CN102774825A - 一种移动恒温区法制备超长碳纳米管的方法 - Google Patents

一种移动恒温区法制备超长碳纳米管的方法 Download PDF

Info

Publication number
CN102774825A
CN102774825A CN201210260099XA CN201210260099A CN102774825A CN 102774825 A CN102774825 A CN 102774825A CN 201210260099X A CN201210260099X A CN 201210260099XA CN 201210260099 A CN201210260099 A CN 201210260099A CN 102774825 A CN102774825 A CN 102774825A
Authority
CN
China
Prior art keywords
tube furnace
tubular reactor
carbon nanotube
reactor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210260099XA
Other languages
English (en)
Other versions
CN102774825B (zh
Inventor
张如范
魏飞
张莹莹
谢欢欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210260099.XA priority Critical patent/CN102774825B/zh
Publication of CN102774825A publication Critical patent/CN102774825A/zh
Application granted granted Critical
Publication of CN102774825B publication Critical patent/CN102774825B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种移动恒温区法制备超长碳纳米管的方法。包括如下步骤:(1)将碳纳米管生长催化剂负载于基底上,然后将所述基底放置于管式反应器中;(2)将所述管式反应器置于管式炉中,且所述管式炉与所述管式反应器之间可相对移动;(3)向所述管式反应器中通入保护性气体,同时控制所述管式炉使所述管式反应器内的温度升至750~1000°C并恒温1-300min;然后继续升温至900~1100°C,并通入碳源气体,同时控制所述管式炉和管式反应器相对移动,在所述管式反应器内得即到超长碳纳米管。本发明提供的一种移动恒温区法制备超长碳纳米管的方法,可以摆脱管式炉恒温区长度有限的限制,在保证催化剂有活性的前提下制备出长度达到米级甚至公里级的超长碳纳米管。

Description

一种移动恒温区法制备超长碳纳米管的方法
技术领域
本发明涉及一种超长碳纳米管的制备方法,具体涉及一种移动恒温区法制备超长碳纳米管的方法。
背景技术
碳纳米管是20世纪90年代发现的一种新型纳米材料。他们具有独特的管状结构和优异的理化性质。以力学性质为例,其强度可以高达100GPa以上,杨氏模量可以高达1 TPa以上,而断裂伸长率更是达到了17%以上。这些性质都是常规材料所无法比拟的。因此,碳纳米管在制备超强纤维方面具有很突出的优势。美国科学家甚至设想利用碳纳米管制备出一种从地球直接连接到太空的天梯,从而方便人类的太空探索。
碳纳米管按照其形貌和生长机理的不同可以分为聚团状碳纳米管、垂直阵列碳纳米管和水平超长碳纳米管。其中聚团状碳纳米管和垂直阵列碳纳米管在生长过程中存在着相互干扰等相互作用,其长度往往限制在毫米级以内,并且存在比较多的结构缺陷;而超长碳纳米管则是遵循自由生长的机理,可以摆脱管与管之间的相互干扰,可以达到厘米级甚至分米级以上的长度,并且结构完美,缺陷密度非常低,最容易体现碳纳米管理论上所具有的优异性质。因此,超长碳纳米管在制备超强纤维等方面具有更大的优势。
目前碳纳米管的制备方法主要包括电弧法、激光烧蚀法和化学气相沉积法,相比于前两种方法,化学气相沉积法具有参数易控、反应温度较低、使用体系广泛、易于放大等优点,在碳纳米管的制备工作中得到了广泛应用。超长碳纳米管的制备主要采用化学气相沉积法。所用的设备一般为安装在管式炉中的石英管等耐高温的平推流反应器。
一般认为,超长碳纳米管的生长遵循顶端生长的机理,即所谓的“风筝机理”。这种机理认为,在超长碳纳米管的生长过程中,其催化剂颗粒保持在碳纳米管的顶端,超长碳纳米管的前端漂浮在气流中,并且在气流的带动下向前生长。这种机理得到了大量实验现象的验证。顶端生长机理有利于催化剂颗粒摆脱基底的干扰,并容易获得结构完美、低缺陷程度,并且长度可以达到厘米级以上的超长碳纳米管。
要想实现碳纳米管的应用,就需要首先实现碳纳米管的批量制备,尤其是要实现长度达到米级甚至公里级以上的超长碳纳米管的批量制备。然而,自从碳纳米管被发现以来,目前报道的超长碳纳米管最大长度只有20厘米,虽然远远高于垂直阵列碳纳米管的长度(高度),但是依然没有达到米级以上的宏观长度,这为超长碳纳米管的应用带来了极大的限制。
在众多影响超长碳纳米管生长的因素中,除了上面所说的原料纯度以外,管式炉恒温区长度有限也是一个很重要的影响因素。由于超长碳纳米管的生长条件非常苛刻,其催化剂颗粒必须保持在很窄的温度范围内才能保持同样的催化活性。否则,超长碳纳米管的生长就很容易受到干扰从而停止生长。虽然可以制备出恒温区长度相对较长的管式炉,但却无法制备出任意长度的管式炉。因此,设计出一种方法使超长碳纳米管的生长能够摆脱管式炉恒温区长度的限制就显得愈加重要。
发明内容
本发明的目的是克服现有碳纳米管制备手段中管式炉恒温区长度有限的限制,提供一种可以移动管式炉恒温区的方式,并且严格控制原料的纯度,使超长碳纳米管在生长过程中其催化剂颗粒一直处于管式炉恒温区内以保持活性,从而可以摆脱恒温区长度的限制,制备出米级以上长度的碳纳米管。
本发明所提供的一种移动恒温区法制备超长碳纳米管的方法,包括如下步骤:
(1)将碳纳米管生长催化剂负载于基底上,然后将所述基底放置于管式反应器中;
(2)将所述管式反应器置于管式炉中,且所述管式炉与所述管式反应器之间可相对移动;
(3)向所述管式反应器中通入保护性气体,同时控制所述管式炉使所述管式反应器内的温度升至750~1000°C并恒温1~300分钟;然后继续升温至900~1100°C,并通入碳源气体,同时控制所述管式炉和管式反应器相对移动,在所述管式反应器内得即到超长碳纳米管。
上述的方法中,步骤(3)中,可保持所述管式反应器静止,控制所述管式炉相对于所述管式反应器移动。
上述的方法中,通过下述1)-2)中任一种方式控制所述管式炉的移动:
1)在所述管式炉的底部安装轮子,利用手拉或电动机拖动的方式使所述管式炉移动;
2)在所述管式炉的底部安装螺纹杆,并将螺纹杆与电动机相连接,通过所述螺纹杆的转动带动所述管式炉向前或向后移动;所述管式炉的移动速度可通过所述电动机的调速控制器实现,或者通过手动方式实现以及通过计算机自动化控制的方式实现。
上述的方法中,控制所述管式炉的移动速度与所述管式反应器中碳纳米管的生长速度一致,以保证碳纳米管在整个生长过程中其顶端一直处于所述管式炉的恒温区内,进而得到连续超长的碳纳米管。
上述的方法中,所述管式炉具体可为开启式管式炉或封闭式管式炉。
上述的方法中,所述管式反应器具体可为石英管反应器、氮化硅管反应器或刚玉管反应器等。
上述的方法中,所述碳纳米管生长催化剂具体可为Fe、Mo、Cu或Cr,所述碳纳米管生长催化剂为纳米颗粒,其粒径可为0.1nm~10nm。
上述的方法中,所述保护性气体可为氢气与氮气、氩气和氖气中至少一种的混合气体;所述碳源气体可为甲烷、乙烷、乙烯、乙醇蒸汽、丙烯和一氧化碳中至少一种。
上述的方法中,步骤(3)中于750~1000°C下可恒温1~300min,具体可在900°C或950°C下恒温10min、20min、30min或40min。
本发明提供的一种移动恒温区法制备超长碳纳米管的方法,可以摆脱管式炉恒温区长度有限的限制,在保证催化剂有活性的前提下制备出长度达到米级甚至公里级的超长碳纳米管。
附图说明
图1为本发明实施例1和2中所使用到的管式炉的控制系统;其中左侧为安装有控制软件的电脑系统,右侧立式柜为管式炉的气路及温度控制系统。
图2为本发明实施例1和2中所使用的可开启式管式炉及其卡套;图2A为管式炉打开后的状态,图2B为管式炉中所用到的卡套,其中卡套的内径为40mm。
图3为本发明实施例1中所使用的管式炉及其移动系统;图3A为正面视图,图3B为右端面视图,图3C为左前面视图,图3D为右前面视图,其中,1表示为一根3米长的石英管反应器(外管径为35mm,壁厚为2mm),2表示可开启式管式炉(Lindberg Blue M,最高加热温度为1200°C),3表示放置管式炉以及移动滑轨的底座,4表示石英管右端的密封及排气装置,5表示移动管式炉所用的滑轨,6表示移动管式炉所用的螺纹杆,7表示连接管式炉底板与螺纹杆的夹板,8表示升降石英管所用的机械手。
图4为本发明实施例1中所使用的管式炉移动设备的连接以及动力控制系统;图4A为连接管式炉与螺纹杆的装置,通过此装置将螺纹杆的转动转化为管式炉的水平移动;图4B为连接螺纹杆与可调速电动机的装置,通过此装置,将电动机的转动转化为螺纹杆的转动;图4C为图4B图中所用到的可调速电动机;图4D为调节电动机转速的调速器。
图5为本发明实施例1所制备的55cm长的碳纳米管的扫描电镜照片。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、通过可调速电动机带动的螺纹杆进行管式炉的移动制备超长碳纳米管
用图1所示的控制系统进行碳纳米管的制备,该控制系统包括气路及温度控制系统以及安装有控制软件的电脑。所用到的管式炉为可开启式管式炉,上面安装有两个卡套,用来放置石英管反应器,如图2所示。将管式炉安装在一个滑轨上,并且在管式炉下面安装一个螺纹杆,将管式炉与螺纹杆连接起来,在螺纹杆的一端连接到一个可调速的电动机上,这样通过电动机的转动,就可以带动螺纹杆转动,再通过螺纹杆与管式炉底板的连接装置的转化作用就可以把螺纹杆的转动转化为管式炉在平行于螺纹杆轴向方向上的移动,如图3和4所示。将一根长为3m,外管径为35mm的石英管反应器放置在管式炉的两个卡套中间,并且通过架子上固定装置进行固定,以使其悬空在两个卡套中间,这样管式炉就可以相对于石英管反应器进行自由的移动。
使用6片带有500nm氧化层的单晶硅片(厚度约为500微米)作为基底,每一片硅片的宽度为1cm,长度为10cm。在其中一片硅片的一端负载涂上催化剂前驱体,催化剂前驱体为0.03mol/L的FeCl3乙醇溶液,前驱体在700-1000℃下就会分解成具有催化活性的纳米级铁颗粒,其粒径为1-10nm。然后将上述6片硅片按照首位相接的方式放置于石英管反应器中,并使涂有催化剂前驱体的一端处在管式炉的恒温区范围内。连接好上述装置,然后通入200sccm的氩气和氢气的混合气(Ar:H2=1:1,v/v)作为保护性气体,并开始升温,当温度达到900°C后,恒温20min,然后将温度升至1000°C,并通入90sccm甲烷和氢气的混合气(CH4:H2=1:2,v/v),进行碳纳米管的制备;在本实验方法中,碳纳米管的生长速度为5mm/min。因此,同样以5mm/min的速度移动管式炉,已使这种速度与碳纳米管的生长速度基本保持一致,以使碳纳米管在整个生长过程中其顶端一直处于管式炉的恒温区内。生长130min后,停止加热,并且关闭电动机,停止通入甲烷和氢气,通入100sccm的氩气进行降温冷却。
降温冷却后得到55cm长的超长碳纳米管,如图5所示。
实施例2、通过手动方式移动管式炉制备超长碳纳米管
用图1所示的控制系统进行碳纳米管的制备,该控制系统包括气路及温度控制系统以及安装有控制软件的电脑。所用到的管式炉为可开启式管式炉,上面安装有两个卡套,用来放置石英管反应器,如图2所示。将管式炉安装在一个滑轨上。将一根长为3m,外管径为35mm的石英管反应器放置在管式炉的两个卡套中间,并且通过架子上固定装置进行固定,以使其悬空在两个卡套中间,这样通过手动的方式就可以使管式炉相对于石英管反应器进行自由的移动。
使用10片带有500nm氧化层的单晶硅片(厚度约为500微米)作为基底,每一片硅片的宽度为1cm,长度为10cm。在其中一片硅片的一端负载涂上催化剂前驱体,催化剂前驱体为0.05mol/L的FeCl3乙醇溶液,该前驱体在700-1000℃下就会分解成具有催化活性的纳米级铁颗粒,其粒径为1-10nm然后将上述10片硅片按照首位相接的方式放置于石英管反应器中,并使涂有催化剂前驱体的一端处在管式炉的恒温区范围内。连接好上述装置,然后通入200sccm的氩气和氢气的混合气(Ar:H2=1:1,v/v)作为保护性气体,并开始升温,当温度达到950°C后,恒温20min,然后将温度升至1010°C,并通入120sccm甲烷和氢气的混合气(CH4:H2=1:2,v/v),进行碳纳米管的制备;与此同时,通过手动的方式以5mm/min的速度移动管式炉,以使这种速度与碳纳米管的生长速度基本保持一致,以使碳纳米管在整个生长过程中其顶端一直处于管式炉的恒温区内。生长200min后,停止加热,并且关闭电动机,停止通入甲烷和氢气,通入100sccm的氩气进行降温冷却。这样就可以制备出米级长度的碳纳米管,其扫描电镜照片与图5类似。

Claims (8)

1.一种移动恒温区法制备超长碳纳米管的方法,包括如下步骤:
(1)将碳纳米管生长催化剂负载于基底上,然后将所述基底放置于管式反应器中;
(2)将所述管式反应器置于管式炉中,且所述管式炉与所述管式反应器之间可相对移动;
(3)向所述管式反应器中通入保护性气体,同时控制所述管式炉使所述管式反应器内的温度升至750~1000°C并恒温1-300min;然后继续升温至900~1100°C,并通入碳源气体,同时控制所述管式炉和管式反应器相对移动,在所述管式反应器内得即到超长碳纳米管。
2.根据权利要求1所述的方法,其特征在于:步骤(3)中,保持所述管式反应器静止,控制所述管式炉相对于所述管式炉移动。
3.根据权利要求2所述的方法,其特征在于:通过下述1)-2)中任一种方式控制所述管式炉的移动:
1)在所述管式炉的底部安装轮子,利用手拉或电动机拖动的方式使所述管式炉移动;
2)在所述管式炉的底部安装螺纹杆,并将螺纹杆与电动机相连接,通过所述螺纹杆的转动带动所述管式炉向前或向后移动。
4.根据权利要求2或3所述的方法,其特征在于:控制所述管式炉的移动速度与所述管式反应器中碳纳米管的生长速度一致。
5.根据权利要求1-4中任一所述的方法,其特征在于:所述管式炉为开启式管式炉或封闭式管式炉。
6.根据权利要求1-5中任一所述的方法,其特征在于:所述管式反应器为石英管反应器、氮化硅管反应器或刚玉管反应器。
7.根据权利要求1-6中任一所述的方法,其特征在于:所述碳纳米管生长催化剂为Fe、Mo、Cu或Cr,所述碳纳米管生长催化剂为纳米颗粒。
8.根据权利要求1-7中任一所述的方法,其特征在于:所述保护性气体为氢气与氮气、氩气和氖气中至少一种的混合气体;所述碳源气体为甲烷、乙烷、乙烯、乙醇蒸汽、丙烯和一氧化碳中至少一种。 
CN201210260099.XA 2012-07-25 2012-07-25 一种移动恒温区法制备超长碳纳米管的方法 Active CN102774825B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210260099.XA CN102774825B (zh) 2012-07-25 2012-07-25 一种移动恒温区法制备超长碳纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210260099.XA CN102774825B (zh) 2012-07-25 2012-07-25 一种移动恒温区法制备超长碳纳米管的方法

Publications (2)

Publication Number Publication Date
CN102774825A true CN102774825A (zh) 2012-11-14
CN102774825B CN102774825B (zh) 2014-06-04

Family

ID=47119968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210260099.XA Active CN102774825B (zh) 2012-07-25 2012-07-25 一种移动恒温区法制备超长碳纳米管的方法

Country Status (1)

Country Link
CN (1) CN102774825B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792249A (zh) * 2014-03-04 2014-05-14 中国科学技术大学 一种模拟不同燃烧环境的材料燃烧实验装置
CN104986753A (zh) * 2015-06-25 2015-10-21 清华大学 超长碳纳米管及其制备方法和装置
CN107337177A (zh) * 2017-01-11 2017-11-10 清华大学 原位组装一维纳米材料的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290682A (ja) * 2005-04-12 2006-10-26 Kitami Institute Of Technology ナノ炭素の製造方法およびナノ炭素製造用触媒反応装置
CN1948140A (zh) * 2005-10-13 2007-04-18 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制备装置及方法
WO2010117515A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
CN102001643A (zh) * 2010-12-08 2011-04-06 清华大学 一种超长碳纳米管及其制备方法
CN102557003A (zh) * 2010-12-14 2012-07-11 波音公司 用于超长碳纳米管的化学气相沉积的扩大反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290682A (ja) * 2005-04-12 2006-10-26 Kitami Institute Of Technology ナノ炭素の製造方法およびナノ炭素製造用触媒反応装置
CN1948140A (zh) * 2005-10-13 2007-04-18 鸿富锦精密工业(深圳)有限公司 一种碳纳米管制备装置及方法
WO2010117515A1 (en) * 2009-04-10 2010-10-14 Lockheed Martin Corporation Apparatus and method for the production of carbon nanotubes on a continuously moving substrate
CN102001643A (zh) * 2010-12-08 2011-04-06 清华大学 一种超长碳纳米管及其制备方法
CN102557003A (zh) * 2010-12-14 2012-07-11 波音公司 用于超长碳纳米管的化学气相沉积的扩大反应器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792249A (zh) * 2014-03-04 2014-05-14 中国科学技术大学 一种模拟不同燃烧环境的材料燃烧实验装置
CN103792249B (zh) * 2014-03-04 2016-03-02 中国科学技术大学 一种模拟不同燃烧环境的材料燃烧实验装置
CN104986753A (zh) * 2015-06-25 2015-10-21 清华大学 超长碳纳米管及其制备方法和装置
CN107337177A (zh) * 2017-01-11 2017-11-10 清华大学 原位组装一维纳米材料的方法和装置
CN107337177B (zh) * 2017-01-11 2020-01-10 清华大学 原位组装一维纳米材料的方法和装置

Also Published As

Publication number Publication date
CN102774825B (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
KR101560483B1 (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
KR101716584B1 (ko) 탄소나노튜브섬유의 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
Hao et al. Synthesis and characterization of bamboo-like SiC nanofibers
KR102059237B1 (ko) 정렬도가 향상된 탄소나노튜브 섬유 집합체 제조 방법
CN104760946A (zh) 一种混合气态碳源制备单壁碳纳米管纤维的方法
Dervishi et al. Morphology of multi-walled carbon nanotubes affected by the thermal stability of the catalyst system
KR20120014116A (ko) 연속하여 이동하는 기질에서 탄소 나노튜브를 제조하는 장치 및 방법
CN102774825B (zh) 一种移动恒温区法制备超长碳纳米管的方法
CN113578315B (zh) 氧化镁负载的钌催化剂生长粉体单壁碳纳米管的方法
KR20180044114A (ko) 탄소나노튜브 섬유 집합체 제조 방법
CN102001643B (zh) 一种超长碳纳米管及其制备方法
KR101925874B1 (ko) 탄소나노튜브섬유 제조장치 및 이를 이용한 탄소나노튜브섬유 제조방법
KR102060566B1 (ko) 탄소나노튜브 섬유의 제조방법 및 이로 제조된 탄소나노튜브 섬유
CN101891184A (zh) 一种高温化学气相沉积法连续合成单壁碳纳米管的方法
EP3480345B1 (en) Method for controlling strength of carbon nanotube fiber aggregate
KR102059224B1 (ko) 탄소나노튜브 집합체 제조장치 및 이를 이용한 탄소나노튜브 집합체 제조방법
KR102176630B1 (ko) 단일벽 탄소나노튜브 섬유의 제조방법
EP3527533B1 (en) Method for preparing single-wall carbon nanotube fiber assembly
KR102385722B1 (ko) 탄소나노튜브 섬유 및 그 제조방법
KR102067863B1 (ko) 탄소나노튜브 섬유의 선밀도 조절 방법
KR101883034B1 (ko) 탄소나노튜브섬유 제조방법
KR102358843B1 (ko) 연속식 카본나노튜브의 제조장치
CN116281957B (zh) 一种窄直径分布半导体性单壁碳纳米管的制备方法
KR20210036123A (ko) 인장강도가 개선된 탄소나노튜브 섬유의 제조방법
CN100348315C (zh) 一种Fe2O3/Al2O3二元气凝胶催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant