CN102741446A - 用铝掺杂的氧化锌涂覆基材的方法 - Google Patents

用铝掺杂的氧化锌涂覆基材的方法 Download PDF

Info

Publication number
CN102741446A
CN102741446A CN2010800628557A CN201080062855A CN102741446A CN 102741446 A CN102741446 A CN 102741446A CN 2010800628557 A CN2010800628557 A CN 2010800628557A CN 201080062855 A CN201080062855 A CN 201080062855A CN 102741446 A CN102741446 A CN 102741446A
Authority
CN
China
Prior art keywords
nucleating layer
atomizing
zinc oxide
layer
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800628557A
Other languages
English (en)
Inventor
V·西廷
B·希什卡
W·德瓦尔德
F·佐伊伯利希
B·斯坦诺斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of CN102741446A publication Critical patent/CN102741446A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明涉及用铝掺杂的氧化锌涂覆基材的方法,包括以下步骤:-通过固体靶的雾化在基材表面上产生介于5nm和400nm之间厚的成核层,其包含氧化锌或掺杂的、特别是铝掺杂的氧化锌;-产生在成核层上以半外延方式进一步生长的包含铝掺杂的氧化锌的覆盖层;以及-湿化学法蚀刻覆盖层。

Description

用铝掺杂的氧化锌涂覆基材的方法
本发明涉及用铝掺杂的氧化锌涂覆基材的方法。
由现有技术已知,构造为所谓的PIN型顶覆层(p-i-n-“Superstrate”)结构的硅薄膜太阳能电池需要透明导电氧化物层(简称:TCO层;TCO=transparent conductive oxide;透明导电氧化物)。这种TCO层必须具有低的层电阻和在可见光谱范围内(400至800nm)对于由非晶硅(a-Si:H)制成的太阳能电池和直至1100nm对于由微晶硅(μc-Si:H)制成的太阳能电池具有高透明性。此外,为了光线通过散射有效地在太阳能电池内耦合且由此在硅层内实现更强的吸收,需要适合的表面结构和侧向结构尺寸(特别是在表面粗糙度方面)。
为了制备TCO层特别可以使用所谓的雾化
Figure BDA00001958727900011
方法(同义词也称为溅射法)。在雾化时,原子通过用高能稀有气体离子的轰击由固体靶释放出且在此过程中转变成气相。在原子由其中释放出的固体靶附近,设置一种在上面可以凝结原子的基材,使得它们在基材表面形成层。
对于在硅薄膜太阳能电池中的应用,由铝掺杂的氧化锌制成的层(ZnO:Al层)特别适合。借助溅射方法制备的ZnO:Al层通常是相对平滑的。这意味着,其粗糙度仅有几纳米。通过湿化学蚀刻步骤,这些层可以被粗糙化,使得形成具有相对较宽范围的结构尺寸的凹坑状结构(参见:J.Müller,G.
Figure BDA00001958727900013
O.Kluth,B.Rech,V.Sittinger,B.Szyszka,R.Geyer,P.Lechner,H.Schade,M.Ruske,G.Dittmar,H.-P.Bochem,在《Thin Solid Films》第442期(2003),158页;J.Müller,B.Rech,J.Springer,M.Vanecek:“TCO and light trapping in Silicon thin film solar cells”在《SolarEnergy》第77期(2004),917-930页;J.Müller,G.
Figure BDA00001958727900014
H.Siekmann,B.Rech,T.Rebmann,W.Appenzeller,B.Sehrbrock:“Verfahren zur Behandlung von Substraten mitvorstrukturierter Zinkoxidschicht”,德国专利DE 102004017680B4)。平均粗糙度(英文:root mean square roughness(均方根粗糙度);以下称为RMS粗糙度)可以由此提高至约200nm。这些表面织构化的层具有非常良好的光散射特性并可以特别借助于陶瓷ZnO-固体靶的高频磁控溅射方法(简称:HF-磁控溅射方法)来制备(参见:B.Rech,O.Kluth,T.Repmann,T.Roschek,J.Springer,J.Müller,F.Finger,H.Stiebig和H.Wagner,在:《Sol.EnergyMater.Sol.Cells》第74期,439页(2002);O.Kluth,G.
Figure BDA00001958727900021
,J.Hüpkes,C.Agashe,J.Müller,B.Rech,在《Thin Solid Films》第442期(2003)80-85页)。在“Conference Proceedings,InternationalConference on Nanoscience and Nanotechnology”,ICONN 2008中的M.Breedon等的:“ZnO Nanostructured Arrays Grown fromAqueous Solutions on Different Substrates”的第9至12页中公开了具有ZnO层的各种基材,其由水溶液生成并施加于1.2μm厚的通过高频磁控溅射生成的ZnO成核层上。在此,显然这是制备所谓的“纳米棒”
Figure BDA00001958727900022
在此步骤中使用所述的ZnO层,以促进纳米棒的定向和一致性。
原则上有利的是,为了获得适合的层特性,用铝掺杂的氧化锌通过高频磁控溅射涂覆基材。然而,高频磁控溅射与直流(DC)磁控溅射相比是一种相对更慢的雾化工艺,以致于铝掺杂的氧化锌层的制备可以在基材上持续很长一段时间。
已经进一步显示,在雾化期间工艺条件很大程度上决定了所得到的ZnO层的光学和电学的材料特性。可以通过湿化学蚀刻生成的表面结构,在此特别通过工艺参数温度和沉积压力及通过所选的基材材料来影响。另一个重要的参数是用铝掺杂固体靶。例如可以根据掺杂浓度和温度找到对于通过HF-磁控溅射方法制备的层而言的优化“涂覆窗口”,其在湿化学蚀刻步骤后具有优化的光导结构(参见:M.Berginski,B.Rech,J.Hüpkes,H.Stiebig,M.Wuttig在《SPIE》第6197期(2006)中的第61970Y 1-10页“Design of ZnO:Al films withoptimized surface texture for silicon thin-film solar cells”;M.Berginski,J.Hüpkes,M.Schulte,G.H.Stiebig,B.Rech在《Journal of Applied Physics》第101期中的第74903页(2007)“Theeffect of front ZnO:Al surface texture and optical transparency onefficient light trapping in silicon thin-film solar cells”)。在此,界面的优化构造对太阳能电池的效率具有显著影响。在这种情况下重要的是关于侧向和竖向尺寸上的粗糙度的优化。此处已证实有利的是,侧向尺寸在待散射光的波长的数量级,和因此对于由微晶硅(μc-Si:H)或所谓的串叠型电池(Tandemzellen)(a-Si:H/μc-Si:H)构成的太阳能电池位于μm级范围内,以及达到约100nm至约200nm的平均粗糙度。
ZnO:Al层体系的织构蚀刻利用结晶ZnO层蚀刻速率的各向异性,以使具有柱状生长(侧向尺寸约50至100nm)的传统平滑沉积的层转化成粗糙的边界层,其侧向尺寸在优化的工艺条件下位于μm范围内。在织构蚀刻时尤其令人感兴趣的是,绕过了通常很难的大微晶的制备。所述的方法基于在稀酸(例如0.5%HCl)中ZnO:Al层的蚀刻。在此,所述的蚀刻以各向异性进行,使得氧终止的、在c轴方向沉积的微晶与相应的锌终止的微晶相比呈数量级地更快蚀刻。与此正交地(Orthogonal dazu),甚至可以观察到蚀刻速率提高40倍(参考F.S.Hickernell在《Review Phys.Appl.》第20期(1985)中319-324页的“The microstructural properties of sputtered zinc oxideSAW transducers.”)。
原则上,用陶瓷固体靶的直流磁控溅射方法以及借助金属固体靶的反应性中频雾化(MF-雾化)也能成功获得如在优化的高频雾化条件下的可比较的蚀刻形态。(参见B.Rech,T.Repmann,J.Hüpkes,M.Berginski,H.Stiebig,W.Beyer,V.Sittinger,F.Ruske在《Proceedings of 20th European Photovoltaic Solar EnergyConference》(Barcelona)(2005)中的第1481-1486页“Recent progressin amorphous and microcrystalline silicon based solar celltechnology”;J.Hüpkes,B.Rech,O.Kluth,T.Repmann,B.Zwaygardt,J Müller,R.Drese,M.Wuttig:“Surface texturedMF-sputtered ZnO films for microcrystalline silicon-based thin-filmsolar cells”在:《Solar Energy Materials and Solar Cells》第90期(2006),3054-3060页)。然而已经表明,这种蚀刻形态仅是非常罕见可重复的并因此在相对较大的面积上非常难以转化。
在ZnO:Al的反应性中频(MF)磁控溅射中,所期望的蚀刻形态可以通过工艺过程来调节(参见Szyszka,B.:“Magnetron sputteringof ZnO films”,在:Transparent Conductive Zinc Oxide:Basics andApplications在:Thin Film Solar Cells.Ellmer,K.;Rech,B.;Klein,A.(Hrsg.).Springer Series in Materials Science,2007,第187-229页)。已知的是,当过量的锌由于高蒸气压而从表面解吸时,通过在金属模式中的操作过程在较高基材温度下可以实现ZnO微晶的所期望的锌终止。高的基材温度在这种情况下证实通常是有利的。在高的氧分压下得到具有较小侧向尺寸的粗糙的、碎裂的结构。蚀刻图像显示出深的空洞。猜测此处氧终止的微晶以较高的蚀刻速率被蚀刻,相反对周围颗粒的侧面上的蚀刻侵袭显然受到抑制。对此一种可能的解释是颗粒边界上铝的热动力学有利的偏析(Segregation),这在那里导致了形成耐蚀刻的Al2O3聚集。在低氧分压下得到平面结构,这表明均一的锌终止。此外显示了,阴极的多次溢出是必要的,以避免缺陷处的蚀刻穿透。
所述层的生长及由此的终止通过不同的能量输入(特别是通过基材温度、中性粒子能量、离子能量)来确定。在制备铝掺杂的氧化锌时,离子流测量根据等离子激发而显示不同的离子能量输入。为了获得适于太阳能电池的蚀刻结构,因此重要的是,如此影响层生长,使得存在主要锌终止的而具有较少氧终止的晶粒的表面。
DE 102004048378A1公开了氧化锌薄膜,该薄膜由具有a或c截面(Schnitt)方向的单晶蓝宝石(Al2O3)以及具有外延晶体结构的ZnO层制成的基材构成。这种氧化锌薄膜使得在室温下紫外线光谱范围内特别集中和快速的光发射(发光)成为可能。这种氧化锌薄膜以激光为基础通过激光-等离子体沉积制备。
在J.T.Chen et al.:“The effect of Al doping on the morphologyand optical property of ZnO nanostructures prepared byhydrothermal process”(《Applied Surface Science》第255期(2009)3959-3964页)中使用了在铟-锡氧化物基材(ITO基材)上的由ZnO构成的200nm厚的成核层,其由水溶液通过旋涂法制备。
本发明的任务在于提供一种用铝掺杂的氧化锌涂覆基材的方法,借助该方法可以产生具有改善层特性、更高的工艺可靠性和更高的沉积速率的ZnO:Al层。
此任务通过具有权利要求1特征的方法来解决。从属权利要求涉及本发明的有益的进一步改进。
根据本发明用铝掺杂的氧化锌涂覆基材的方法包括以下步骤:
-通过固体靶的雾化在基材表面上产生介于5nm和400nm之间厚的成核层,其包含氧化锌或掺杂的、特别是铝掺杂的氧化锌;
-产生在成核层上以半外延方式(quasi-epitaktisch)进一步生长的包含铝掺杂的氧化锌的覆盖层;以及
-湿化学蚀刻所述覆盖层。
已经表明,借助根据本发明的方法在基材上制备的ZnO:Al层具有有利的光导结构,使得其特别适合作为硅薄膜太阳能电池的前接触部。根据本发明,包含氧化锌或掺杂的(特别是铝掺杂的)氧化锌的成核层,通过固体靶的雾化来制备。所述掺杂的氧化锌原则上可以具有任意掺杂物。除了铝,此处特别提及用镓,铟或还有硼的掺杂。这种成核层为此提供了优化的前提条件,即:同样包含铝掺杂的氧化锌的覆盖层可以在成核层上半外延方式地继续生长。作为基材材料特别可以使用玻璃、塑料、金属或陶瓷。将覆盖层结构化的覆盖层的湿化学蚀刻优选用经稀释的盐酸进行。所述的成核层可以有利地具有<300nm的厚度。成核层主要用于积极地影响后续生长的包含ZnO:Al的层的电性能以及其蚀刻行为。成核层特别还可以用在非晶基材例如玻璃上。此外,因为其是多晶层而不是单晶层,所以此处也不存在外延而仅存在半外延。
在一个特别有利的实施方案中建议,在基材上生成具有介于5nm和30nm之间厚度的成核层。已经令人惊讶地显示,为了促进成核层上覆盖层的半外延继续生长,即使相对较薄的成核层(特别是约5至30nm厚的成核层)也是足够的。
为了获得成核层上覆盖层的优化生长,在一个特别优选的实施方案中建议,所述的成核层通过具有ZnO和一定含量Al2O3和/或任意其他掺杂物的陶瓷固体靶的高频磁控溅射而产生,其特别保留或至少几乎保留晶格结构(且因此仅细微改变)。在此可以确定,这类通过高频磁控溅射生成的成核层在随后的ZnO:Al层沉积(其可以有利地例如通过直流磁控溅射或中频磁控溅射进行)时,可以半外延方式地继续进行其主要的锌终止。如此制备的覆盖层在特别是可以用经稀释的盐酸进行的湿化学蚀刻步骤之后,具有改善的光导结构。因此其特别是特征在于,凹坑宽度主要位于近红外光谱范围(约1μm)的入射光波长范围内。此外已经显示,凹坑的深度可以通过蚀刻持续时间而改变直至一定的程度。
在一个有利的实施方案中建议,使用具有ZnO和大于0重量%且小于1重量%含量的Al2O3的陶瓷固体靶来产生成核层,并且所述靶在T>300°C的温度下通过高频磁控溅射方法被雾化。可以确定,在T>300°C的温度下通过调节Al2O3的含量(大于0重量%且小于1重量%)可以获得用于制备成核层的对于陶瓷固体靶的雾化而言优化的“涂覆窗口”。
在一个替换实施方案中还存在一种可能性,使用具有ZnO和介于1和2重量%之间含量的Al2O3的陶瓷固体靶来产生成核层,且所述靶在T≤300°C的温度下通过高频磁控溅射方法被雾化。已经显示,在T≤300°C的温度下通过调节介于1-2重量%之间的Al2O3含量,可以获得用于制备成核层的对于陶瓷固体靶的雾化而言优化的“涂覆窗口”。
当前,这指的是动态涂覆方法,其中基材在雾化期间以一定速度从旁经过从中释放出原子的固体靶。为了进一步改善基材上成核层的生长和成核层的质量,在一个特别有利的实施方案中设计,将成核层施加在基材上的沉积速率小于20nm m/min。
在另一个替代实施方案中还存在一种可能性,即,使用具有ZnO和一定含量Al2O3和/或任意的其他掺杂物的且通过直流磁控溅射而被雾化的陶瓷固体靶来产生成核层,其中将成核层施加在基材上的沉积速率小于20nm m/min。因此以有利的方式还存在一种可能性,即,所述的成核层通过陶瓷固体靶的直流磁控溅射生成。在此过程中所述的沉积速率必须如此调节,使其小于20nm m/min,从而成核层具有相应的特性,以致于覆盖层可以在成核层上半外延地进一步生长。
在一个有利的实施方案中建议,在成核层上进一步生长的覆盖层通过含有ZnO和一定含量Al2O3的陶瓷固体靶的雾化,通过直流磁控雾化或直流脉冲磁控雾化来产生。陶瓷固体靶的直流磁控雾化或直流脉冲磁控雾化使得覆盖层在成核层上的快速生长成为可能。此外,从工艺技术角度来看,这些雾化方法是非常稳固的。
在一个替代的有利的实施方案中建议,在成核层上进一步生长的覆盖层通过包含铝掺杂的氧化锌(Zn:Al)的金属固体靶的雾化,在反应性气体工艺中通过直流磁控雾化或中频磁控雾化来产生。这些方法也使得快速的层生长成为可能,并在相应的快速氧分压调节中具有其稳固性的突出特点。
在成核层上进一步生长的覆盖层也可以选择性地通过
-空心阴极气流雾化;或
-蒸镀;或
-湿化学沉积;或
-常压化学气相沉积(英文:chemical vapour deposition;CVD);或
-低压-CVD(LP-CVD);或
-常压的等离子体增强化学气相沉积(PECVD);或
-低压-PECVD
来生成。
此处描述的方法提供一种新型的方案,以生成具有良好蚀刻性能和突出的电子迁移性的氧化锌层。在此,整个层的沉积速率可以以有利的方式大幅提高,因为缓慢生长的成核层决定了所述的生长。
本发明的其他特征和优点将借助以下优选实施例的描述而变得明确。
实施例1
在第一个实施例中研究多个样品,其中通过高频磁控雾化(HF-磁控溅射)制备的成核层(英文:seedlayer)逐渐由390nm减少至25nm。通过直流磁控雾化分别将由ZnO:Al构成的覆盖层沉积在成核层上,其中总厚度约为1μm。所有以这种方法沉积的层用0.5%的盐酸(HCl)蚀刻。
样品的蚀刻形态随后借助扫描电子显微镜(REM)来研究。此处可以确定,所有的覆盖层与成核层厚度无关而具有相似的蚀刻形态。所有的REM图像显示出具有约1μm凹坑宽度的相似的蚀刻结构。所述的蚀刻结构是与纯粹借助高频磁控溅射制成的覆盖层可相比较的。
通过施加相对较薄的成核层,可以因此持久影响随后通过直流磁控溅射所产生的层的生长。首先在基材上施加的成核层显然负责进一步生长着的ZnO:Al层的半外延生长。
此外可以确定,如此制备的ZnO:Al层具有介于286和338μOhmcm之间的优异的电阻率。这同样归因于ZnO:Al层在成核层上半外延的继续生长。
实施例2
将具有不同成核层厚度(Seedlayer-厚度)的两层由溅射设备取出并暴露于常规大气中。然后所述的层与未涂覆的玻璃板一起在溅射设备内通过直流磁控溅射被渗入以生成ZnO:Al覆盖层。此实验用作测试由于真空破坏(在层上水分等的积累)造成的可能的蚀刻结构改变。此外,在纯直流沉积时不同的蚀刻结构与通过高频磁控溅射产生的成核层相比较而得到证实。
REM研究表明,纯直流层的蚀刻形态显示显著更小的蚀刻槽结构尺寸。与此相应的,提供有通过高频磁控溅射产生的成核层的基材显示出明显突出的蚀刻凹坑,其中所述的层在相同的蚀刻深度下与没有接触大气的样品相比具有某种程度上更平坦的结构。这些结构可以通过蚀刻持续时间的调适来优化。
样品表征
通过原子力显微镜,测定借助此处介绍的方法所产生的多个层的表1中列出的平均粗糙度(RMS粗糙度)。以这种方式,在REM图像中显示的结构也可以定量得出。
表1
Figure BDA00001958727900091
具有无真空破坏的成核层的样品(样品2至5号)显示与成核层厚度无关的覆盖层的平均粗糙度(平均~150nm),所述覆盖层与仅通过高频磁控溅射生成的那样的层(样品1号)是可比较的。经历了真空破坏的样品7和8号的覆盖层,显示出与纯直流层(样品6号)相比改善的粗糙度。然而所述的粗糙度比无真空破坏的约100nm的层小约50nm。在AFM-图像中如在REM-图像中一样,各个凹坑的侧向延展是可辨的。在此可以观察到如在仅高频层的情况下可以获得的那些一样的可比较的侧向结构尺寸。此外,在同样条件下没有成核层而施加上的层(平行涂覆)显示出小得多的侧向结构尺寸。
样品表征的另一途径是角分辨光散射测量,其反映了在各种角度范围内散射的光线的比例。为了所述应用而优化的形态应当以大角度散射尽可能大比例的红光以及近红外光。
以实验方式研究在700nm波长下经蚀刻的ZnO:Al层在不同厚度的成核层(25nm、80nm、155nm和390nm)上的光散射。在垂直射入情况下从层侧面照射样品,而探测器接收不同角度下的传播的光线。研究表明,所有的样品基本上非常良好地散射光线。在此过程中,不仅形状而且强度都类似于在纯高频磁控溅射沉积中可以获得的那些值。

Claims (11)

1.用铝掺杂的氧化锌涂覆基材的方法,包括以下步骤:
-通过固体靶的雾化在基材表面上产生介于5nm和400nm之间厚的成核层,其包含氧化锌或掺杂的、特别是铝掺杂的氧化锌;
-产生在成核层上以半外延方式进一步生长的包含铝掺杂的氧化锌的覆盖层;以及
-湿化学法蚀刻覆盖层。
2.根据权利要求1的方法,其特征在于,在基材上产生具有介于5nm到30nm之间厚度的成核层。
3.根据权利要求1或2之一的方法,其特征在于,所述成核层通过包含ZnO和含有Al2O3和/或任意其他掺杂物的陶瓷固体靶的高频磁控溅射而产生,其保留或至少几乎保留晶格结构。
4.根据权利要求3的方法,其特征在于,将具有ZnO和大于0重量%并小于1重量%的含量的Al2O3的陶瓷固体靶用于产生成核层,并且所述陶瓷固体靶通过高频磁控雾化在T>300°C的温度下被雾化。
5.根据权利要求3的方法,其特征在于,将具有ZnO和1-2重量%含量的Al2O3的陶瓷固体靶用于成核层的产生,且所述陶瓷固体靶通过高频磁控雾化在T≤300°C的温度下被雾化。
6.根据权利要求1至5之一的方法,其特征在于,所述的成核层施加在基材上的沉积速率小于20nm m/min。
7.根据权利要求1或2之一的方法,其特征在于,将具有ZnO和含有Al2O3和/或任意其它掺杂物的陶瓷固体靶用于产生成核层,且所述陶瓷固体靶通过直流磁控溅射被雾化,其中成核层施加在基材上的沉积速率小于20nm m/min。
8.根据权利要求1至7之一的方法,其特征在于,在成核层上进一步生长的覆盖层通过包含ZnO和含有Al2O3的陶瓷固体靶的雾化,通过直流磁控雾化或直流脉冲磁控雾化而获得。
9.根据权利要求1至7之一的方法,其特征在于,在成核层上进一步生长的覆盖层通过包含铝掺杂的氧化锌的金属固体靶的雾化,在反应性气体工艺中通过直流磁控雾化或中频磁控雾化而产生。
10.根据权利要求1至7之一的方法,其特征在于,在成核层上进一步生长的覆盖层通过以下方法产生:
-空心阴极气流雾化;或
-蒸镀;或
-湿化学沉积;或
-常压化学气相沉积(CVD);或
-低压-CVD(LP-CVD);或
-常压的等离子体增强化学气相沉积(PECVD);或
-低压-PECVD。
11.根据权利要求1至10之一的经用铝掺杂的氧化锌涂覆的基材作为硅薄膜太阳能电池前接触部的应用。
CN2010800628557A 2009-12-23 2010-12-23 用铝掺杂的氧化锌涂覆基材的方法 Pending CN102741446A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009060547A DE102009060547A1 (de) 2009-12-23 2009-12-23 Verfahren zum Beschichten eines Substrats mit aluminiumdotiertem Zinkoxid
DE102009060547.9 2009-12-23
PCT/EP2010/070655 WO2011076921A1 (de) 2009-12-23 2010-12-23 Verfahren zum beschichten eines substrats mit aluminiumdotiertem zinkoxid

Publications (1)

Publication Number Publication Date
CN102741446A true CN102741446A (zh) 2012-10-17

Family

ID=43798523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800628557A Pending CN102741446A (zh) 2009-12-23 2010-12-23 用铝掺杂的氧化锌涂覆基材的方法

Country Status (7)

Country Link
US (1) US20130203211A1 (zh)
EP (1) EP2516692A1 (zh)
JP (1) JP2013515851A (zh)
KR (1) KR20120096074A (zh)
CN (1) CN102741446A (zh)
DE (1) DE102009060547A1 (zh)
WO (1) WO2011076921A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508406A (zh) * 2012-06-29 2014-01-15 无锡华润上华半导体有限公司 Azo薄膜、制备方法以及包括其的mems器件

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623569A (zh) * 2012-04-11 2012-08-01 保定天威薄膜光伏有限公司 薄膜太阳能电池的绒面透明导电氧化物薄膜的制备方法
EP2904128A1 (en) * 2012-10-08 2015-08-12 Corning Incorporated Sputtered transparent conductive aluminum doped zinc oxide films
DE102013105771B4 (de) 2013-06-05 2021-01-21 VON ARDENNE Asset GmbH & Co. KG Vorrichtung und Verfahren zum Abscheiden einer Schicht mittels Magnetronsputtern
CN108950501A (zh) * 2018-07-15 2018-12-07 天津大学 一种高透光zao导电薄膜的制备方法
CN113130770B (zh) * 2021-04-16 2022-03-11 河南大学 一种钙钛矿太阳能电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163917A1 (en) * 2004-01-23 2008-07-10 Bernd Rech Transparent and Conductive Oxide Layer and Method of Making Same and Using it in a Thin-Film Solar Cell
US20090001872A1 (en) * 2007-01-10 2009-01-01 Jean-Paul Noel Zinc oxide thin film electroluminescent devices
CN101748405A (zh) * 2008-11-28 2010-06-23 北京北方微电子基地设备工艺研究中心有限责任公司 透明导电膜及其制造方法、太阳能电池及平板显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2928016B2 (ja) * 1992-03-25 1999-07-28 株式会社富士電機総合研究所 透明導電膜の成膜方法
JPH09256139A (ja) * 1996-03-22 1997-09-30 Fuji Electric Co Ltd 酸化亜鉛膜の製造方法
JP2002025350A (ja) * 2000-07-11 2002-01-25 Sanyo Electric Co Ltd 透明導電膜付き基板及びその作製方法,それを用いたエッチング方法並びに光起電力装置
JP4622075B2 (ja) * 2000-10-03 2011-02-02 凸版印刷株式会社 透明導電性材料およびその製造方法
JP4647131B2 (ja) * 2001-05-08 2011-03-09 独立行政法人科学技術振興機構 薄膜結晶の形成方法
DE102004017680B4 (de) 2004-04-10 2008-01-24 Forschungszentrum Jülich GmbH Verfahren zur Behandlung von Substraten mit vorstrukturierten Zinkoxidschichten
DE102004048378A1 (de) * 2004-10-01 2006-04-13 Universität Leipzig Zinkoxid-Dünnfilm mit intensiver und lateral homogener Lumineszenz bei Raumtemperatur und Verfahren zu seiner Herstellung
US20060197436A1 (en) * 2005-03-01 2006-09-07 Sharp Laboratories Of America, Inc. ZnO nanotip electrode electroluminescence device on silicon substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080163917A1 (en) * 2004-01-23 2008-07-10 Bernd Rech Transparent and Conductive Oxide Layer and Method of Making Same and Using it in a Thin-Film Solar Cell
US20090001872A1 (en) * 2007-01-10 2009-01-01 Jean-Paul Noel Zinc oxide thin film electroluminescent devices
CN101748405A (zh) * 2008-11-28 2010-06-23 北京北方微电子基地设备工艺研究中心有限责任公司 透明导电膜及其制造方法、太阳能电池及平板显示装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG-WON KANG 等: ""Highly Transparent and High Haze ZnO:Al film For Front TCO of a-Si:H and μc-Si:H Solar Cells by Controlling Oxygen Flow"", 《MATERIALS RESEARCH SOCIETY》 *
MICHAEL BERGINSKI 等: ""The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells"", 《JOURNAL OF APPLIED PHYSICS》 *
OLIVER KLUTH 等: ""Modified Thornton model for magnetron sputtered zinc oxide: film structure and etching behaviour"", 《THIN SOLID FILMS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508406A (zh) * 2012-06-29 2014-01-15 无锡华润上华半导体有限公司 Azo薄膜、制备方法以及包括其的mems器件
CN103508406B (zh) * 2012-06-29 2016-08-24 无锡华润上华半导体有限公司 Azo薄膜、制备方法以及包括其的mems器件

Also Published As

Publication number Publication date
JP2013515851A (ja) 2013-05-09
WO2011076921A1 (de) 2011-06-30
DE102009060547A1 (de) 2011-06-30
EP2516692A1 (de) 2012-10-31
KR20120096074A (ko) 2012-08-29
US20130203211A1 (en) 2013-08-08

Similar Documents

Publication Publication Date Title
Zhu et al. Novel etching method on high rate ZnO: Al thin films reactively sputtered from dual tube metallic targets for silicon-based solar cells
Yen et al. Surface textured ZnO: Al thin films by pulsed DC magnetron sputtering for thin film solar cells applications
Fernández et al. High quality textured ZnO: Al surfaces obtained by a two-step wet-chemical etching method for applications in thin film silicon solar cells
Gwamuri et al. A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices
EP2333818B1 (en) Transparent conductive film, and transparent electrode comprising same
CN102741446A (zh) 用铝掺杂的氧化锌涂覆基材的方法
Cho et al. Structural and optical properties of textured ZnO: Al films on glass substrates prepared by in-line rf magnetron sputtering
US20110036399A1 (en) Process for making a multi-layer structure having transparent conductive oxide layers with textured surface and the structure made thereby
Zhang et al. Thin-film silicon solar cells on dry etched textured glass
Dewald et al. Advanced properties of Al-doped ZnO films with a seed layer approach for industrial thin film photovoltaic application
US8894867B2 (en) Method for producing and structuring a zinc oxide layer and zinc oxide layer
Bunte et al. Novel texturing method for sputtered zinc oxide films prepared at high deposition rate from ceramic tube targets
JP6979938B2 (ja) 導電性透明アルミニウムドープ酸化亜鉛スパッタ膜
Breivik et al. Nano-structural properties of ZnO films for Si based heterojunction solar cells
Dewald et al. Optimization of process parameters for sputtering of ceramic ZnO: Al2O3 targets for a-Si: H/μc-Si: H solar cells
Das et al. Texturization of ZnO: Al surface by reactive ion etching in SF 6/Ar, CHF 3/Ar plasma for application in thin film silicon solar cells
Wanka et al. Characterization and optimization of the TCO/a-Si: H (, B) interface for solar cells by in-situ ellipsometry and SIMS/XPS depth profiling
Addonizio et al. Advanced light-scattering materials: Double-textured ZnO: B films grown by LP-MOCVD
Lluscà et al. Growth and properties of ZnO: Al on textured glass for thin film solar cells
Kang et al. The effect of substrate temperature on optoelectronic characteristics of surface‐textured ZnO: Al films for micromorph silicon tandem solar cells
Sommer et al. Role of the dopant aluminum for the growth of sputtered ZnO: Al investigated by means of a seed layer concept
Hussain et al. Advanced Light scattering through various textured glass surface morphologies in thin film silicon solar cells
Bose et al. Optimization of the texturization of ZnO: Al surface using HCl+ HNO 3 for application in thin film silicon solar cells
CN105304732B (zh) 制备透明导电氧化物薄膜的方法及其应用
Liu et al. Textured transparent conductive B/Al doped ZnO films utilizing reactive magnetron sputtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: XUKE TF GMBH + CO. KG

Effective date: 20120925

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20120925

Address after: Munich, Germany

Applicant after: Fraunhofer Application and Research Promotion Association

Applicant after: Kueck TF GmbH & Co. kg

Address before: Munich, Germany

Applicant before: Fraunhofer Application and Research Promotion Association

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20121017