Joy Global Surface Mining Inc Swing automation for rope shovel
CN110644991B (zh) 2011-08-03 2021-08-24 久益环球地下采矿有限责任公司 采掘机的稳定系统
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
WO2014191013A1 (en) * 2013-05-27 2014-12-04 Sandvik Mining And Construction Oy Method and control system for a mining vehicle and a mining vehicle
CA2849407C (en) * 2013-08-30 2016-04-12 Motohide Sugihara Mining machine management system and mining machine management method
US20150097412A1 (en) * 2013-10-09 2015-04-09 Caterpillar Inc. Determing an activity of a mobile machine
WO2015106799A1 (en) * 2014-01-14 2015-07-23 Sandvik Mining And Construction Oy Mine vehicle, mine control system and mapping method
CA2987320A1 (en) * 2015-05-28 2016-12-01 Joy Global Longview Operations Llc Mining machine and energy storage system for same
US9575491B1 (en) 2015-09-03 2017-02-21 Caterpillar Underground Mining Pty Ltd System and method for automated machine operation
US9910434B1 (en) 2016-11-21 2018-03-06 Caterpillar Inc. Command for underground
US10838422B2 (en) * 2017-04-13 2020-11-17 Panasonic Intellectual Property Corporation Of America Information processing method and information processing apparatus
CN113330182B (zh) * 2019-01-30 2024-05-07 山特维克矿山工程机械有限公司 适于从矿床中提取材料的采矿机及其控制方法
AU2019205002A1 (en) * 2019-07-11 2021-01-28 Caterpillar Underground Mining Pty Ltd System and method for operating underground machines

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214406A (ja) * 1986-03-17 1987-09-21 Komatsu Ltd パワ−シヨベルの制御方法
US6058344A (en) * 1997-02-06 2000-05-02 Carnegie Mellon University Automated system and method for control of movement using parameterized scripts
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
US20040158355A1 (en) * 2003-01-02 2004-08-12 Holmqvist Hans Robert Intelligent methods, functions and apparatus for load handling and transportation mobile robots
US20060271235A1 (en) * 2001-04-17 2006-11-30 Sandvik Tamrock Oy Method and apparatus for automatic loading of dumper
WO2007012198A1 (en) * 2005-07-26 2007-02-01 Macdonald, Dettwiler & Associates Inc. Guidance, navigation, and control system for a vehicle

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079997A (en) 1976-09-10 1978-03-21 Jury Nikolaevich Bienko Photoelectric method and device for control of a mining machine along a bed of mineral
JPS6037339A (ja) * 1983-08-09 1985-02-26 Kubota Ltd 掘削作業車
US5648901A (en) 1990-02-05 1997-07-15 Caterpillar Inc. System and method for generating paths in an autonomous vehicle
AT404822B (de) 1994-08-16 1999-03-25 Voest Alpine Bergtechnik Verfahren zum steuern von verketteten fahrzeugen im berg- bzw. tunnelbau sowie vorrichtung zur durchführung dieses verfahrens
JP3750877B2 (ja) 1996-01-18 2006-03-01 株式会社小松製作所 無人車両走行コースのティーチング方法及び装置
US5922041A (en) 1996-09-18 1999-07-13 Magellan Dis, Inc. Navigation simulator and recorder
US5999865A (en) 1998-01-29 1999-12-07 Inco Limited Autonomous vehicle guidance system
US6363632B1 (en) * 1998-10-09 2002-04-02 Carnegie Mellon University System for autonomous excavation and truck loading
US6203111B1 (en) 1999-10-29 2001-03-20 Mark Ollis Miner guidance using laser and image analysis
US6442456B2 (en) 2000-03-07 2002-08-27 Modular Mining Systems, Inc. Anti-rut system for autonomous-vehicle guidance
FI111414B (fi) 2001-05-14 2003-07-15 Sandvik Tamrock Oy Menetelmä ja laitteisto kaivoskoneen aseman määrittämiseksi sen pyörien luistaessa
EP1413895B1 (en) 2002-10-23 2005-08-24 Siemens Aktiengesellschaft A method and apparatus for generating a GPS simulation scenario
FI116747B (fi) 2003-03-25 2006-02-15 Sandvik Tamrock Oy Menetelmä kaivoskoneen automaattiseksi ohjaamiseksi
FI115678B (fi) 2003-03-25 2005-06-15 Sandvik Tamrock Oy Järjestely kaivosajoneuvon törmäyksenestoon
FI115668B (fi) 2003-03-25 2005-06-15 Sandvik Tamrock Oy Kaivosajoneuvon paikan ja suunnan alustaminen
FI116748B (fi) 2003-03-25 2006-02-15 Sandvik Tamrock Oy Menetelmä kaivoskoneen automaattiseksi ohjaamiseksi
US20060020431A1 (en) 2004-05-11 2006-01-26 Peter Gipps Path determination system for transport system
US20080262669A1 (en) 2006-09-22 2008-10-23 Jadi, Inc. Autonomous vehicle controller
FI123573B (fi) 2006-12-22 2013-07-15 Sandvik Mining & Constr Oy Menetelmä ja ohjelmistotuote porauskaavion laatimiseksi sekä kallionporauslaite
US8144245B2 (en) 2007-02-28 2012-03-27 Caterpillar Inc. Method of determining a machine operation using virtual imaging
WO2008117712A1 (ja) 2007-03-26 2008-10-02 Toyota Jidosha Kabushiki Kaisha ナビゲーション装置
US9513125B2 (en) 2008-01-14 2016-12-06 The Boeing Company Computing route plans for routing around obstacles having spatial and temporal dimensions
US8255151B2 (en) 2008-12-09 2012-08-28 Motorola Mobility Llc Method and system for providing environmentally-optimized navigation routes
CN102449439B (zh) 2009-04-01 2016-08-17 优步技术公司 沿返回路线搜索兴趣点
FI20095712A (fi) 2009-06-24 2010-12-25 Sandvik Mining & Constr Oy Ohjaustietojen määrittäminen liikkuvan kaivoskoneen automaattista ohjaamista varten
FI20095714A (fi) 2009-06-24 2010-12-25 Sandvik Mining & Constr Oy Ajoreitin määrittäminen liikkuvan kaivoskoneen automaattisen ohjaamisen järjestämiseksi
US8364402B2 (en) 2009-08-20 2013-01-29 Ford Global Technologies, Llc Methods and systems for testing navigation routes
AU2010295227B2 (en) 2009-09-15 2015-02-05 Technological Resources Pty. Limited A system and method for autonomous navigation of a tracked or skid-steer vehicle
FR2956638B1 (fr) 2010-02-25 2012-05-04 Michelin Soc Tech Procede d'assistance a la conduite d'un vehicule

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62214406A (ja) * 1986-03-17 1987-09-21 Komatsu Ltd パワ−シヨベルの制御方法
US6058344A (en) * 1997-02-06 2000-05-02 Carnegie Mellon University Automated system and method for control of movement using parameterized scripts
US6076030A (en) * 1998-10-14 2000-06-13 Carnegie Mellon University Learning system and method for optimizing control of autonomous earthmoving machinery
US20060271235A1 (en) * 2001-04-17 2006-11-30 Sandvik Tamrock Oy Method and apparatus for automatic loading of dumper
US20040158355A1 (en) * 2003-01-02 2004-08-12 Holmqvist Hans Robert Intelligent methods, functions and apparatus for load handling and transportation mobile robots
WO2007012198A1 (en) * 2005-07-26 2007-02-01 Macdonald, Dettwiler & Associates Inc. Guidance, navigation, and control system for a vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106795705A (zh) * 2014-10-13 2017-05-31 山特维克矿山工程机械有限公司 用于控制工作机械的布置
CN106795705B (zh) * 2014-10-13 2019-05-28 山特维克矿山工程机械有限公司 用于控制工作机械的布置
CN112376521A (zh) * 2020-11-10 2021-02-19 安徽省六安恒源机械有限公司 一种抓臂式清污机器人智能搜索清污系统
CN114851209A (zh) * 2022-06-21 2022-08-05 上海大学 一种基于视觉的工业机器人工作路径规划优化方法及系统
CN114851209B (zh) * 2022-06-21 2024-04-19 上海大学 一种基于视觉的工业机器人工作路径规划优化方法及系统

Also Published As

Publication number Publication date
WO2010149857A1 (en) 2010-12-29
AU2010264557A1 (en) 2012-02-02
ZA201200572B (en) 2012-09-26
CA2765144A1 (en) 2010-12-29
US20120095640A1 (en) 2012-04-19
US8571765B2 (en) 2013-10-29
CA2765144C (en) 2014-09-09
CN102803618B (zh) 2016-03-02
EP2446091A4 (en) 2017-06-07
CL2011003282A1 (es) 2012-07-06
EP2446091B1 (en) 2019-01-16
FI20095712A (fi) 2010-12-25
FI20095712A0 (fi) 2009-06-24
AU2010264557C1 (en) 2014-08-14
EP2446091A1 (en) 2012-05-02
ES2719229T3 (es) 2019-07-09
AU2010264557B2 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
CN102803618A (zh) 用于移动采掘机的自动控制的控制数据的定义
CN102460331B (zh) 为布置移动采掘机的自动控制确定线路
CN102460330B (zh) 为布置移动采掘机的自动控制确定线路
EP2631729B1 (en) Apparatus and method for drive path search
US20130060425A1 (en) Method and apparatus for arranging mining vehicle positioning
WO2021122576A1 (en) Mine vehicle safety control
US20220004671A1 (en) Method and Arrangement for Creating a Digital Building Model
AU2010101483A4 (en) Teaching a model for automatic control of mobile mining machine
AU2010264552B2 (en) Definition of data required for automatic control of mobile mining machine
JP2020502398A (ja) 付加的建設動作のための機械配置を最適化するための制御システムおよび方法
AU2019387326A1 (en) Model generation for route planning or positioning of mobile object in underground worksite
EP4261646A1 (en) Scanner emulation for mining vehicle
WO2024033527A1 (en) Data processing
Yamamoto et al. Development of autonomous excavation technology for hydraulic excavators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant