CN102753726B - 用于自由基增强薄膜沉积的氧自由基产生 - Google Patents

用于自由基增强薄膜沉积的氧自由基产生 Download PDF

Info

Publication number
CN102753726B
CN102753726B CN201080059857.0A CN201080059857A CN102753726B CN 102753726 B CN102753726 B CN 102753726B CN 201080059857 A CN201080059857 A CN 201080059857A CN 102753726 B CN102753726 B CN 102753726B
Authority
CN
China
Prior art keywords
precursor
substrate
chamber
precursor gases
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080059857.0A
Other languages
English (en)
Other versions
CN102753726A (zh
Inventor
E.R.迪基
W.A.巴罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lotus Applied Technology LLC
Original Assignee
Lotus Applied Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lotus Applied Technology LLC filed Critical Lotus Applied Technology LLC
Publication of CN102753726A publication Critical patent/CN102753726A/zh
Application granted granted Critical
Publication of CN102753726B publication Critical patent/CN102753726B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4486Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by producing an aerosol and subsequent evaporation of the droplets or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45538Plasma being used continuously during the ALD cycle
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种自由基增强原子层沉积(REALD)的方法包括使基片交替暴露于第一前体气体(224)和从含氧第二前体气体(226)产生的自由基,如单原子氧自由基(O<b>·</b>),同时保持自由基和第一前体气体空间或暂时分离。当第一和第二前体气体在一般处理条件下为非反应性时,简化反应器设计(210)和过程控制是可能的,因此,可允许在自由基重组或另外消除后混合。在一些实施方案中,第二前体气体(226)为含氧化合物,如二氧化碳(CO2)或氧化亚氮(N2O)或这些含氧化合物的混合物,且不包含显著量正常氧(O2)。

Description

用于自由基增强薄膜沉积的氧自由基产生
相关申请
本申请根据35 U.S.C. § 119(e)要求2009年12月29日提交的美国临时专利申请61/290,826的权益,所述申请通过引用结合到本文中。
技术领域
本公开的领域涉及薄膜沉积,包括原子层沉积(ALD),更具体地讲,涉及自由基增强薄膜沉积,例如自由基增强ALD。
技术背景
2007年7月26日提交并且作为Dickey等的US 2008/0026162公开的美国专利申请11/829,050(“’050申请”)描述自由基增强原子层沉积(REALD)的不同方法和系统。’050申请的说明书,全文通过引用结合到本文中,描述使基片交替暴露于第一前体气体和自由基物质的沉积方法,其中自由基物质通过激发源原位产生,如稳态直流(DC)或射频(RF)等离子体发生器。第一前体气体在离开产生自由基物质处的位置并且一般在其下游引入,以在其间提供自由基去活化区域。在’050申请公开的一些实施方案中,等离子体发生器从流动通过系统的吹扫气体接近基片表面产生直接等离子体,其中吹扫气体实质与第一前体气体为非反应性(惰性)。在其它实施方案中,从可与第一前体气体反应的第二前体气体产生自由基物质。
虽然氧自由基为用于氧化某些金属前体的高度反应性物质,例如三甲基铝(TMA)和四氯化钛(TiCl4),但发明人已发现,在涉及从常规氧气(O2)产生氧等离子体的REALD方法中沉积的薄膜劣于由很多其它ALD方法沉积的薄膜。发明人用臭氧(O3)前体做的试验得到甚至更差的薄膜,这表明从O2生成的直接氧等离子体为REALD的较差前体,因为它们包含相对高浓度臭氧(比氧基(自由基)更持久的气体),因此,更可能迁移进入第二前体区域,并与金属前体或在那里引入的其它前体反应,导致发生非ALD沉积。
发明人已认识这些现象为改进REALD方法和产生氧自由基用于薄膜沉积的改进方法的机会。
附图简述
图1为根据现有技术网涂的系统的示意正视图;
图2为根据一个实施方案REALD网涂的系统的示意正视图;
图3为根据另一个实施方案REALD的转鼓涂覆系统的示意顶视截面图。
优选实施方案详述
图1显示’050申请中所述类型REALD所用的现有技术系统10的横截面正视图,用于薄膜涂层沉积于柔韧性基片12上(如图1中剖面所示),例如塑料薄膜或金属箔网。图1图示说明2007年3月26日提交并作为Pub. No. US 2007/0224348 A1公开的美国专利申请11/691,421所述的涂覆柔韧性基片的ALD系统的自由基增强方案,所述申请通过引用结合到本文中。参考图1,系统10包括由中间隔离区域20隔离的前体区域14和自由基区域16。将前体气体从前体输送系统24引入前体区域14。将第二前体气体或吹扫气体从第二前体输送系统26引入自由基区域16。包含惰性气体输送系统28,用于将惰性气体注入隔离区域20。通过自由基发生器29在自由基区域16中生成自由基,自由基发生器29优选接近基片布置,以在自由基区域16从第二前体气体(或吹扫气体)产生直接等离子体。
前体区域14、自由基区域16和隔离区域20以外面反应室壳或容器30为界,由第一和第二隔板34,36分成三个亚室,即,第一前体室44、第二前体室46和惰性气体室50。通过第一隔板34的一系列第一通道54沿着基片12移动的一般方向隔开,对应系列的第二通道56通过第二隔板36提供。通道54, 56经布置和构造,用于使基片12在前体和自由基区域14,16之间前后穿过多次,并且每次通过隔离区域20。因此,隔离区域20优选由第一隔板34与前体区域14分离(虽然不完全的),由第二隔板36与自由基区域16分离。
通道54, 56经构造,以使气流限制在区域14,16,20之间,以避免或限制前体气体和自由基扩散进入公用区域。通道54,56可包括狭缝,狭缝尺寸只比通过它们的基片12的厚度和宽度略厚和略宽,只留下很小量的净空和边缘,以允许基片12通过而不靠通道侧边刮擦。例如,在某些实施方案中,净空和边缘范围可在微米和毫米之间。通道54,56也可包括基片12通过的细长隧道(狭口阀)。
为了帮助前体气体从自由基物质隔离,优选在隔离区域20和前体区域14之间和在隔离区域20和自由基区域16之间建立压差。在一个实施方案中,在大于前体和自由基区域14,16操作压力的压力,通过将惰性气体注入隔离区域20,然后从区域14,16被动排出气体,可产生压差。通过从前体区域由泵58或另一个抽吸源泵送,也可产生压差。可用前体阱59回收排出前体,如简单的线内液氮冷阱。
系统10的基片输送机械装置60包括导架,导架包含用于引导柔韧性基片12的多个转导,包括沿着前体区域14隔开的第一组转导64,和沿着自由基区域16隔开的第二组转导66。在前进通过系统10时,转导64,66配合限定基片12的波动输送路径。基片输送机械装置60可包括用于从第一卷(输入辊74)放出基片12的放出卷轴72,用于在隔离区域20、容器30、前体区域14或自由基区域16的第一端76接收。基片输送机械装置60可进一步包括用于从与第一端76相对的隔离区域20、容器30、前体区域14或自由基区域16的第二端84接收经涂覆的基片12,并将基片12卷成第二卷(卷绕辊86)的卷绕卷轴82。
用于自由基发生的氧源
在氧自由基作为氧源用于ALD处理金属氧化物膜时,有一些特殊的化学和系统结构可能优于其它化学和系统结构(特别是不同于为在热(非自由基)ALD中用水作为氧前体优化的那些化学和系统结构)。
在本公开的REALD方法的一个实施方案中,单原子氧自由基(O·)从含氧第二前体气体产生,并且一般不与第一前体(通常含金属的前体)为反应性,其中第二前体气体包括气体含氧化合物,并且不含显著量的正常氧(O2)。这些改进的REALD方法可允许改进柔韧性基片涂覆系统的结构和操作,以下关于图2描述。通过这些方法和系统沉积的薄膜可用作光学涂层、食品包装或电子器件所用的阻挡层,也可用于很多其它用途。
对于用于产生氧自由基的前体源气体,有很多可能性,特别是对于在室温为气体的前体。例如,O2(正常氧)、CO2、CO、NO、N2O、NO2、空气等均可用于其中主要反应基于氧的REALD方法。基于氧的REALD反应实例包括在低温(将基片和前体加热到小于150℃,优选小于80℃)用TMA和O·(氧自由基)形成氧化铝(Al2O3)薄膜,并在低温从TiCl4和O·形成二氧化钛(TiO2)薄膜。这些REALD反应可在’050申请中所述的不同系统中进行,具体地讲,在图1-3和6中所示的系统中进行。
为了在REALD中达到最高浓度,O2应合理选择。然而,发明人已发现,由于几个原因优选使用供选的含氧前体气体。首先,CO2、N2O和很多其它气体化合物不可燃且不为高度反应性,因此,可较安全地用于一些方法、系统、应用和装置。氧气为高度反应性,必须小心操作。更重要的是,与O2比较,从很多含氧前体化合物(如CO2和N2O)产生的等离子体不易在或接近等离子体形成臭氧(O3)。从O2产生的氧等离子体一般通过O·与O2重组作为副产物生成O3。并且在从气体含氧化合物(如,CO2)产生的等离子体也包括O·时,它们不太可能生成O3,因为存在很少O2促进此反应。
虽然在利用某些前体的ALD薄膜生长中O3可能有些活性,但与用O·形成的比较,可形成较差的氧化物薄膜。例如,与TMA+O·比较,利用TMA+O3就是这种情况。在低温用O3作为共反应剂与TMA制成的200?厚Al2O3薄膜几乎没有阻挡层性质,即,它们显示很高的水蒸气透过率(WVTR)。然而,在室温用TMA和O·(直接等离子体)制成的Al2O3薄膜显示至少与用水作为共反应剂通过热ALD制成的薄膜一样好的阻挡层性质,但利用TMA+O·的生长速率超过每ALD循环的两倍。
另外,在等离子体生成O·和相当量O3二者时,从反应组合(例如,TMA+O3和TMA+O·)得到的薄膜可能劣于大部分或完全在O3基本不存在下从与O·反应形成的薄膜。
另外,与高度不稳定的O·比较,O3具有相对较长寿命。因此,更难从第二(金属)前体区域分离O3。另一方面,O·极有效和快速地重组。照此,通过充分空间分离,或者在自由基区域和含金属的前体区域之间插入流限制装置,可简直地防止O·迁移进入含金属的前体区域。
在一些实施方案中,通过使用基本由气体含氧化合物(例如CO2或N2O)组成的第二前体气体,可生成实质纯氧化物,因为第二前体气体的非氧成分(例如碳、氮)不与含金属的第一前体反应,或者至少不与第一前体的化学吸附物质反应。在某些其它实施方案中,与含金属的前体(或其化学吸附物质)与氧自由基的反应比较,第二前体的非氧成分与含金属的第一前体(或其化学吸附物质)反应可能很次要,因此生成大部分纯的氧化物。
因此,在一个实施方案中,形成薄膜的方法包括使基片交替暴露于(1)第一前体,第一前体化学吸附到基片表面,在表面留下化学吸附物质,化学吸附物质与氧和氧自由基为反应性;和(2)在从第二前体生成的等离子体中产生的氧自由基物质,如单原子氧自由基(O·),第二前体包括气体含氧化合物(或混合物),并且不含显著量的O2。例如,不含显著量O2的适合气体化合物或混合物可包含小于3%(摩尔分数)O2。在一些实施方案中,适合气体化合物或混合物可包含小于2%,小于1%,小于0.1%,或小于0.01%摩尔分数O2。在一些实施方案中,在包含小于0.001%摩尔分数O2时,将适合化合物或混合物称为实质不含O2。在一些实施方案中,适合气体化合物或混合物包含小于10ppm或小于1ppm O2
与氧自由基为反应性的实例前体包括与氧自由基反应形成ZnO的二乙基锌(DEZ)和与氧自由基反应形成SiO2的三[二甲基氨基]硅烷(aka TDMAS)。在涉及TDMAS前体和氧自由基的ALD反应中,可在一般热ALD方法中低于甚至水不作为氧化剂起作为的温度沉积优良品质的薄膜,例如,在低于130℃的温度。可用于本文公开类型REALD方法的另一种实例前体为四氯化锡(SnCl4),所述前体与氧自由基反应生成二氧化锡(SnO2)。
在其它实施方案中,通过REALD形成氧化物薄膜的方法包括从O2生成的氧自由基和与O3不为反应性的前体。至少在100℃下的处理温度与O3不为反应性的前体的实例包括四氯化钛(TiCl4)、六氯硅烷(Si2Cl6)和四氯硅烷(SiCl4)。
概括地讲,以上所述方法提供超过其它方法和化学的实质氧化能力改善。在没有臭氧存在下氧自由基的改善反应性使得能够使用较宽范围含金属的前体和其它前体,包括具有可接受挥发性和化学吸附(或吸附)品质但与非自由基氧和含氧化合物不良反应性的前体。
前述发现使用于ALD涂覆柔韧性基片的新的系统结构和方法成为可能,例如图2中所示的柔韧性基片沉积系统210,所述系统为图1中所示系统10的变型。参考图2,向第一前体区域214引入第一前体224,如TMA。将基本由不与第一前体224为反应性的含氧前体气体226组成的第二前体注入氧化区域216(第二前体区域)。等离子体或其它自由基发生机械装置229与室230的氧化区域216可操作地结合,其中自由基发生器229从含氧前体气体226产生原子氧。自由基发生器229可包括射频(RF)等离子体发生器、微波等离子体发生器、直流(DC)等离子体发生器或UV光源,例如,优选通过等离子体在氧化区域216内原位连续产生大量氧自由基物质(如图2中的云所示)。自由基发生器229可以连续或稳态模式操作,而不发生等离子体斜坡时间障碍,和在自由基发生器229和室230的壁上积累不合乎需要的薄膜或沉积物。含氧前体气体226可由任何前述气体含氧化合物或其混合物组成。
不抽吸氧化区域216,即,排废线不直接连接到氧化室246。在系统210使用时,含氧前体气体226流出氧化区域216,通过狭缝256进入中心缓冲区域220,然后通过狭缝254进入第一前体区域214,由于在区域 214,220,216之间的隔板234,236在狭缝254,256(也称为狭口阀或通道)节流,每次经历压降。最后,第一前体224和含氧前体气体226的混合物通过排气口从第一前体区域214排出,并通过泵258抽走,任选通过前体回收阱259。
到含氧前体气体226从氧化区域216转移进入第一前体区域214时,在氧化区域216的等离子体中产生的所有或基本所有原子氧(O·)与等离子体中的其它物质重组,从而变得相对于第一前体224为非活性。含氧前体气体226因此在由等离子体激发时作为反应性氧自由基(O·)的前体源,也作为吹扫气体或隔离气体。与图1中所示的实施方案比较,区域214 和220、220和216之间的压差(两个压差处于相同方向)提供第一前体224转移进入氧化区域216的两倍阻力,其中吹扫气体在略高于均泵抽的两个前体区域14,16的压力引入隔离区域20。
在一个实施方案中,自由基发生器229包括通过用RF或微波能量激发含氧前体气体226在氧化区域216内产生等离子体的RF等离子体发生器或微波等离子体发生器。通道256可足够窄,以将等离子体限制在氧化区域216内。
基片架或其它基片输送机械装置260使基片快速移动通过等离子体,使得能够进行本文所述的REALD方法,同时使基片的内温度在整个沉积过程中保持低于150℃,在一些实施方案中,在整个沉积过程中低于80℃。
如果含氧前体气体226为O2,或者包含显著量O2,则一些量臭氧可能会进入第一前体区域214。在此情况下,合乎需要使用与原子氧(O·)反应的前体,或者至少在基片表面留下与原子氧为反应性但不与O3为反应性的化学吸附物质。或者,如果使用气体含氧化合物(如CO 2 ),进入室的O3的量应少得可以忽略。在那种情况下,可使用与O3反应的第一前体,而不不利影响在室的第一前体区域中非ALD薄膜生长。
图2中所示的反应室结构230排除或减少需要从氧化区域216泵抽,并促进大量含氧化合物前体气体226直接引入氧化区域216,其中提供等离子体或其它自由基发生装置229。含氧前体气体226因此也提供一些或所有基于吹扫的隔离,假定氧的键自由基在进入第一前体区域214之前重组或变成去活化。
上述改进方法可实质利用’050申请中所述的任何反应器结构和过程方法。例如,使用本文讨论的含氧气体化合物可有利于对氧化反应操作’050申请的图4所示的系统。在一个实施方案中,利用用以产生氧自由基的含氧气体化合物如CO2作为吹扫气体。与氧自由基(但不与CO2)为反应性的前体在图4的基片的往复路径的位置注入,一般在自由基发生器的下游。自由基发生器与前体注入位置隔开足以在其间提供自由基去活化区域的距离,如‘050申请中进一步描述。
利用气体含氧化合物作为吹扫气体的‘050申请的图4的实施方案的其它变型图示说明于本申请的图3中,图3为鼓式反应器系统300的顶视横截面图。参照图3,在圆筒形鼓310上安装一个或多个基片(未显示),圆筒形鼓310围绕其轴在反应室312内旋转。包含气体含氧化合物并且不含显著量正常氧(O2)的吹扫气体320在自由基发生器330或在它的下游注入。如图所示,自由基发生器330可包括一系列挡板340,以帮助自由基去活化和重组,并防止自由基转移到引入前体的位置(在此实例中,用于TMA的注入位置350)。然而,在其它实施方案中,简单挡板就可满足,或者,可不需要挡板。在基片通过鼓310旋转输送到自由基活化区域360之前,前体,如TMA,以化学吸附物质的形式在前体注入位置350化学吸附到基片的表面。氧自由基在自由基活化区域360从吹扫气体320产生,在此,它们与化学吸附的前体物质在基片表面反应,以完成ALD循环,并形成单层。氧自由基优选用等离子体产生,虽然可利用用于激发的其它源,如’050申请中提到。由于氧自由基这样快速和容易地重组,没有显著量氧自由基物质带入前体注入位置350。另外,由于吹扫气流的方向是从自由基区域360到鼓310和反应室312的相反侧的在前体注入位置350下游的排气泵370,有很少或没有前体迁移到自由基发生位置360。因此,图3的系统300使得能够ALD型沉积氧化物薄膜,而不用复杂的流控制、阻挡或基片输送机械装置。
实施例1-从TiCl 4 和氧自由基形成TiO 2 薄膜
基片:在图2所示类型但只具有两个通道254和两个通道256的3区域反应器系统中,2.2米PET带(环)围绕辊导缠绕,以重复循环通过前体区域和氧化区域。
氧化温度:70℃
工作压力:1.2Torr,标称
自由基发生器:DC等离子体,约200W功率,电极置于基片的1cm内
含氧气体:注入氧化区域的洁净干燥压缩空气(注:TiCl4不容易与臭氧在70℃在聚合物表面上反应生成TiO2)
生长速率:约1?/循环。
实施例2-从TMA和氧自由基形成Al 2 O 3 薄膜
基片:在图2所示类型但只具有两个通道254和两个通道256的3区域反应器系统中,2.2米PET带(环)围绕辊导缠绕,以重复循环通过前体区域和氧化区域。
基片温度:90℃
工作压力:1.2Torr,标称
自由基发生器:DC等离子体,约200W功率,电极置于基片的1cm内
含氧气体:CO2(注:TMA与高浓度O2为略微反应性,并且与O3为适当反应性)
生长速率:约1.6?/循环。
实施例3-从DEZ和氧自由基形成ZnO薄膜
基片:在图2所示类型但只具有两个通道254和两个通道256的3区域反应器系统中,2.2米PET带(环)围绕辊导缠绕,以重复循环通过前体区域和氧化区域。
基片温度:90℃
工作压力:1.2Torr,标称
自由基发生器:DC等离子体,约200W功率,电极置于基片的1cm内
含氧气体:高纯度CO2(注:DEZ与O2和O3为高反应性)
预期生长速率:1.2?/循环。
对本领域的技术人员显而易见的,可在不脱离本发明的基本原则下对上述实施方案的细节作出很多变化。因此,本发明的范围应只由以下权利要求确定。

Claims (31)

1.一种沉积薄阻挡膜的方法,所述方法包括:
将第一前体气体引入前体室,所述第一前体气体与臭氧为反应性;
将第二前体气体流注入氧化区域,所述氧化区域不同于前体室,并且由一个或多个流限制通道延伸通过的隔板与其分离,第二前体气体包含与第一前体气体为非反应性的含氧化合物,该含氧化合物在室温下为气体,并且其中第二前体气体包含小于3%摩尔分数O2
从所述前体室排气,以便至少一些第二前体气体从氧化区域流动通过通道,并进入前体室,从而阻止第一前体气体转移进入氧化区域;
使基片在前体室和氧化区域之间沿着输送路径前后输送多次,输送路径延伸通过至少一些通道,并进入前体室,其中第一前体气体作为化学吸附物质化学吸附到基片的表面;并且
通过在接近输送路径的氧化区域从第二前体气体产生等离子体,从含氧化合物生成不稳定氧自由基物质而不生成臭氧,使得基片在输送通过氧化区域时暴露于所述不稳定氧自由基物质而不暴露于臭氧,不稳定氧自由基物质与化学吸附物质为反应性,以在基片上沉积薄阻挡膜。
2.权利要求1的方法,其中第二前体气体包含小于0.1%摩尔分数O2
3.权利要求1的方法,其中第二前体气体包含二氧化碳(CO2)。
4.权利要求1的方法,其中第二前体气体包含氧化亚氮(N2O)。
5.权利要求1的方法,其中第二前体气体包含CO2、CO、NO、N2O和NO2中两种或更多种的混合物。
6.权利要求1的方法,其中不稳定氧自由基物质主要由单原子氧自由基(O·)组成。
7.权利要求1的方法,其中第一前体气体选自三甲基铝(TMA)、四氯化钛(TiCl4)、六氯硅烷(Si2Cl6)、四氯硅烷(SiCl4)、二乙基锌(DEZ)、三[二甲基氨基]硅烷(TDMAS)和四氯化锡(SnCl4)。
8.权利要求1的方法,其中在基片输送通过氧化区域时,使基片的表面暴露于等离子体。
9.权利要求1的方法,所述方法进一步包括将基片加热到小于150摄氏度的内温度。
10.权利要求1的方法,所述方法进一步包括将基片加热到小于80摄氏度的内温度。
11.权利要求1的方法,其中基片为柔韧性,并且在前体室和氧化区域之间沿着输送路径前后输送基片的步骤包括围绕一系列转导缠绕基片,所述转导沿着波动输送路径引导基片。
12.权利要求1的方法,其中:
产生等离子体的步骤包括通过施加射频或微波能量在氧化区域内激发含氧气体化合物;并且
通道足够窄,以将等离子体限制在氧化区域内。
13.权利要求1的方法,所述方法进一步包括通过缓冲区域使氧化区域与前体室分离,氧化区域由第二组一个或多个流限制通道延伸通过的第二隔板而与缓冲区域分离。
14.权利要求1的方法,其中从前体室排气的步骤包括从前体室泵抽。
15.一种在基片上沉积薄阻挡膜的系统,所述系统包括:
反应室,所述反应室包括由具有一个或多个通道的至少一个隔板分隔的不同的第一和第二前体室,所述通道为一定大小,以使基片在第一和第二前体室之间通过;
与第一前体室流体连通的第一前体源,用于将第一前体气体引入第一前体室;
含氧前体气体源,所述含氧前体气体源偶合到第二前体室,用于将含氧前体气体流注入第二前体室,所述含氧前体气体包括与第一前体气体为非反应性的含氧化合物,该含氧化合物在室温下为气体,并且其中含氧前体气体包含小于3%摩尔分数O2
偶合到第一前体室的排气口,所述排气口提供来自反应室的流体出口,和限制第一和第二前体室之间的流的通道,并且基本提供来自第二前体室的唯一流体出口,以便在含氧前体气体注入第二前体室时,至少一些含氧前体气体从第二前体室流动通过通道,并进入第一前体室,在此从反应室通过排气口排出,从而阻止第一前体气体转移进入第二前体室;
导架,所述导架用于将基片在第一和第二前体室之间沿着输送路径前后输送多次,所述输送路径延伸通过至少一些通道,并进入第一和第二前体室;和
自由基发生器,所述自由基发生器与第二前体室可操作地结合,以便在对自由基发生器增能时,通过从含氧前体气体接近输送路径产生等离子体,由含氧化合物生成不稳定氧自由基物质而不生成臭氧,使得在基片由导架输送通过第二前体室时,基片暴露于所述不稳定氧自由基物质而不暴露于臭氧。
16.权利要求15的系统,其中自由基发生器包括射频(RF)等离子体发生器或微波等离子体发生器。
17.权利要求16的系统,其中通道足够窄,以将等离子体限制在第二前体室内。
18.权利要求15的系统,所述系统进一步包括:
置于第一和第二前体室之间的缓冲区域,隔板置于第二前体室和缓冲区域之间;和
置于缓冲区域和第一前体室之间的第二隔板,所述第二隔板包括输送路径延伸通过的一个或多个通道。
19.权利要求15的系统,其中:
隔板包含许多通道;并且
导架包括在第一前体室内隔开的许多第一转导和在第二前体室内隔开的许多第二转导,第一转导和第二转导限定柔韧性基片的输送路径,各第一转导和第二转导构造成在基片移动方向改变期间支持和引导柔韧性基片。
20.权利要求15的系统,所述系统进一步包括偶合到排气口的泵。
21.一种在表面上沉积氧化物薄阻挡膜的方法,所述方法包括:
将第一前体气体引入前体室,所述第一前体气体与臭氧为反应性;
将第二前体气体流注入氧化区域,所述氧化区域不同于前体室,并且由一个或多个流限制通道延伸通过的隔板与其分离,第二前体气体包含含氧化合物;
从所述前体室排气,以便至少一些第二前体气体从氧化区域流动通过通道,并进入前体室,从而阻止第一前体气体转移进入氧化区域;
从所述含氧化合物产生不稳定氧自由基物质而不生成臭氧,其中所述含氧化合物在室温下时为气体,且其中所述第二前体气体包含小于3%摩尔分数O2;并且
使基片在前体室和氧化区域之间沿着输送路径前后输送多次,输送路径延伸通过至少一些通道,并进入前体室,其中第一前体气体作为化学吸附物质化学吸附到基片的表面,所述不稳定氧自由基物质与在表面的化学吸附物质为反应性,从而在表面上形成氧化物薄膜。
22.权利要求21的方法,其中第二前体气体包含小于1%摩尔分数O2
23.权利要求21的方法,其中第二前体气体包含小于0.01%摩尔分数O2
24.权利要求21的方法,其中含氧化合物由二氧化碳(CO2)组成。
25.权利要求21的方法,其中含氧化合物由氧化亚氮(N2O)组成。
26.权利要求21的方法,其中含氧化合物由CO2、CO、NO、N2O和NO2中两种或更多种的混合物组成。
27.权利要求21的方法,其中前体气体选自三甲基铝(TMA)、四氯化钛(TiCl4)、六氯硅烷(Si2Cl6)、四氯硅烷(SiCl4)、二乙基锌(DEZ)、三[二甲基氨基]硅烷(TDMAS)和四氯化锡(SnCl4)。
28.权利要求21的方法,其中不稳定氧自由基物质主要由通过从含氧化合物生成等离子体产生的单原子氧自由基(O·)组成。
29.权利要求21的方法,其中使基片暴露于不稳定氧自由基物质的步骤包括使基片暴露于从含氧化合物生成的等离子体。
30.权利要求21的方法,其中:
前体气体包括三甲基铝(TMA)或四氯化钛(TiCl4)或三[二甲基氨基]硅烷(TDMAS);并且
使基片的内温度在整个沉积过程中保持低于150摄氏度。
31.权利要求21的方法,其中使基片的内温度在整个沉积过程中保持低于80摄氏度。
CN201080059857.0A 2009-12-29 2010-12-29 用于自由基增强薄膜沉积的氧自由基产生 Active CN102753726B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29082609P 2009-12-29 2009-12-29
US61/290826 2009-12-29
PCT/US2010/062301 WO2011090737A2 (en) 2009-12-29 2010-12-29 Oxygen radical generation for radical-enhanced thin film deposition

Publications (2)

Publication Number Publication Date
CN102753726A CN102753726A (zh) 2012-10-24
CN102753726B true CN102753726B (zh) 2015-04-29

Family

ID=44187884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080059857.0A Active CN102753726B (zh) 2009-12-29 2010-12-29 用于自由基增强薄膜沉积的氧自由基产生

Country Status (7)

Country Link
US (1) US8637123B2 (zh)
EP (1) EP2519657B1 (zh)
JP (1) JP5778174B2 (zh)
KR (1) KR101745438B1 (zh)
CN (1) CN102753726B (zh)
BR (1) BR112012015000A2 (zh)
WO (1) WO2011090737A2 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6122136B2 (ja) * 2012-11-30 2017-04-26 エルジー・ケム・リミテッド 膜形成装置
US9435028B2 (en) * 2013-05-06 2016-09-06 Lotus Applied Technology, Llc Plasma generation for thin film deposition on flexible substrates
CN104746046A (zh) * 2013-12-29 2015-07-01 北京北方微电子基地设备工艺研究中心有限责任公司 原子层沉积设备
US9133546B1 (en) * 2014-03-05 2015-09-15 Lotus Applied Technology, Llc Electrically- and chemically-active adlayers for plasma electrodes
US9583337B2 (en) * 2014-03-26 2017-02-28 Ultratech, Inc. Oxygen radical enhanced atomic-layer deposition using ozone plasma
WO2015192144A2 (en) * 2014-06-13 2015-12-17 Hzo, Inc. Protective coatings for electronic devices and atomic layer deposition processes for forming the protective coatings
JP6547271B2 (ja) * 2014-10-14 2019-07-24 凸版印刷株式会社 フレシキブル基板上への気相成長法による成膜方法
US10843618B2 (en) * 2017-12-28 2020-11-24 Lam Research Corporation Conformality modulation of metal oxide films using chemical inhibition
CN109487233A (zh) * 2018-11-27 2019-03-19 合肥安德科铭半导体科技有限公司 一种氧化硅薄膜的低温制备方法
US11390947B2 (en) 2019-03-04 2022-07-19 Applied Materials, Inc. Method of forming a fluorinated metal film
US20230212746A1 (en) * 2020-06-10 2023-07-06 3M Innovative Properties Company Roll-to-roll vapor deposition apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010039874A (ko) * 1999-10-06 2001-05-15 윤종용 원자층 증착법을 이용한 박막 형성 방법
KR100660890B1 (ko) * 2005-11-16 2006-12-26 삼성전자주식회사 Ald를 이용한 이산화실리콘막 형성 방법

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE393967B (sv) * 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
JP2824808B2 (ja) * 1990-11-16 1998-11-18 キヤノン株式会社 マイクロ波プラズマcvd法による大面積の機能性堆積膜を連続的に形成する装置
US5338362A (en) * 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
IT1261918B (it) * 1993-06-11 1996-06-04 Cetev Cent Tecnolog Vuoto Struttura per deposizione reattiva di metalli in impianti da vuoto continui e relativo processo.
JP3181171B2 (ja) * 1994-05-20 2001-07-03 シャープ株式会社 気相成長装置および気相成長方法
US5817550A (en) * 1996-03-05 1998-10-06 Regents Of The University Of California Method for formation of thin film transistors on plastic substrates
US6342277B1 (en) * 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US6287988B1 (en) * 1997-03-18 2001-09-11 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, semiconductor device manufacturing apparatus and semiconductor device
DE19730119A1 (de) 1997-07-14 1999-01-21 Siemens Ag Verfahren zur Herstellung von Dünnfilmen aus oxidischer Keramik
US6037022A (en) * 1997-09-16 2000-03-14 International Paper Company Oxygen-scavenging filled polymer blend for food packaging applications
US6165554A (en) * 1997-11-12 2000-12-26 Jet Process Corporation Method for hydrogen atom assisted jet vapor deposition for parylene N and other polymeric thin films
CN1287636C (zh) 1998-08-03 2006-11-29 杜邦显示器股份有限公司 有保护性无机材料封装层的发光装置及该装置的保护方法
US6186090B1 (en) * 1999-03-04 2001-02-13 Energy Conversion Devices, Inc. Apparatus for the simultaneous deposition by physical vapor deposition and chemical vapor deposition and method therefor
US6200893B1 (en) * 1999-03-11 2001-03-13 Genus, Inc Radical-assisted sequential CVD
US6812157B1 (en) * 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US6576053B1 (en) * 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
JP4316767B2 (ja) * 2000-03-22 2009-08-19 株式会社半導体エネルギー研究所 基板処理装置
US20040224504A1 (en) * 2000-06-23 2004-11-11 Gadgil Prasad N. Apparatus and method for plasma enhanced monolayer processing
US6664186B1 (en) * 2000-09-29 2003-12-16 International Business Machines Corporation Method of film deposition, and fabrication of structures
US7476420B2 (en) * 2000-10-23 2009-01-13 Asm International N.V. Process for producing metal oxide films at low temperatures
US6689220B1 (en) * 2000-11-22 2004-02-10 Simplus Systems Corporation Plasma enhanced pulsed layer deposition
KR100421219B1 (ko) * 2001-06-14 2004-03-02 삼성전자주식회사 β-디케톤 리간드를 갖는 유기 금속 착물을 이용한 원자층증착방법
US6391803B1 (en) * 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US9376750B2 (en) * 2001-07-18 2016-06-28 Regents Of The University Of Colorado, A Body Corporate Method of depositing an inorganic film on an organic polymer
US6820570B2 (en) * 2001-08-15 2004-11-23 Nobel Biocare Services Ag Atomic layer deposition reactor
EP1291932A3 (en) * 2001-09-05 2006-10-18 Konica Corporation Organic thin-film semiconductor element and manufacturing method for the same
US6926572B2 (en) * 2002-01-25 2005-08-09 Electronics And Telecommunications Research Institute Flat panel display device and method of forming passivation film in the flat panel display device
EP1485513A2 (en) * 2002-03-08 2004-12-15 Sundew Technologies, LLC Ald method and apparatus
US6932871B2 (en) * 2002-04-16 2005-08-23 Applied Materials, Inc. Multi-station deposition apparatus and method
US7067439B2 (en) * 2002-06-14 2006-06-27 Applied Materials, Inc. ALD metal oxide deposition process using direct oxidation
TWI278532B (en) * 2002-06-23 2007-04-11 Asml Us Inc Method for energy-assisted atomic layer deposition and removal
US6827789B2 (en) * 2002-07-01 2004-12-07 Semigear, Inc. Isolation chamber arrangement for serial processing of semiconductor wafers for the electronic industry
US6797337B2 (en) * 2002-08-19 2004-09-28 Micron Technology, Inc. Method for delivering precursors
KR100497748B1 (ko) * 2002-09-17 2005-06-29 주식회사 무한 반도체소자 제조용 원자층 증착 장치 및 원자층 증착 방법
KR100512626B1 (ko) 2002-10-18 2005-09-02 엘지.필립스 엘시디 주식회사 유기전계발광소자 및 그 제조방법
JP4338495B2 (ja) * 2002-10-30 2009-10-07 富士通マイクロエレクトロニクス株式会社 シリコンオキシカーバイド、半導体装置、および半導体装置の製造方法
US6888172B2 (en) * 2003-04-11 2005-05-03 Eastman Kodak Company Apparatus and method for encapsulating an OLED formed on a flexible substrate
JP2007516347A (ja) 2003-05-16 2007-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 原子層蒸着によって製造されたプラスチック基板用のバリアフィルム
US20040261703A1 (en) * 2003-06-27 2004-12-30 Jeffrey D. Chinn Apparatus and method for controlled application of reactive vapors to produce thin films and coatings
US7323231B2 (en) * 2003-10-09 2008-01-29 Micron Technology, Inc. Apparatus and methods for plasma vapor deposition processes
KR100589053B1 (ko) * 2003-10-15 2006-06-12 삼성전자주식회사 소스 공급 장치, 소스 공급 방법 및 이를 이용한 원자층증착 방법
US7074719B2 (en) * 2003-11-28 2006-07-11 International Business Machines Corporation ALD deposition of ruthenium
US20050172897A1 (en) * 2004-02-09 2005-08-11 Frank Jansen Barrier layer process and arrangement
JP4678304B2 (ja) * 2004-02-17 2011-04-27 東亞合成株式会社 シリコン酸化膜の製造方法
US7588988B2 (en) * 2004-08-31 2009-09-15 Micron Technology, Inc. Method of forming apparatus having oxide films formed using atomic layer deposition
US7399668B2 (en) * 2004-09-30 2008-07-15 3M Innovative Properties Company Method for making electronic devices having a dielectric layer surface treatment
JP4865214B2 (ja) * 2004-12-20 2012-02-01 東京エレクトロン株式会社 成膜方法および記憶媒体
WO2006088463A1 (en) 2005-02-17 2006-08-24 Selitser Simon I Atmospheric pressure molecular layer cvd
US7642205B2 (en) 2005-04-08 2010-01-05 Mattson Technology, Inc. Rapid thermal processing using energy transfer layers
BRPI0709199A2 (pt) * 2006-03-26 2011-06-28 Lotus Applied Technology Llc sistema e método para depositar uma pelìcula fina em um substrato flexìvel
US7413982B2 (en) 2006-03-29 2008-08-19 Eastman Kodak Company Process for atomic layer deposition
US7456429B2 (en) 2006-03-29 2008-11-25 Eastman Kodak Company Apparatus for atomic layer deposition
US20070281089A1 (en) 2006-06-05 2007-12-06 General Electric Company Systems and methods for roll-to-roll atomic layer deposition on continuously fed objects
US8187679B2 (en) * 2006-07-29 2012-05-29 Lotus Applied Technology, Llc Radical-enhanced atomic layer deposition system and method
JP5258229B2 (ja) * 2006-09-28 2013-08-07 東京エレクトロン株式会社 成膜方法および成膜装置
US7976899B2 (en) * 2006-10-23 2011-07-12 General Electric Company Methods for selective deposition of graded materials on continuously fed objects
US7781031B2 (en) * 2006-12-06 2010-08-24 General Electric Company Barrier layer, composite article comprising the same, electroactive device, and method
US8945675B2 (en) * 2008-05-29 2015-02-03 Asm International N.V. Methods for forming conductive titanium oxide thin films
CN102239278A (zh) * 2008-12-05 2011-11-09 莲花应用技术有限责任公司 具有改进的阻隔层性能的薄膜的高速沉积
US8883270B2 (en) * 2009-08-14 2014-11-11 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen—oxygen species

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010039874A (ko) * 1999-10-06 2001-05-15 윤종용 원자층 증착법을 이용한 박막 형성 방법
KR100660890B1 (ko) * 2005-11-16 2006-12-26 삼성전자주식회사 Ald를 이용한 이산화실리콘막 형성 방법

Also Published As

Publication number Publication date
KR20120139674A (ko) 2012-12-27
WO2011090737A3 (en) 2011-09-22
EP2519657A4 (en) 2013-07-31
WO2011090737A2 (en) 2011-07-28
KR101745438B1 (ko) 2017-06-09
US20110159204A1 (en) 2011-06-30
EP2519657B1 (en) 2018-07-25
BR112012015000A2 (pt) 2017-03-01
JP5778174B2 (ja) 2015-09-16
EP2519657A2 (en) 2012-11-07
CN102753726A (zh) 2012-10-24
US8637123B2 (en) 2014-01-28
JP2013515865A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
CN102753726B (zh) 用于自由基增强薄膜沉积的氧自由基产生
US11377732B2 (en) Reactant vaporizer and related systems and methods
EP2488678B1 (en) Inhibiting excess precursor transport between separate precursor zones in an atomic layer deposition system
Elers et al. Film uniformity in atomic layer deposition
TWI352380B (en) Film formation apparatus for semiconductor process
US11848201B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing method
US8956984B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and non-transitory computer-readable recording medium
EP2764133B1 (en) A method for producing a coating by atmospheric pressure plasma technology
US20150214034A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
KR20160025444A (ko) Cf4를 사용하여 산소 라디칼의 생성을 보강하는 라디칼 보강 원자층 피착
US20110130011A1 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
JP2013515865A5 (zh)
US20050081787A1 (en) Apparatus and method for supplying a source, and method of depositing an atomic layer using the same
US10032626B2 (en) Method of manufacturing semiconductor device by forming a film on a substrate, substrate processing apparatus, and recording medium
US9741556B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US10074535B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20120319252A1 (en) Method for manufacturing semiconductor device, substrate processing apparatus, and semiconductor device
CN114746574B (zh) 用于沉积含碳结构的设备和方法
Won et al. Novel plasma enhanced atomic layer deposition technology for high-k capacitor with EOT of 8/spl Aring/on conventional metal electrode
KR20140141125A (ko) 다층복합막 형성장치 및 이를 이용한 다층복합막 형성방법
JP2016074928A (ja) 成膜装置及び成膜方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant