CN102741157B - 用催化剂对活性化合物进行活化 - Google Patents

用催化剂对活性化合物进行活化 Download PDF

Info

Publication number
CN102741157B
CN102741157B CN201080043018.XA CN201080043018A CN102741157B CN 102741157 B CN102741157 B CN 102741157B CN 201080043018 A CN201080043018 A CN 201080043018A CN 102741157 B CN102741157 B CN 102741157B
Authority
CN
China
Prior art keywords
hydrogen peroxide
catalyzer
atomization
active compound
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080043018.XA
Other languages
English (en)
Other versions
CN102741157A (zh
Inventor
H·A·普法佛
T·A·霍尔茨
R·J·特鲁斯
J·帕西奈里
L·F·威尔金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Indigo Technologies Group Pty Ltd
FMC Corp
Original Assignee
Indigo Technologies Group Pty Ltd
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009903603A external-priority patent/AU2009903603A0/en
Application filed by Indigo Technologies Group Pty Ltd, FMC Corp filed Critical Indigo Technologies Group Pty Ltd
Publication of CN102741157A publication Critical patent/CN102741157A/zh
Application granted granted Critical
Publication of CN102741157B publication Critical patent/CN102741157B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/106Peroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/108Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury

Abstract

过氧化氢浓水溶液或者液体载体中的其他活性化合物通过雾化并且与同时在载体液体中雾化的合适的催化剂接触从而活化。将浓过氧化氢和过氧化氢活化催化剂雾化形成液滴喷雾,在本发明用于过氧化氢的催化活化,可以用于对包含NOX和/或Hg之类的污染物的燃烧烟道气进行处理。

Description

用催化剂对活性化合物进行活化
技术领域
本发明涉及过氧化氢和其他活性化合物的催化活化,更具体来说涉及将过氧化氢催化活化用来对固定源的燃烧烟道气流中的污染物进行处理。
发明背景
过氧化氢(H2O2)是一种人们公知的化合物,其具有很强的氧化性,通常以水溶液的形式销售。过氧化氢水溶液可以以不同的浓度购得,具有很广泛的商业用途,例如消毒剂、杀菌防腐剂、漂白剂、氧化剂(包括用于化学反应)和推进剂(例如用于火箭)。过氧化氢的一个重要的特性在于其分解副产物是无害的。
过氧化氢可以在蒸气相或者冷凝相(例如在水溶液中)分解,形成分解产物氧气和水。总体分解反应如下式所示:
H2O2→H2O+1/2O2↑(1)
人们正在开发将过氧化氢用于治理空气污染的用途,用来对固定源(例如使用化石燃料的发电厂)产生的烟道气流进行处理,除去其中的污染物。
煤、焦炭、天然气或石油之类的燃料的燃烧通常会造成在燃烧烟道气流中有污染物,这些污染物由燃烧过程产生或来源于燃料源内包含的杂质。燃煤的电力公用发电厂是这种燃烧工艺造成空气污染的一个重要来源,但诸如工业锅炉、垃圾焚化炉和制造厂之类的其它固定的燃烧燃料的装置也是污染源。
这些固定高温燃烧源产生的空气污染物主要是硫的氧化物(例如SO2和SO3),也被称作SOX气体;以及氮的氧化物,也被称作NOX气体,这两种物质都是酸性气体。这些燃烧烟道气中其它受关注的燃烧污染物包括其它的酸性气体,例如HCl和HF,Hg(汞),CO2和微粒。另外,用来在选择性催化还原(SCR)和选择性非催化还原(SNCR)系统中对烟道气NOX进行处理的残余未反应的氨气(NH3)是燃烧烟道气流中包含的另一种存在危害的污染物。在过去数十年间,对这些固定燃烧源产生的各个污染物组分的规章限制的要求越来越严格,而将来排放标准可能会进一步变严。
人们提出了将过氧化氢水溶液用于各种用途,用来对燃烧烟道气流进行处理,以除去污染物。但是,人们仍然需要能够以高效的方式利用过氧化氢的空气污染控制处理工艺。
本发明提供了一种空气污染控制方法,该方法使用活化的过氧化氢,将其作为氧化性反应物引入烟道气流中,用来有效地控制烟道气流中的污染物,特别是用来处理NOX、Hg和残余的氨气(包含在SCR处理或者SNCR处理的燃烧烟道气流中)。在用来从燃烧烟道气流中除去SOX和NOX和其它的气体污染物的现有技术的处理中,没有揭示或提出本发明的新颖的过氧化氢活化系统。
Azuhata等在美国专利第4,213,944号(日立公司(Hitachi))中揭示了一种用来从包含氮的氧化物的热气流中除去氮的氧化物的方法,该方法在400-1200℃的升高的温度下将还原剂,优选氨和过氧化氢加入热气流中,从而将氮的氧化物分解为氮气和水。根据该文献的描述,通过将过氧化氢和氨同时加入,特别是在400-800℃的温度下加入,使得氨分解,使其与具有与NOx反应的活性,从而提高氨的活性。将足量的过氧化氢与氨一起加入,使得过量的未反应的氨也发生分解。
Jones在美国专利第5,120,508号和第4,783,325号(Noell)中揭示了通过将包含过氧基引发剂和氧气的气体注入含NO的烟道气流中,将烟道气流中的NO转化为NO2的方法。所述过氧基引发剂优选是丙烷,但是还可以是其它的烃类或者过氧化氢或氢气。然后制得的含NO2的气流在吸收区域进行处理,用天然小苏打或者天然碱之类的干吸着剂除去NOX和SOX,所述干吸收剂装在袋滤室(baghouse)内,然后将处理过的气流排放到大气中。
Zamansky等在美国专利第5,670,122号(Energy&EnvironmentalResearch)中揭示了一种从燃烧烟道气中除去NO,SO3,CO,轻质烃类和汞蒸气(Hg)的方法,具体来说是将过氧化氢或者过氧化氢与甲醇的混合物的雾化液滴注入所述烟道气流中,将相应的气体污染物转化为NO2,SO2,CO2(对于CO和轻质烃类)和HgO。该处理在约377-827℃的气体温度下进行,然后在下游的洗气操作中除去反应产物。该处理也可以与SNCRNOX还原技术结合进行,经SNCR处理过的燃烧气流在下游通过H2O2或H2O2/CH3OH注入处理进行处理。
Stoltz等人在美国专利第6.645,450号中公开了一种控制有臭味和有毒的组分(例如食品加工厂产生的废气流中包含的组分)的方法,该方法在湿法涤气系统中使用过氧化氢水溶液和添加剂,优选硫酸亚铁水溶液,对废气流进行处理,所述硫酸亚铁水溶液用来催化过氧化氢快速分解为氢氧自由基。
Cooper等的美国专利第6,676,912号(NASA)揭示了一种用来从固定燃烧气流中除去NO的方法,该方法将H2O2注入气流中,将NO氧化为NO2以及HNO3和HNO2,这些物质更容易通过水性湿法洗涤回收。然后含氮酸和残留的NO2通过用水或水性碱性介质进行湿法洗涤除去,或者使得烟道气流通过袋滤室内的微粒碱性吸着剂而被除去。该方法可以任选地包括初步烟道气脱硫洗涤步骤,除去SO2,然后再注入H2O2
Parrish等人(NASA)的美国专利第6,793,903号和Parrish等人的(NASA)美国专利第6,955,799号公开了一种方法,该方法通过使得过氧化氢高温分解为氧化性自由基氢氧自由基(HO.)和氢过氧自由基(HOO.),将一氧化氮(NO)氧化成二氧化氮(NO2)。将过氧化氢水溶液冲射到一氧化氮气流中的加热表面上,在此处,过氧化氢分解产生氧化性自由基。优选在所述加热的表面上涂敷催化材料,例如Fe(II或III),Cu(II),Cr(II),Pt黑,Ag,Pd(第3栏,第27-52行)。
在Parrish等人的第799号专利中,所述加热的表面可以涂敷有催化材料,也可以包含催化材料或者活性材料的溶液或者分散体。在后一种实施方式中,将过氧化氢加入包含盐或者金属氧化物的水溶液或者分散体中,使得过氧化氢分解成水和氧气(第4栏,第33-60行)。通过过氧化氢分解产生得到的氧气在水中的溶解度很低,从溶液/分散体中释放出来,进入一氧化氮流中,将NO氧化为NO2(第4栏,第33-60行&第5栏,第16-36行)。
Rusek等人的美国法定发明说明书第H1948H号(美国海军部(U.S.Navy))公开了一种以过氧化氢为燃料用于的火箭推进器的方法,该方法使得过氧化氢在固定床催化剂上流过,从而使得过氧化氢分解,所述固定床催化剂包含H2O2-催化活性化合物,该化合物包含与碱性促进剂混合的过渡金属阳离子。优选的催化剂是包含Na+或K+离子作为碱性促进剂的四价锰,所述催化剂进行煅烧,负载在无机极性基材上。
Parrish等人(NASA)的美国专利公开第2004/0197252号公开了使用高浓度过氧化氢将气流中的一氧化氮(NO)转化为二氧化氮(NO2),所述浓过氧化氢作为单元推进剂,通过催化(火箭)推进器组件加入气流中。所述催化剂优选是位于安装在推进器喷嘴之内的催化剂载体上的氧化钼和氧化锰的混合催化剂,该催化剂使得过氧化氢分解为氢氧根离子(OH-)和/或氢过氧离子(OOH-),这些分解产生的离子与气流中的一氧化氮反应。
Parrish等人(NASA)的美国专利公开第2008/0213148号揭示了一种减少烟道气流中的NOX排放的方法,该方法采用气态二氧化氯处理步骤和至少一个过氧化氢水溶液涤气处理步骤。在此发明中,所述二氧化氯处理步骤主要用来将NO氧化为NO2
Parrish等人的(NASA)美国专利公开第2008/0241030号揭示了一种减少烟道气流中的排放物的方法,该方法使用多个过氧化氢水溶液涤气处理步骤以及中间的气态二氧化氯处理步骤,用来对包含NOX、SOX和重金属的烟道气流进行处理。所述气态二氧化氯处理用来从烟道气流中除去汞之类的重金属,并且除去第一个过氧化氢水溶液涤气步骤未氧化的任何NO。
以上Parrish等人的两个专利公开文献所述的二氧化氯是通常用于水处理和纸浆漂白的强氧化剂。如以下的两个专利文献所述,人们曾经将过氧化氢用于二氧化氯的制备。
Soule的美国专利第号2,332,181(梅森碱性物质工作公司(MathiesonAlkaliWorks))揭示了可以通过在酸性介质中,使得氯酸钠之类的金属氯酸盐与过氧化氢反应形成二氧化氯(ClO2),在此反应中,所述过氧化氢作为还原剂。
Gravitt等人的美国专利公开第2003/0031621号公开了对二氧化氯生产的改进,在此专利中,在存在无机酸的条件下,将过氧化氢和碱金属氯酸盐水溶液喷洒在球形反应室中,形成泡沫,促进二氧化氯的有效生成。二氧化氯在反应设备,例如汽提塔中回收。
本发明提供了非常有效的用来对过氧化氢进行活化的方法,特别是用来使得过氧化氢与燃烧烟道气流中包含的污染物反应。如下文详述,本发明还可以用于其他活性化合物的催化活化或者反应。
发明概述
根据本发明提供了一种用来催化活性化合物的方法,该方法包括将以下组分(i)和(ii)同时雾化形成液滴喷雾:(i)包含在第一液体中的活性化合物,(ii)包含在第二液体中的催化剂,所述催化剂能够催化包含所述活性化合物的反应;使得所述雾化液滴中的液体挥发,促进所述活性化合物与催化剂的接触,并且增进所述活性化合物的催化反应。
本发明的另一个实施方式涉及一种活化过氧化氢的方法,该方法包括使得气流中的过氧化氢浓水溶液的雾化液滴与夹杂在所述气流中的微粒状过氧化氢催化剂接触一段足以使得过氧化氢活化的时间。
本发明的另一个实施方式涉及一种用来活化过氧化氢的方法,该方法包括将以下组分(i)和(ii)同时雾化成水性液滴的喷雾:(i)过氧化氢浓水溶液,(ii)包含在水性液体中的过氧化氢活化催化剂;并且从所述雾化液滴蒸发掉水,以促进所述过氧化氢与所述活化催化剂的接触,使得所述过氧化氢活化。
本发明的另一个实施方式涉及一种用来对过氧化氢进行活化的方法,该方法包括将以下组分(i)和(ii)同时雾化为液滴喷雾:(i)过氧化氢的浓水溶液,以及(ii)溶解在水性液体中的过氧化氢活化催化剂,所述雾化是使用喷嘴进行的,所述喷嘴包括用于所述过氧化氢水溶液流和用于活化催化剂流的独立的通道,还包括用于雾化气流和雾化液流的至少一条气体流体通道;从所述雾化液滴中将水蒸发,以促进所述过氧化氢水溶液与活化催化剂的接触,使得过氧化氢活化。
本发明的另一个方面和实施方式涉及一种用来处理气流中的污染物的方法,该方法包括:将以下组分(i)和(ii)同时雾化成水性液滴喷雾:(i)过氧化氢浓水溶液,(ii)包含在水性液体中的过氧化氢活化催化剂;将所述液滴喷雾引入包含污染物的气流中;从所述液滴中将水蒸发,以促进过氧化氢与活化催化剂的接触,使得过氧化氢活化;提供足够的在所述气流中的停留时间,使得活化的过氧化氢与气流中的一种或多种污染物反应。
附图简要说明
图1显示了实施例所述的两个相关研究的结果,第一个实施例单独使用过氧化氢对含NO的燃烧烟道气进行处理(用于比较),第二个实施例使用本发明方法所述的用氯酸钠(NaClO3)活化的过氧化氢对含NO的燃烧烟道气进行处理。
图1显示在单独使用H2O2的情况下或者用NaClO3催化剂活化的H2O2的情况下,NO转化率百分数随不同的H2O2:NO摩尔比的变化关系。
图2显示了实施例所述的其他研究的结果,在这些实施例中,在三种不同的烟道气处理温度条件下,使用如本发明方法所述的用氯酸钠活化的过氧化氢对含NO的燃烧烟道气进行处理。图2显示在三种烟道气温度条件下,NO转化百分率随一些H2O2:NO摩尔比的变化关系。
发明详述
本发明的总揽;优点
本发明指出了一种用于活性化合物的高效催化反应的方法,其中所述活性化合物在载体液体中雾化形成液滴的喷雾,与同时雾化的催化剂在所述液滴喷雾中紧密混合。
在本发明中,所述雾化液滴中包含的活性化合物与所述液滴喷雾中的催化剂紧密接触。在本发明的一个方面,这可以通过使得雾化的含活性化合物的液滴喷雾与相似分散形式的催化剂接触来完成。在一个优选的实施方式中,所述含活性化合物的液体的雾化喷雾与同样夹杂在液滴喷雾中的催化剂接触。
可以通过以下方式实现所述含活性化合物的液滴和催化剂在雾化液滴喷雾中的紧密接触:将以下组分(i)和(ii)同时雾化成液滴喷雾:(i)包含在第一液滴(第一载体液体或者溶剂)中的活性化合物,以及(ii)包含在第二液体(第二载体液体或者溶剂)中的催化剂。所述同时雾化确保所述雾化的液滴紧密混合,或者形成同时包含活性化合物和催化剂的液滴,促进在液滴喷雾中的互相接触,增进活性化合物的催化反应。
所述活性化合物和催化剂在其各自的载体液体中的雾化优选通过能实现以下效果的方式进行:所述操作能够使得此二者混合,使得二者的液滴合并并且/或者在雾化过程中、在喷嘴处形成的液滴同时包含活性化合物和催化剂。本发明的方法特别适合用于作为活性化合物的过氧化氢的活化,所述过氧化氢可以使用过氧化氢活化催化剂进行催化活性。
包含位于所述第二液体载体中的催化剂的雾化液滴优选包含以溶液形式溶解在其中的催化剂。或者,所述雾化的含催化剂的液滴中,所述催化剂可以为悬浮体或者部分溶解的催化剂。
本发明的另一个方面和实施方式包括从雾化的液滴蒸发液体,进一步促进所述雾化液滴中的活性化合物与催化剂之间的有效接触。在一个优选的实施方式中,所述从液滴挥发或者蒸发液滴的步骤足以从包含催化剂的雾化液滴除去载体液体,制得固相的催化剂,例如具有非常小粒度的颗粒。在后一种实施方式中,随后使得所述含活性化合物的液滴与同样夹带在所述雾化液滴中的颗粒状催化剂固体接触,促进活性化合物的高效的非均相催化反应或活性。
本发明特别适合使用过氧化氢活化催化剂对过氧化氢浓水溶液进行活化。本发明过氧化氢的活化导致形成自由基,例如氢氧自由基,这是极强的氧化剂,本发明的优点在于,能够在无需高温的条件下对过氧化氢进行活化。
本发明的另一个特点是减少过氧化氢在上游,例如在管道、容器或其他限定空间内发生过早分解的可能性,这些上游过早的分解可能会造成设备破坏,之所以具有上述特点是因为,含催化剂的液体和过氧化氢水溶液的合并与雾化和喷雾液滴的形成同时发生。另外,通过以此种方式将催化剂与过氧化氢混和,例如在喷嘴中混和,在他们即将以细小雾滴的形式引入气流之前混和,由此确保了在反应需要氧化剂的位置形成氢氧根离子,由此最大程度减少了过氧化氢的过早分解。
本发明的方法能够特别有效地用于过氧化氢活化,将其用于空气污染控制用途,例如用来对固定燃烧源(例如燃煤发电厂)产生的含NOX和/或含Hg的烟道气流进行处理。
本发明的方法还可以用于催化以下所述两种活性化合物之间的反应:所述第一活性化合物雾化成液滴,该液滴喷入气流,与此同时,进行包含催化剂的液滴的雾化(在独立的液滴中,或者在包含所述第一活性化合物的液滴中),由此促进第一活性化合物和第二活性化合物之间的反应。所述第二活性化合物可以存在于所述气流中,或者可以类似地同时雾化成液滴(与第一活性化合物的雾化一起进行),将其与包含所述第一活性化合物且包含催化剂的雾化液滴混和。
可以使用一个或多个喷嘴来实施本发明的方法,所述喷嘴使用空气或者其它的气体作为雾化气体,这些雾化气体通过喷嘴内的至少一个气体通道引入,所述喷嘴还包括独立的液体通道,用来对液体物流进行雾化,所述液体流包括例如:含有第一活性化合物的液体流,包含催化剂的液体流,以及任选的包含第二活性化合物的液体流。
本发明在应用于过氧化氢活化以及除了过氧化氢以外的活性化合物的催化反应的时候,具有一些出人意料的惊人的有益特性。首先,本发明的方法可以在较低的温度下对过氧化氢和其它的活性化合物进行高效而快速的活化。其次,本发明提供了具有高表面积-体积比的细分散颗粒状催化剂和与所述催化剂接触的活性化合物之间的高效的相互作用,该方法值得注意的特点是简单。
本发明方法中过氧化氢的催化活性通常提高了过氧化氢的利用效率,并且缩短了活化的过氧化氢的总体反应停留时间,这是因为过氧化氢的活化速度很快,使得过氧化基团立即可用于最终应用的反应,例如用于对烟道气流中的污染物进行处理。
活性化合物和催化剂的雾化。
在本发明中,将包含在第一载体液体中的活性化合物(例如过氧化氢浓水溶液)通过雾化或者其它的方式形成液滴喷雾。类似地通过雾化或者其它的方式使得包含在第二载体液体中的催化剂形成液滴喷雾。在本发明的方法中,含活性化合物的液体的雾化和含催化剂的液体的雾化是同时进行的(在本说明书中,同时包括相同时间的意思)。
所述雾化通常是使用一个或多个喷嘴装置进行的。在本说明书中,术语“雾化的”和“雾化”表示由液体形成液滴的喷雾。术语“喷雾化”和“喷雾”与“雾化的”和“雾化”是同义词,经常用于医疗技术领域。
优选的用来将含活性化合物的液体物流和含催化剂的液体物流同时雾化形成液滴喷雾的喷嘴装置是具有下文所述特点的设计:其具有用于含活性化合物的液体流以及用于含催化剂的液体流的独立的通道,还包括至少一条用于雾化气流(例如空气,用来对液体物流进行雾化)的流体化气体通道。
所述喷嘴设计可以使得独立的液体流雾化,形成液滴喷雾,使得液滴紧密混和和接触,由此导致活性化合物与催化剂接触,实现催化的反应。
作为替代或者补充,所述喷嘴设计可以提供来自以下液流的紧密混和:来自输送包含在第一液体中的活性化合物通道之液流,和来自输送包含在第二液体中的催化剂通道之液流,使得两种液体在雾化过程中混和,使得形成至少一部分、优选大部分的液滴中不仅包含活性化合物,而且还包含催化剂,促进活性化合物和催化剂之间的接触,促进了液滴喷雾中的催化的反应或活化,当从液滴蒸发液体的时候尤其显著。
可以用于本发明方法的商购喷嘴设计的一个例子是施力克雾化技术系列(SchlickAtomizingTechnologiesSeries)946和系列0-56三物质(或四物质)喷嘴(度森-施力克公司(Düsen-SchlickGmbH),D-96253Untersiemau,德国www.duesen-schlick.com);据称此种喷嘴产生的代表性的平均液滴尺寸为50-80微米。
或者可以在本发明的方法中使用各种常规雾化技术和设备,包括气动雾化,液动(或无气)雾化和超声雾化。这些雾化技术可以用来产生液滴喷雾,在此喷雾中,液滴的群体分布具有相对较小的液滴尺寸。
气动雾化(也称作空气雾化或气体雾化)涉及喷雾技术,其中将空气流或其他气流与液流(水性液流或者有机液流),例如过氧化氢水溶液或者本发明方法中所述的包含在液体载体中的其他活性化合物,一道通过喷头设备。所述空气流或其它的气流提供了将含活性化合物的液体(例如过氧化氢水溶液)雾化形成液滴喷雾所需的能量。气动雾化是一种人们众所周知的广泛用于液体物流雾化的喷雾技术,常规的气动喷雾设备可以用于本发明。
气动雾化是用来形成过氧化氢水溶液的液滴(其在本发明方法中进行活化)的优选雾化技术。以上所述的多部件喷嘴设计是本发明最优选的气动雾化装置,可以用于过氧化氢的催化活性或者其他活性化合物的催化反应。
气动雾化的一个优点在于,用于雾化的空气流还促进了水分从喷雾液滴中蒸发(或者从其他液滴载体液体挥发)。由于所述蒸发或者挥发,所述含催化剂的液滴中载体液体被耗去,使得催化剂暴露出来,使其能够更有效地与所述含活性化合物的液滴接触。在本发明的优选实施方式中,大部分或全部的载体液体从所述含催化剂的液滴蒸发或者挥发。因此,所述含催化剂的液滴产生固体形式的催化剂,也即保持夹带在液滴喷雾中的细尺寸颗粒催化剂。所述液滴喷雾中的微粒催化剂很容易地与含活性化合物的液滴紧密接触,促进了所述活性化合物的催化反应或者活化。
当所述过氧化氢为活性化学物质的时候,从过氧化氢水溶液液滴蒸发水还会导致液滴中的过氧化氢水溶液进步浓缩,这一因素有可能会促进过氧化氢和催化剂之间更高效的接触。
液动或无气雾化包括具有以下特性的喷雾技术:在加压条件下,泵抽液体(水性液体或者有机的液体)溶液流(例如包含在水性溶剂或者有机溶剂中的过氧化氢或者其它的活性化合物)通过喷嘴孔,从而将液体物化为液滴喷雾。液动喷嘴使用所喷出液体的动能作为将液体破碎成液滴的能量源。作为一般的规则,液体压力越高,则通过喷嘴孔的流体流速越高,液滴喷雾中的液滴直径越小,但是一些喷嘴设计在一定液体流速范围内提供恒定的液滴尺寸分布。
所述过氧化氢或者其他活性化合物的雾化还可以使用文丘里装置进行,例如使用非润湿喉部文丘里装置进行,在此装置中,将包含活性化合物的液体引入(例如喷入)文丘里喉部并利用通过文丘里喉部的大量气流的能量进行雾化。文丘里喷雾装置可以用于以下的特定用途:用来对烟道气流进行处理,除去烟道气流中包含的污染物。
超声雾化包括具有以下特点的喷雾技术:在此技术中,对液体溶液物流(例如过氧化氢水溶液或者包含在水性溶剂或者惰性溶剂中的其他活性化合物)施加强烈的高频振荡,例如约20kHz至50kHz的振荡,使得液体物流雾化形成液滴喷雾。超声雾化经常产生具有窄尺寸分布的液体喷雾以及低速喷雾。
优选通过采取雾化步骤来形成具有较小尺寸的液滴,即形成细小尺寸的液滴。雾化的液滴通常不是单一尺寸的,液滴集合体通常包含一定范围的液滴尺寸或者液滴尺寸的分布。
通常对雾化步骤中的喷雾参数进行调节,使得制得的液滴喷雾当中的液体形状大体为球形,平均液滴直径约小于100微米。在此说明书中,术语平均液滴尺寸表示球形液滴的横截面尺寸,或者如果液滴不是球形的话,表示其代表尺寸,例如最大的横截面尺寸。
优选对雾化喷雾参数进行调节,使得所提供的液体喷雾中,液滴平均直径约小于80微米,更优选约小于60微米,最优选约小于40微米。在一些情况下,所述雾化液体的特性以及喷雾装置或喷嘴的设计可以允许获得更小的平均液滴尺寸,例如平均液滴直径约小于20微米。优选获得较小的平均液滴直径,这是因为较小的液滴具有较大的表面积-体积比,该因素能够促进液体高效地从液滴蒸发或者挥发,改进含活性化合物的液滴和催化剂之间的接触效率。
但是,应当认识到,对于一些活性化合物和/或催化剂,大于上述优选小液滴尺寸范围的较大的液滴尺寸也可能是适用的。所述较大的液滴的平均液滴尺寸约大于100微米,最高约为500微米甚至更大,最高约为1000微米。
能够影响或者控制雾化液滴尺寸的因素包括雾化空气速度和质量流速,雾化空气压力(对于气动雾化而言),液体物流流速和压力,喷雾设备和设计,喷嘴孔设计和直径,以及过氧化氢水溶液密度(浓度)和粘度。还可以使用多个喷嘴,例如用来提供所需的流速,并且或者喷雾液滴收率。
气动雾化工艺可以很容易地提供具有优选小液滴尺寸特性的雾化液滴。例如,在气动雾化中,可以通过增大雾化空气流的相对流速或者速度,以及增大用于雾化工艺的气体/液体比例,从而形成小尺寸液滴聚集体。
活性化合物和液体载体
本发明的活性化合物是能够使用合适的催化剂,当所述活性化合物和催化剂在雾化液滴喷雾中接触的过程中进行催化反应或者催化活化的化合物,所述催化剂能够促进所述活化或者反应。所述活性化合物可以是氧化剂或者还原剂,或者能够催化活化的其他化合物。本发明的方法还可以使用活性化合物的组合,例如两种或更多种能够催化反应的活性化合物。
过氧化氢是优选的活性化合物,其在本发明的优选实施方式中被催化活化,在下文中更详细讨论过氧化氢的活化。
在本发明的方法中,所述活性化合物雾化形成液滴喷雾。因此,所述活性化合物必须能够包含在载体液体中,然后能够在载体液体中的同时雾化形成液滴喷雾。
用于所述活性化合物的液体载体优选是能够使得活性化合物完全溶解在其中的活性化合物,例如能够提供包含所述活性化合物的溶液。包含所述活性化合物的溶液优选是浓溶液,优选是包含至少约10重量%活性化合物的溶液。当所述活性化合物为过氧化氢的时候,所述溶液应当包含至少约15重量%的H2O2
或者,所述活性化合物可以是具有以下性质的化合物:其能够至少部分地在所述载体液体中溶解,或者可以分散在所述载体液体中,提供包含细分散固体活性化合物的悬浮液,其适合用于雾化形成液滴喷雾。
所述活性化合物还可以是具有以下性质的化合物:在室温下通常是液态的,因为该活性化合物本身就可以在雾化过程中作为载体液体,用来形成液滴,因此无需使用独立的载体液体。
另外,所述雾化液滴中的活性化合物可以是具有以下性质的活性化合物:其可以与包含多种活性化合物的雾化液滴中存在的一种或多种其他反应物(即其它的活性化合物)反应。或者,所述雾化液滴中的活性化合物可以与用来将所述包含活性化合物和催化剂的雾化液滴引入其中的气体环境(例如烟道气流或者包含其他反应物(即其它的活性化合物)的其他气流)中存在的一种或多种其它的反应物发生催化反应。
用于活性化合物的液体载体可以是水或者其他水性介质,或者可以是有机液体。所述液体载体优选对活性化合物呈惰性。另外,所述液体载体应当具有一定的挥发性,使得能够从液滴喷雾中的液滴蒸发或者挥发,例如在常温或者升高温度的条件下蒸发或者挥发。水优选用作活性化合物的液体载体。
用于活性化合物和液体载体的催化剂-
对本发明所采用的催化剂进行选择,以促进所述活性化合物的反应或者活化。所述催化剂必须能够包含在载体液体中(即溶解在载体液体中,分散在载体液体中,或者其其它的方式承载在载体液体中),然后与活性化合物的雾化同时雾化形成液滴喷雾。
用于所述催化剂的液体载体优选是能够使得催化剂完全溶解在其中的液体载体,例如能够提供包含所述催化剂的溶液。所述包含催化剂的溶液优选是较浓的,优选所述溶液包含至少约5重量%的催化剂,更优选包含至少10重量%的催化剂。
或者,所述催化剂可以是具有以下性质的化合物:其能够至少部分地在所述载体液体中溶解,或者可以分散在所述载体液体中,提供包含细分散固体催化剂的悬浮液,其适合用于雾化形成液滴喷雾。
用于催化剂的液体载体可以是水或者其他水性介质,或者可以是有机液体。所述用于催化剂的液体载体(即第二液体载体)优选与用于活性化合物的液体载体(即第一液体载体)相同。所述用于催化剂的液体载体优选对催化剂呈惰性。另外,所述液体载体应当具有一定的挥发性,使得能够从液滴喷雾中的液滴蒸发或者挥发,例如在常温或者升高温度的条件下蒸发或者挥发。水优选用作催化剂的液体载体。
雾化的液滴–特征和挥发
本发明的一些值得注意的方面的特征在于,所述雾化液滴喷雾包含具有反应物化合物和催化剂的喷雾液滴,他们可以是分离但相互混和的液滴形式,或者是在单独的液滴中混和在一起。
在本发明中,包含在液体载体中的合适催化剂的液滴的形成与包含在液体载体中的活性化合物(例如过氧化氢浓水溶液)的雾化是同时(即同期)发生的。在一个优选的实施方式中,所述液体载体中承载的催化剂和活性化合物合并起来,作为整体部分形成液滴并雾化,将其引入气流中。
在本发明的优选实施方式中,包含在第二液体载体中的催化剂液滴的形成与第一液体中活性化合物的雾化在相同雾化装置中(例如在气动喷嘴中)同时进行,所述装置包括用于这两股液体物流的独立的液体通道。所述两股液体流的雾化和液滴形成优选按照以下的方式进行:使得空气流或者气流形成独立的液滴喷雾,而这些液滴喷雾会互相靠近并混和起来的。所述两种液滴喷雾在他们在喷嘴中形成之后,立刻在雾化喷嘴外部、紧邻雾化喷嘴的物质相互混和。
在另一个非常优选的实施方式中,所述两种液体物流在喷雾装置中的雾化和液滴形成是通过以下方式进行的:使得两种液体物流在离开喷雾装置中他们各自的通道之后、液体即将雾化和/或雾化过程中,使得这两种液体物流混和。所述喷雾装置内的外部液体混和可以任选地受到雾化空气流或者雾化气流作用的促进。在此优选的雾化实施方式中,很大一部分雾化的液滴同时包含活性化合物和催化剂,因此增进了它们的接触。
本发明的雾化工艺特别适合于通过以下方式进行过氧化氢的活化:在单个喷嘴或者相同的喷雾装置中,同时进行包含过氧化氢浓水溶液及其催化剂的液滴的雾化和形成,所述喷嘴具有用于所述两种液体物流的独立的液体通道。通过将过氧化氢水溶液液流和含催化剂的液流保持在各自的液体通道中,避免了过氧化氢在喷雾设备中过早的催化活化,所述过早的催化活化可能会导致喷雾设备发生爆炸事故或者破坏。
本发明的另一个特征在于,包含所述活性化合物和/或催化剂的雾化喷雾液滴具有很小的尺寸,即液滴尺寸很小,约小于100微米(平均直径),最优选约小于20微米(平均直径)。这种小的液滴尺寸导致液滴每单位体积对应于较大的表面积,因此促使载体液体更迅速地蒸发或者挥发。
出于类似的原因,所述活性化合物优选以较浓地形式包含于载体液体中,减少液滴中液体的量,所述液滴中的液体会在活性化合物和催化剂之间构成扩散障碍。对于催化剂在其载体液体中的浓度也是如此。
本发明的另一个方面涉及从雾化液滴蒸发或者挥发液体。所述从雾化液滴中蒸发或者挥发液体是在液滴喷雾雾化过程中进行或者液滴喷雾雾化之后立刻进行。
液体从雾化液滴蒸发或者挥发具有几个功能,能够促进或者提高活性化合物与催化剂的接触,促进活性化合物的催化反应或者活化。通过液体的挥发或者蒸发从雾化液滴除去液体的做法可以提高雾化液滴中活性化合物的浓度,
通过类似的方式,从雾化液滴除去液体的做法还可以增大所述雾化的含催化剂液滴中的催化剂浓度。在本发明的优选实施方式中,进行从含催化剂的液滴蒸发或挥发液体的操作,直至除去了足量的液体,使得催化剂从溶液沉淀出来,可以作为固体化合物(例如细分散的微粒固体)获得(用来与活性化合物接触)。
通过明智地选择温度,促进了从雾化液滴挥发或蒸发液体的过程,该挥发或者蒸发优选在至少约100°F的温度进行。当载体液体为水性液体或者仅仅是水的时候,从雾化液滴蒸发或挥发水的操作优选在至少约200°F的温度进行。较佳的是,所述从雾化液滴挥发或蒸发液体的操作在大约200-1000°F的温度进行。
需要注意的是,所述挥发或蒸发温度通常以将所述雾化液滴引入其中的气体环境或气流的温度衡量。假设用于形成液滴的载体液体出于室温,所述液滴的内部温度以及液滴内部(而非液滴表面)的活性化合物和/或催化剂的温度不一定与周围气体或者气流的温度相同,可以低得多。
会对用于本发明方法的挥发或蒸发温度造成影响的一个因素是从雾化液滴蒸发或者挥发液体所需的热量。用作液体载体(用于雾化液滴)的水性介质或者水在蒸发该液体时所需的温度通常高于所选液体载体为挥发性有机溶剂的情况。
本发明的一个值得注意特征在于,本发明能够在较低温度下实施包括活性化合物和催化剂的高效催化反应。本发明的方法促进了活性化合物和催化剂之间的高效接触,能够促进包括所述活性化合物的迅速催化反应或者活化。所述雾化活性化合物和催化剂之间的接触可以在较低的温度下进行,甚至可以在常温下(约50-70°F)进行,当然这要取决于所使用的活性化合物的种类。
但是,为了使得载体液体从雾化液滴挥发或者蒸发、从而促进活性化合物和催化剂之间的有效接触所需的加热通常必须满足温度至少约为100°F的气体环境。较佳的是,所述气体环境或气流的温度至少约为200°F,更优选至少约为300°F,以便促进从雾化液滴有效地蒸发或者挥发液体,促进活性化合物的催化反应或者活化。
任选的固体催化剂颗粒的形成
在本发明的一个优选的实施方式中,所述从雾化的含催化剂液滴挥发或者蒸发载体液体的过程足以形成固相的催化剂,通过从含催化剂的液滴除去足够的液体,得到细分散微粒固体形式的催化剂。在本发明的这个优选实施方式中,在于活性化合物接触的过程中,所述催化剂时微粒状催化剂固体的形式,以促进活性化合物的催化反应或者活化。
通过从含催化剂的液滴挥发或者蒸发载体液体制得的微粒催化剂优选是细分散形式的微粒固体,最优选是极细尺寸的颗粒。所述催化剂应具有较小的粒度,以最大程度增大表面积-体积比,即从而提高活性化合物和微粒催化剂固体之间的气体(催化剂)固体或者液体(催化剂)固体相互作用的效果。
本发明的雾化过程促进了细小尺寸催化剂微粒的形成,这是因为雾化的含催化剂喷雾液滴本身是细小尺寸的,当液体从所述细小尺寸的液滴挥发的时候,所得微粒固体的尺寸极小。
通过所述含催化剂液体的挥发或者蒸发形成的催化剂固体的平均粒度通常远小于约100微米。所述催化剂固体的平均粒度优选约小于50微米,更优选约小于20微米,最优选约小于10微米。另外,对于更优选的平均粒度为20微米的颗粒,通常全部的(等于或大于90体积%)颗粒的粒度优选约小于30微米。对于具有最优选的10微米的平均粒度的颗粒,基本上全部的(等于或大于90体积%)颗粒的粒度优选约小于20微米。
使得如上文所述得到的微粒催化剂与活性化合物接触,以促进活性化合物的催化反应或者活化。所述催化反应通常是非均相催化,在此反应中,微粒固体形式的催化剂与活性化合物接触。
反应/活化接触时间
在本发明中,所述催化剂和活性化合物之间的接触可以以很多种方式进行,以完成活性化合物的催化反应或者活化。所述催化剂可以如上文所述为微粒(固相)形式,或者可以作为包含在液体载体中的催化剂的形式存在。类似的,所述活性化合物可以在其包含在雾化液滴中的情况下(通常为浓缩形式(已经通过挥发或者蒸发从含活性化合物的液滴除去液体))或者存在于气态或蒸气态的条件下与催化剂接触。
所述化合物和催化剂之间的接触进行一段足够的时间,所述时间足以促进或者允许催化反应或者活化发生。所述接触时间可以从小于1秒(几分之一秒)至数秒(约1-60秒),但是可以最多为数分钟(例如从超过1分钟至约为10分钟),这取决于具体使用的活性化合物和催化剂,以及他们究竟是固态、液态或气态。对于过氧化氢,所述活化反应通常非常快,约为几分之一秒至最高达数秒。
过氧化氢的活化
过氧化氢的催化活化是本发明特别优选的实施方式,以下的讨论描述了本发明方法的该具体应用。
过氧化氢的活化–化学反应
本发明涉及过氧化氢的催化活化,通过活化形成自由基,这些自由基具有很高的活性,是已知最强的氧化剂之一。本发明的过氧化氢的催化活性包括使得过氧化氢解离或者电离形成自由基,包括氢氧自由基(OH·)和氢过氧自由基(也称为过氢)(OOH·)。我们认为示例性的活化反应是通过过氧化氢分子中的O–H键或者O–O键的裂解发生的,如下式所示:
H2O2→2OH·(2)
H2O2→OOH·+H·(3)
其它的涉及过氧化氢的反应包括其分解反应,但是过氧化氢本身的分解反应并不是本发明活化方法的目的。过氧化氢的分解会导致产生分解产物氧气和水,总反应在上文已经描述,如下文所示:
H2O2→H2O+1/2O2↑(1)
分解反应的准确机理尚未完全理解,但是认为包括自由基例如OH·和OOH·(OH和OOH)的形成。
所述导致形成氢氧自由基的过氧化氢的活化是高温下(例如在高于大约750°F的温度下)的主要分解机理。在较低的温度下,例如在约低于750°F的温度下,过氧化氢容易分解形成水和氧气,例如如反应式(1)所示分解,因此利用氢氧自由基的氧化效率降低。
如上文所述,本发明的过氧化氢活化方法的焦点在于,通过雾化液滴中的过氧化氢浓水溶液与合适的催化剂的接触,直接催化形成自由基。与现有技术通常采用的方法相比,本发明的的活化方法特别适合用来在较低温度下(例如约低于750°F的温度下)提高氢氧自由基的形成,从而提高了过氧化氢的氧化能力。
过氧化氢浓度
用于本发明优选实施方式的过氧化氢是过氧化氢的水溶液,其浓度可以在很宽的范围内变化,但是所述过氧化氢水溶液中的H2O2含量优选较浓。
用于本发明的过氧化氢水溶液应当包含至少约10重量%的H2O2,优选至少约15重量%的H2O2,更优选包含至少约20重量%的H2O2,最优选包含至少约35重量%的H2O2。在此浓度范围内的适合用于本发明的过氧化氢水溶液可以容易地以稳定的H2O2溶液的形式从供应商处购得。
可以将高浓度过氧化氢水溶液(显著高于50重量%H2O2)用于本发明,但是浓度约高于50重量%的H2O2浓水溶液需要严格的加工和安全标准,因此优选使用包含不大于大约50重量%H2O2的浓的过氧化氢水溶液。
用于本发明的过氧化氢水溶液的浓度应当约为10重量%H2O2至70重量%H2O2,优选浓度应当约为20重量%H2O2至50重量%H2O2
过氧化氢活化催化剂
在本发明方法中过氧化氢的活化包括使得过氧化氢的雾化液滴与活化催化剂接触。通过在混和液滴喷雾中对含催化剂的液滴进行同时雾化,使得催化剂与雾化的含过氧化氢液滴接触,从而促进过氧化氢和催化剂之间的接触。
或者,通过同时喷雾和雾化产生的两种液体,即过氧化氢水溶液和含催化剂的液体互相混和,从而将催化剂引入雾化的含过氧化氢的液滴之中,从而提供同时包含过氧化氢和催化剂的液滴的液滴喷雾,由此促进过氧化氢和催化剂之间的接触。
所述活化催化剂优选是可溶性化合物,特别是完全可溶于优选的液滴载体(水或水性溶剂)中的催化剂。最优选的可溶性催化剂是完全可溶于水并得到较浓的水溶液的催化剂。
所述包含溶剂的活性催化剂的水溶液优选包含至少5重量%的催化剂,优选包含至少10重量%的催化剂,更优选包含至少20重量%的催化剂,最优选包含至少30重量%的催化剂。浓度上限通常由活化化合物的最大溶解度限定,不同的化合物可以具有不同的所述浓度限制,因此溶解度浓度限制可以低于上述优选的最小浓度。
在本发明的另一个方面,对包含以下物质(i)或(ii)的液滴喷雾施加能够促进液体从雾化液滴蒸发或者挥发的条件,以促进过氧化氢和催化剂之间的接触:(i)过氧化氢水溶液的液滴和含催化剂的液滴,或者(ii)独立的同时包含过氧化氢和催化剂的液滴。
通过使用水性液体载体并且对雾化的液滴施加升高的温度条件,例如约高于200°F的条件,从而促进了本发明的这个方面。通过从水性液滴蒸发水,进一步使得含H2O2的水性液滴中的过氧化氢浓缩,同样使得溶解的催化剂浓缩。
在本发明的一个优选的实施方式中,通过蒸发含催化剂的液滴,将活化催化剂转化为微粒状固体的形式(在所述过氧化氢水溶液和催化剂水溶液雾化之后,所述过氧化氢与活化催化剂接触的时候),优选的催化剂颗粒具有较小的粒度,使得催化剂具有较大的表面积/体积比,这有助于使得与微粒状活化催化剂接触的过氧化氢活化。
在一个优选的实施方式中,从含催化剂的水性液滴蒸发水的操作优选足以制得催化剂颗粒形式的固相催化剂。
在本发明方法中过氧化氢的活化是通过使过氧化氢与活化催化剂接触来进行的。虽然不希望限定于任何理论或者作用机理,本发明人认为,当气态或者蒸气态的H2O2在包夹在与同样包夹在用来使过氧化氢活化的气流中的微粒固体形式的活化催化剂接触是最有效的。出于这些原因,优选由高浓度过氧化氢水溶液形成的雾化液滴,这是因为在此情况下,H2O2更容易扩散到液滴的表面并且蒸发,所需蒸发的量更少,如果不采用高浓度过氧化氢水溶液,则需要从雾化的液滴除去水以进一步浓缩H2O2
与过氧化氢接触的过氧化氢催化剂可以很容易地使得过氧化氢活化,特别是在约高于200°F的温度下。所述过氧化氢催化剂优选在温度约为200°F至850°F,更优选约为200°F至650°F的气体环境中,与过氧化氢液滴接触。
用于本发明的过氧化氢活化催化剂可以选自已知能够对过氧化氢表现出催化活性的各种催化化合物,包括金属和金属离子。例如参见Kirk-Othmer化学技术百科全书(EncyclopediaofChemicalTechnology),"过氧化氢(HydrogenPeroxide),"Wiley,第13卷(2001),第4.2章和Ullmann的工业化学百科全书(EncyclopediaofIndustrialChemistry),"过氧化氢(HydrogenPeroxide),"Wiley-VCH,(2005),第3章。
用于本发明的过氧化氢活化催化剂优选是能够完全溶解于溶剂的催化剂,优选的溶剂是水性介质,最优选是水。所述微粒状催化剂通过以下方式制备:将合适的催化剂溶解在优选的水性介质中,然后形成溶解在水性溶剂中的催化剂的雾化液滴。在一个优选的实施方式中,随后对所述雾化的含催化剂的液滴进行蒸发,从液滴中除去足量的水,以提供或者制得微粒形式的固相催化剂。
所述过氧化氢活化催化剂可以包括已知的过氧化氢活化催化剂,优选是可溶解的活化催化剂,优选可溶于水性介质。优选可溶于水的活化催化剂,因此水或者其它的水溶液可以用作溶剂。特别优选能够完全溶解在水或者其他水性溶剂中,从而制得较浓的溶液的活化催化剂。还可以使用过氧化氢活化催化剂的组合,因为一些组合能够提供改进的催化活性。
适合用来在本发明中对过氧化氢进行活化的催化剂包括碱金属和碱土金属的含氧氯酸盐,例如氯酸钠(NaClO3),氯酸锂(LiClO3),氯酸镁(Mg(ClO3)2),高氯酸钠(NaClO4),亚氯酸钠(NaClO2)等。可以用作催化剂的其他水溶性盐包括高锰酸钾(KMnO4),过氧基单硫酸钾(2KHSO5·KHSO4·K2SO4),钠的溴酸盐(NaBrO3)或者钾的溴酸盐(KBrO3),以及其他类似的化合物。
本发明优选用来使过氧化氢活化的催化剂是水溶性氯酸盐和亚氯酸盐,优选的水溶性盐是钠盐和钾盐。在本发明的方法中,氯酸钠(NaClO3)特别优选作为过氧化氢的催化活化剂。这些过氧化氢催化剂盐的优点是能够提供所需的催化活化活性,不会在用活化的过氧化氢处理的环境中引入不利的金属物质。另外,包含这些可溶性催化剂的雾化的水性液滴可以进行蒸发,以得到具有非常小的粒度的微粒状催化剂固体,这些微粒状催化剂固体可以在本发明的方法中非常高效地作为过氧化氢的活化剂。
其它的活化催化剂包括氧化物和氢氧化物之类的化合物,例如以下元素的氧化物和氢氧化物:铁(例如Fe2O3),铜,锰,镁,钯,铂,镍,银(例如AgO)等,以及催化性金属或金属离子,例如铁、铜、锰、镁、铬、镍、银和这些金属的螯合物。但是,这些金属催化剂中的一些可能会在用活化的过氧化氢处理的环境中引入不利的物质,因此不优选将其作为活化剂。
选自这些金属和金属盐的优选的过氧化氢活化催化剂包括铁(特别是Fe+2)盐,其比其它的重金属或贵金属可溶性盐更廉价。应当注意的是,独立于本发明,包含Fe+2和过氧化氢的水溶液是公知的芬顿试剂(Fenton'sreagent),该试剂在二十世纪九十年代开发,经常作为氧化剂用来处理废水流中的有机污染物。
合适的过氧化氢催化剂还可以包括在细分散微粒形式状态下具有所需的与过氧化氢的催化活性的化合物或者金属。这些固体微粒催化剂化合物或者金属可以悬浮在水性介质中,将该水性悬浮液形成液滴,通过蒸发从液滴除去水,得到微粒状固体催化剂。该方法的一个限制在于,悬浮的催化剂的颗粒尺寸必须在上文所述用来与过氧化氢接触的固体微粒催化剂优选粒度范围之内。
所述过氧化氢活化催化剂是非常有效的,其用量可以相对小于进行活化的过氧化氢。所述过氧化氢活化催化剂的用量优选小于1摩尔催化剂/摩尔过氧化氢。对于优选的碱金属可溶性催化剂盐,例如氯酸钠和氯酸钾,催化剂的用量可以约为0.1-0.5摩尔催化剂化合物/摩尔过氧化氢。
虽然以上描述了过氧化氢催化剂的优选用量,但是与进行活化的过氧化氢的量相比,氯酸钠催化剂可以以较低的量使用。通过本发明的活化方法,当氯酸钠用量小于0.1摩尔/摩尔过氧化氢的时候,能够提供改进的由过氧化氢形成的氢氧自由基。
活化温度
本发明方法的独特之处在于,与在升高的温度下进行过氧化氢活化的现有技术相比,本发明的过氧化氢的活化可以在较低的温度下进行。本发明的活化方法能够在较低的温度下有效地实现过氧化氢的活化。
在本发明活化方法的优选实施方式中,在至少约200°F,更优选至少约300°F的温度下,使得雾化的过氧化氢与活化催化剂接触,以促进过氧化氢的活化。可以用于通过雾化过氧化氢水溶液与活化剂催化剂接触从而将过氧化氢活化的温度范围很宽,例如约为200°F至1000°F。在本发明的方法中,用来对过氧化氢进行活化的优选范围约为200°F至850°F,更优选约为200°F至650°F。
本发明的过氧化氢活化方法避免了用催化剂活化过氧化氢水溶液时的一个难题,即因为催化活化会很快地进行,因此通常无法在需要活化过氧化氢之前的时间或者位置将催化剂结合入过氧化氢水溶液中。
本发明的低温活化方法的一个特别的优点在于,过氧化氢可以很容易地雾化加入待处理的气流中,而不需要特别的冷却处理来避免浓过氧化氢水溶液在雾化喷嘴或者对该喷嘴进行供应的相关管道网络中过早分解。
本发明的活化方法的另一个优点在于,所述过氧化氢在高温下(例如约高于650°F)活化,能够非常有效地形成活性氢氧自由基。由于能够在此高温下高效地进行过氧化氢的催化活化,使得过氧化氢的用量小于在此高温下非催化形成氢氧自由基时原本需要的用量,用来与需要进行氧化的具体污染物或者其他化学物质反应。
活化的过氧化氢的应用–烟道气流处理
本发明方法中的活化步骤是通过以下方式,在催化条件下进行的:在雾化的液滴喷雾中使得雾化的过氧化氢浓水溶液与过氧化氢催化剂接触,通过形成自由基使得过氧化氢活化。所述活化的过氧化氢可以用于很多种目的,特别是用来与其它的物质发生氧化反应。
本发明的过氧化氢活化可以非常有效地用来对气流中的污染物进行处理,以除去这些污染物,这些污染物包括气流(例如燃烧气烟道气流)中的氮氧化物(NOX)和汞,这些物质最终将被释放到大气中。除了燃烧器烟道气流以外的其他气流,例如垃圾焚烧产生的气流也适合用于通过本发明方法进行处理。类似的,替代燃料、如生物固体(例如污水污泥或其他废水残余固体)产生的气流中的污染物也可以通过本发明的方法进行处理。
从固定源的燃烧区排出的燃烧烟道气流包含需要在排放到大气中之前减少或除去的各种组分,其中包括根据本发明一个实施方式进行处理的NOX组分(特别是NO)和汞组分。所述燃烧烟道气的准确组成主要取决于燃料的性质(例如煤炭(高/低硫,生煤/无烟煤),油,焦炭或天然气等)以及加热炉和锅炉涉及和操作参数。
包含2.5重量%硫的高硫煤使用10%过量空气燃烧获得的代表性烟道气流的组成列于表1。
表1–烟道气的组成
以上所述的烟道气组成仅仅是常规燃烧烟道气流的示例。本发明的活化过氧化氢是多用途的,可以用来对很多不同烟道气组合物中包含的气态和微粒状(固态和液态)污染物进行处理。本发明的活化过氧化氢特别适合用于对排气污染控制系统中的烟道气污染物进行改进或者补充处理。但是,本领域技术人员能够理解,除了烟道气处理之外,本发明还可以用于其它的终端用途,该方法提供了过氧化氢的低温催化,改进了氧化性质。
本发明的活化过氧化氢可以特别有效地用来除去两种不利的烟道气流组分,即NOX和Hg,然后将烟道气释放入大气中。可以通过使用根据本发明活化的过氧化氢显著减小NOX和Hg的浓度,而不需要像现有技术那样利用高温进行过氧化氢的活化。本发明促进了使用现有的烟道气污染控制设备有效地除去这些有害污染物,可以使用根据本发明活化的过氧化氢在较低的处理温度下对烟道气进行处理。
另外,本发明可以用来减小通过选择性催化还原(SCR)或者选择性非催化还原(SNCR)系统中用注入的氨气进行NOX控制而处理过的烟道气中残留的未反应的氨气(NH3)浓度。通常,在SNCR处理过的烟道气流中残余氨气浓度可以约为5-20ppm(以体积计),在SCR处理过的烟道气流中可以约为5-10ppm(以体积计)。
本发明的过氧化氢活化方法提供了活化的过氧化氢,其与燃烧烟道气流中的其他污染物(例如三氧化硫(SO3)或二氧化硫(SO2)和其他酸性气体)也具有高活性,但是主要关注的目标污染物是上文所述的那些。
所述过氧化氢活化方法还可以用来提供可以用于处理燃烧烟道气流中作为污染物、燃烧副产物或者反应副产物包含的有机化合物的活化的过氧化氢。这些有机化合物包括丙烷、作为燃料源的有机化合物,以及不完全燃烧的副产物,例如苯酚、苯和其它的芳族化合物等。
处理温度和停留时间
可以根据烟道气温度和需要处理的包含的污染物,通过选择合适的处理点来实施所述过氧化氢活化方法。所述过氧化氢的活化优选在大约200°F至850°F,更优选大约200°F至650°F的烟道气流温度下进行。
活化的过氧化氢与含污染物的烟道气流接触所需的停留时间通常是非常短的,这是因为过氧化氢在极短时间内活化。通常从几分之一秒至大约2到3秒的停留时间便已足够。
用于反应的活化过氧化氢的量
引入烟道气流并且与烟道气流接触的过氧化氢的量优选能够相对于烟道气流中希望除去的污染物质(例如NO和/或Hg)含量至少为化学计量量。认为过氧化氢与NO和Hg的反应是通过以下反应式进行的:
H2O2+NO→NO2+H2O(4)
H2O2+Hg→HgO+H2O(5)
需要注意,在本说明书中,过氧化氢的用量是以需要除去的污染物的量为基准计的:如果烟道气流包含100ppm的NO,需要除去50%的NO,则烧过的过氧化氢的用量是基于除去50ppm(即100ppm的50%)NO所需的化学计量比量。
所述过氧化氢的用量可以小于化学计量比量,例如以需要从烟道气流中除去的目标物质(例如NO、Hg或其他物质)的量为基准计,过氧化氢(H2O2)的用量约为化学计量比量的一半,但是优选至少提供化学计量比量,更优选至少约为化学计量比量的两倍。以需要从烟道气流除去的目标物质的量为基准计,用来与目标物质接触的过氧化氢的量可以是化学计量显著过量的,最高约为化学计量用量的十倍。
使用活化过氧化氢对烟道气流进行处理的注入位点
本发明对固定燃烧烟道气流处理中用于过氧化氢的引入和活化的烟道气流位点选择提供了灵活性。因为本发明的过氧化氢活化法不需要通过高温(例如>800-900°F)进行活化,因此可以在很多下游位置(在这些位置处,烟道气已经进行过冷却或者进行过热回收操作)从烟道气流高效地除去烟道气污染物。
用于根据本发明进行过氧化氢活化的注入来自发电厂的烟道气流的注入或者引入位点包括例如SCR(选择性催化还原)或者SNCR(选择性非催化还原)处理单元操作的下游,预热器热交换装置的上游(热侧)或者下游(冷侧),其他防污染处理单元操作(固体收集装置,脱硫步骤等)之前或之后。
在过氧化氢的活化及其与烟道气流中的污染物反应过程中,通过气流中夹带或者悬浮的微粒状活化催化剂促进过氧化氢和微粒状催化剂在烟道气流中的接触,所述夹带的催化剂可以很容易地俘获在固体收集装置中,例如俘获在袋滤室过滤器或者静电沉积器中,由此使得通过所述固体收集装置的气流中的催化剂和过氧化氢连续接触。
根据以上说明,本领域技术人员能够认识到,可用于本发明方法的活性化合物不限于可以通过催化活化获益的过氧化氢和其它的过氧化合物,例如过乙酸。
适合用于本发明的活性化合物还可以包括其它的可以承载在可雾化呈细小尺寸液滴的喷雾的液体介质中的化合物,以及能够承载在可雾化呈细小尺寸液滴的喷雾中的液体介质中的任何合适的催化剂(用于对包括所述活性化合物的反应进行催化或者活化)。所述雾化的含催化剂的液滴必须能够很容易地进行载体液体的蒸发或者挥发,以得到细分散的微粒状催化剂,所述细分散的微粒状催化剂能够与活性化合物接触,以促进包括活性化合物的催化反应。
下述非限制性的实施例说明了本发明的优选实施方式。
实施例
实施例说明了本发明的优选实施方式的应用,该实施方式使用活化的过氧化氢,从煤炭燃烧产生的烟道气流中除去NOX
在用过氧化氢对烟道气进行处理之前,所述燃烧烟道气流包含大约205-245ppm(体积)的NO。通过在用静电沉积器进行固体收集之前,在空气预热器的冷侧、处理点的下游处分析烟道气流中的NO和NOX的浓度(同时包含NO和NO2的NOX),从而测得NO的转化率。
使用的过氧化氢是50重量%的H2O2水溶液。使用的催化剂是氯酸钠(NaClO3),使用的NaClO3为35重量%的NaClO3水溶液。所述过氧化氢和氯酸钠水溶液以雾化喷雾的形式引入烟道气流中,所述喷嘴安装在烟道气管网中。
所述喷嘴包括用于传输过氧化氢水溶液和(如果有的话)用来传输氯酸钠水溶液的独立的液体通道,使用空气作为雾化气体。所述喷嘴的设计用来在喷嘴室尖端处、在即将雾化之前进行过氧化氢水溶液和氯酸钠(催化剂)水溶液的紧密混和,使得雾化的单独的水性液滴类似地同时包含过氧化氢和氯酸钠。
下面来看附图,图1显示了两个研究结果,第一个研究单独使用过氧化氢对含NO的燃烧烟道气进行处理,第二个研究使用由氯酸钠活化的过氧化氢对含NO的燃烧烟道气进行处理。图1显示在单独使用H2O2的情况下(用于进行比较)或者用NaClO3催化剂活化的H2O2的情况下,NO转化率百分数随不同的H2O2:NO摩尔比的变化关系。
在图1的研究中,在通过喷嘴雾化将过氧化氢引入含NO的烟道气中的位置,烟道气流的温度约为850°F。停留时间(过氧化氢与含NO烟道气流的接触时间)保持恒定约为1.4秒。氯酸钠催化剂的用量,相对于烟道气流中NO的用量,保持恒定(虽然过氧化氢的用量在变化),保持在大约0.3摩尔NaClO3/摩尔NO。
如图1的数据所示,单独使用过氧化氢的结果(每摩尔No对应于0.82,1.25,1.96和2.32摩尔H2O2),这说明随着摩尔比的增大,NO的转化率百分数逐渐增大。但是,除了最高的H2O2:NO摩尔比为2.32的时候获得小于20%的转化率以外,其它的情况均获得小于10%的较低的NO转化率。
图1的数据表明,当使得水性液滴的雾化与过氧化氢水溶液的雾化同时进行,使用氯酸钠对过氧化氢进行催化活化的时候,NO转化率显著提高。图1的结果表明,在所采用的三种H2O2:NO摩尔比条件下(每摩尔NO分别对应于0.86,1.19和2.12摩尔催化剂活化的H2O2),NO转化率为~33%至~48%。
在图2所示的另一个研究中,在对含NO的燃烧烟道气进行处理的时候,再次使用氯酸钠活化的过氧化氢进行的NO转化率研究中,烟道气流的温度发生变化。图2显示了该研究的结果,显示了在三种烟道气温度(~750°F;~800°F;和~850°F,最后一种温度在图1的研究中采用)下,NO转化率随着三种H2O2:NO摩尔比的变化关系。
这三种温度下的NO转化率都很好,从大约28%(在~750°F的最低温度下获得)到大约49%(在~850°F的最高温度获得)。如图2的数据点获得,可以测得随着烟道气温度(活化温度)和H2O2:NO摩尔比增大,NO转化率获得改进。
该实施例报道的研究以及列于图1和图2的结果证明了在相同条件下,与单单使用过氧化氢而不使用催化活化的情况相比,使用催化活化的过氧化氢可以获得显著的活性改进(用该实施例中的NO转化率测定)。
本领域的普通技术人员要理解,在不偏离本发明的概括的原理的情况下可以对上述实施方式进行变化。因此,要理解,本发明并不限于所揭示的具体实施方式,而且覆盖所附权利要求书所限定的本发明精神和范围之内的修改。

Claims (18)

1.一种用来对活性化合物进行催化的方法,该方法包括
同时将以下两种组分(i)和(ii)以独立的液体流雾化成液滴的喷雾:(i)包含在第一液体中的浓缩形式的活性化合物,以及(ii)包含在第二液体中的催化剂,所述催化剂能够催化包括所述活性化合物的反应,所述浓缩形式的化合物包含至少10%重量的过氧化氢H2O2,所述催化剂包含氯酸钠(NaClO3);以及
使得所述液体从所述雾化的液滴挥发,以促进活性化合物与催化剂的接触,增进所述活性化合物的催化反应。
2.一种活化过氧化氢的方法,该方法包括使得气流中的至少10%重量的过氧化氢浓水溶液的雾化液滴与在所述气流中夹带的包含氯酸钠(NaClO3)的微粒状过氧化氢催化剂接触一段足以使得过氧化氢活化的时间。
3.一种使得过氧化氢活化的方法,该方法包括
同时使得以下组分(i)和(ii)以独立的液体流雾化成水性液滴的喷雾:(i)至少10%重量的过氧化氢的浓水溶液,以及(ii)包含在水性液体中的包含氯酸钠(NaClO3)的过氧化氢活化催化剂;和
从所述雾化的液滴蒸发水,以促进所述过氧化氢与活化催化剂的接触,使得所述过氧化氢被活化。
4.一种使得过氧化氢活化的方法,该方法包括
同时使得以下组分(i)和(ii)以独立的液体流雾化成液滴的喷雾:(i)至少10%重量的过氧化氢的浓水溶液,以及(ii)溶解在水性液体中的包含氯酸钠(NaClO3)的过氧化氢活化催化剂,所述雾化通过以下方式进行
使用具有以下特性的喷嘴:该喷嘴包括用于所述过氧化氢水溶液流和用于所述活化催化剂流的独立的液体通道,还包括用于雾化气流的至少一条流体化气体通道,该雾化气流用来使得所述液体流雾化;
从所述雾化的液滴蒸发水,以促进所述过氧化氢水溶液与活化催化剂的接触,使得所述过氧化氢被活化。
5.一种用来对气流中的污染物进行处理的方法,该方法包括
同时使得以下组分(i)和(ii)以独立的液体流雾化成水性液滴的喷雾:(i)至少10%重量的过氧化氢的浓水溶液,以及(ii)包含在水性液体中的包含氯酸钠(NaClO3)的过氧化氢活化催化剂;和
将所述液滴喷雾引入包含污染物的气体物流中;
从所述液滴蒸发水,以促进所述过氧化氢与活化催化剂的接触,使得所述过氧化氢被活化;
提供在气体物流中足够的停留时间,使得所述活化的过氧化氢与所述气体物流中的一种或多种污染物反应。
6.如权利要求5所述的方法,其特征在于,所述形成过氧化氢水溶液和活化催化剂的液滴雾化喷雾的操作是使用具有以下特性的喷嘴进行的:在所述喷嘴中,通过喷嘴内的至少一条气体通道引入的雾化气体是空气,所述喷嘴具有用来对所述两种液体物流进行雾化的独立的液体通道。
7.如权利要求5所述的方法,其特征在于,所述过氧化氢浓水溶液的浓度至少为15重量%H2O2
8.如权利要求1-5中任一项所述的方法,其特征在于,所述雾化的液滴的平均直径小于100μm。
9.如权利要求1-5中任一项所述的方法,其特征在于,所述雾化的液滴的平均直径小于60μm。
10.如权利要求5所述的方法,该方法还包括使得足够的水从包含所述活化催化剂的雾化液滴蒸发,制得微粒形式的催化剂,以促进过氧化氢与催化剂的接触,从而进行过氧化氢的催化活化。
11.如权利要求10所述的方法,其特征在于,所述微粒状催化剂的平均粒度小于50μm。
12.如权利要求10所述的方法,其特征在于,所述微粒状催化剂的平均粒度小于20μm。
13.如权利要求3-5中的任一项所述的方法,其特征在于,所述从雾化的液滴蒸发水的操作在200°F至1000°F的温度下进行。
14.如权利要求5所述的方法,其特征在于,在烟道气流温度为200°F至850°F之处,将所述雾化的液滴喷雾引入所述烟道气流。
15.如权利要求5所述的方法,其特征在于,所述用活化的过氧化氢处理的污染物选自NOX,Hg,SOX,NH3和有机化合物。
16.如权利要求5所述的方法,其特征在于,所述气流中的污染物是气态污染物。
17.如权利要求5所述的方法,其特征在于,所述气流是固定源燃烧烟道气流。
18.如权利要求5所述的方法,其特征在于,所述气流是垃圾焚烧气流。
CN201080043018.XA 2009-08-03 2010-07-29 用催化剂对活性化合物进行活化 Expired - Fee Related CN102741157B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AU2009903603 2009-08-03
AU2009903603A AU2009903603A0 (en) 2009-08-03 Enhancing the Formation of Hydroxyl Radicals from Hydrogen-peroxide to Remove Pollutants from Exhaust Gasses
US26245709P 2009-11-18 2009-11-18
US61/262,457 2009-11-18
PCT/US2010/043733 WO2011017194A2 (en) 2009-08-03 2010-07-29 Activation of reactive compound with catalyst

Publications (2)

Publication Number Publication Date
CN102741157A CN102741157A (zh) 2012-10-17
CN102741157B true CN102741157B (zh) 2016-01-20

Family

ID=43544884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080043018.XA Expired - Fee Related CN102741157B (zh) 2009-08-03 2010-07-29 用催化剂对活性化合物进行活化

Country Status (7)

Country Link
US (1) US8486366B2 (zh)
EP (1) EP2462056B1 (zh)
CN (1) CN102741157B (zh)
AU (1) AU2010279703A1 (zh)
CA (1) CA2769641C (zh)
ES (1) ES2611135T3 (zh)
WO (1) WO2011017194A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343111B2 (en) 2014-11-13 2019-07-09 Spartan Energy Services LLC Desulfurization of flue gas from an amine process
BR112018003029B1 (pt) 2015-08-21 2022-11-16 Ecolab Usa Inc Método para reduzir emissões de mercúrio
CR20180167A (es) 2015-08-21 2018-06-14 Ecolab Usa Inc Complejación y eliminación del mercurio de sistemas de desulfuración de gas de combustión
WO2017035003A1 (en) * 2015-08-21 2017-03-02 Ecolab Usa Inc. Complexation and removal of mercury from flue gas desulfurization systems
MX2019004547A (es) 2016-10-18 2019-12-09 Peroxychem Llc Tratamiento de suelos.
AU2017362060A1 (en) * 2016-11-15 2019-05-30 8 Rivers Capital, Llc Removal of impurities from a process stream by contacting it with an oxidant and with an aqueous stream
WO2018232275A2 (en) 2017-06-15 2018-12-20 Peroxychem Llc Antimicrobial treatment of animal carcasses and food products
WO2019010163A1 (en) 2017-07-06 2019-01-10 Ecolab USA, Inc. IMPROVED INJECTION OF MERCURY OXIDANTS
MX2020005043A (es) 2017-11-20 2020-08-20 Evonik Operations Gmbh Metodo de desinfeccion para agua y aguas residuales.
US11414329B2 (en) 2018-02-14 2022-08-16 Evonik Operations Gmbh Treatment of cyanotoxin-containing water
CN112384067A (zh) 2018-05-31 2021-02-19 佩诺凯姆有限责任公司 杀孢子方法及组合物
CN110813295B (zh) * 2018-08-13 2023-04-11 中国石油化工股份有限公司 浆态床加氢催化剂的制备方法及应用
CN109590000A (zh) * 2019-01-23 2019-04-09 中国科学院过程工程研究所 一种用于催化双氧水氧化no的催化剂及其制备方法
US11548800B2 (en) * 2019-04-26 2023-01-10 Geyser Remediation LLC Water purification apparatus and method
CN111099899B (zh) * 2019-12-31 2022-03-22 巩义市大润昌耐火材料有限公司 一种废旧镁碳砖再生颗粒的处理工艺
CN112705027B (zh) * 2020-12-10 2023-03-14 杭州电子科技大学 基于先雾化后冷却的异相芬顿反应脱硝装置及方法
CN112707791B (zh) * 2021-01-28 2023-06-06 长沙兴和新材料有限公司 一种环己基过氧化氢生产环己醇和环己酮混合物的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107895A (zh) * 1983-03-18 1988-06-01 戴尔·戈登·琼斯 从燃烧气体排除氮和硫的氧化物之方法和装置
CN1221865A (zh) * 1997-12-30 1999-07-07 台典污染防治股份有限公司 兼具有除尘脱硫脱硝功用的烟囱
CN1462207A (zh) * 2000-07-24 2003-12-17 肖恩·阿兰·斯图尔特 一种用于净化和清洁气流或气体的方法和系统
CN1593731A (zh) * 2004-06-29 2005-03-16 陶国龙 酸性溶液喷雾干法烟气脱硫及调质强化方法
CN1669623A (zh) * 2004-03-18 2005-09-21 中国科学院广州能源研究所 烟气中微量氯芳烃类污染物的净化方法和装置
CN1950139A (zh) * 2004-05-11 2007-04-18 国家航空和宇宙航行局 利用过氧化氢减少SOx、NOx和重金属排放的方法和设备
CN101107476A (zh) * 2004-10-01 2008-01-16 Lgr有限责任公司 催化剂输送系统
US7550123B2 (en) * 2000-03-03 2009-06-23 Steen Research, Llc Method and apparatus for use of reacted hydrogen peroxide compounds in industrial process waters

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2332181A (en) 1941-07-15 1943-10-19 Mathieson Alkali Works Inc Manufacture of chlorine dioxide
FR2239279B1 (zh) 1973-07-30 1979-02-23 Ugine Kuhlmann
US4574076A (en) 1976-11-04 1986-03-04 Fmc Corporation Removal of hydrogen sulfide from geothermal steam
JPS5372773A (en) 1976-12-10 1978-06-28 Hitachi Ltd Direct reductive denitration method of ammonia
US4783325A (en) 1985-05-14 1988-11-08 Jones Dale G Process and apparatus for removing oxides of nitrogen and sulfur from combustion gases
DE3610061A1 (de) 1986-03-25 1987-10-01 Peroxid Chemie Gmbh Verfahren zur aktivierung von wasserstoffperoxid auf elektrochemischem wege
DE59203681D1 (de) 1991-11-02 1995-10-19 Degussa Verfahren zur oxidativen Reinigung von Stickoxide enthaltenden Abgasen.
US5670122A (en) 1994-09-23 1997-09-23 Energy And Environmental Research Corporation Methods for removing air pollutants from combustion flue gas
US5637282A (en) 1996-04-09 1997-06-10 Seh America, Inc. Nitrogen oxide scrubbing with alkaline peroxide solution
USH1948H1 (en) 1998-03-20 2001-03-06 The United States Of America As Represented By The Secretary Of The Navy High-activity catalyst for hydrogen peroxide decomposition
DE19830946A1 (de) 1998-07-10 2000-01-13 Degussa Verfahren zur Herstellung von beschichteten Persauerstoffverbindungen
US6676912B1 (en) 1999-10-28 2004-01-13 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Method for removal of nitrogen oxides from stationary combustion sources
WO2001066230A2 (en) 2000-03-03 2001-09-13 Steen Research, Llc Method and apparatus for use of reacted hydrogen peroxide compounds in industrial process waters
US6969486B1 (en) 2001-02-07 2005-11-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for treating pollutants in a gas using hydrogen peroxide and UV light
US6793903B1 (en) 2001-03-08 2004-09-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High temperature decomposition of hydrogen peroxide
US20030031621A1 (en) 2001-05-29 2003-02-13 Alan Gravitt Process and apparatus for the generation of chlorine dioxide using a replenished foam system
US7628967B2 (en) 2002-10-01 2009-12-08 Airborne Industrial Minerals, Inc. Removal of Hg, NOx, and SOx with using oxidants and staged gas/liquid contact
US7257945B2 (en) * 2003-02-10 2007-08-21 U T Battelle, Llc Stripping ethanol from ethanol-blended fuels for use in NOx SCR
US7790128B2 (en) 2003-04-04 2010-09-07 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Hydrogen peroxide catalytic decomposition
US7156957B1 (en) 2003-05-15 2007-01-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration UV induced oxidation of nitric oxide
US7582271B2 (en) * 2004-05-11 2009-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Emission control system
US7514053B2 (en) 2005-04-21 2009-04-07 Envirosolv Energy Llc Method for removing sulfur dioxide, mercury, and nitrogen oxides from a gas stream
US8425866B2 (en) 2005-11-14 2013-04-23 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Control of emissions
US8409534B2 (en) 2007-03-28 2013-04-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Control of emissions
WO2009064453A1 (en) 2007-11-15 2009-05-22 S. C. Johnson & Son, Inc. Reduction of airborne malodors using hydrogen peroxide and a catalyst-coated media
CA2760777C (en) * 2009-05-15 2017-09-05 Fmc Corporation Combustion flue gas nox treatment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86107895A (zh) * 1983-03-18 1988-06-01 戴尔·戈登·琼斯 从燃烧气体排除氮和硫的氧化物之方法和装置
CN1221865A (zh) * 1997-12-30 1999-07-07 台典污染防治股份有限公司 兼具有除尘脱硫脱硝功用的烟囱
US7550123B2 (en) * 2000-03-03 2009-06-23 Steen Research, Llc Method and apparatus for use of reacted hydrogen peroxide compounds in industrial process waters
CN1462207A (zh) * 2000-07-24 2003-12-17 肖恩·阿兰·斯图尔特 一种用于净化和清洁气流或气体的方法和系统
CN1669623A (zh) * 2004-03-18 2005-09-21 中国科学院广州能源研究所 烟气中微量氯芳烃类污染物的净化方法和装置
CN1950139A (zh) * 2004-05-11 2007-04-18 国家航空和宇宙航行局 利用过氧化氢减少SOx、NOx和重金属排放的方法和设备
CN1593731A (zh) * 2004-06-29 2005-03-16 陶国龙 酸性溶液喷雾干法烟气脱硫及调质强化方法
CN101107476A (zh) * 2004-10-01 2008-01-16 Lgr有限责任公司 催化剂输送系统

Also Published As

Publication number Publication date
WO2011017194A2 (en) 2011-02-10
CA2769641A1 (en) 2011-02-10
EP2462056A2 (en) 2012-06-13
ES2611135T3 (es) 2017-05-05
CN102741157A (zh) 2012-10-17
US8486366B2 (en) 2013-07-16
US20120189520A1 (en) 2012-07-26
WO2011017194A3 (en) 2011-06-16
CA2769641C (en) 2019-11-26
EP2462056B1 (en) 2016-10-19
EP2462056A4 (en) 2014-01-01
AU2010279703A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
CN102741157B (zh) 用催化剂对活性化合物进行活化
US7754170B2 (en) Method for scavenging mercury
CA2760777C (en) Combustion flue gas nox treatment
CN102343212B (zh) 臭氧和过氧化氢协同氧化结合湿法吸收的脱硝工艺
US9114357B2 (en) Treatment of nitrogen oxides in flue gas streams
CN110944731A (zh) 以大气氧气为氧化试剂对烟气中的NOx/SOx进行的催化氧化
KR102232920B1 (ko) 배기가스 처리방법 및 배기가스 처리장치
CN114522520A (zh) 用于从烟道气流中去除污染物的方法
Jakubiak et al. Pilot-scale studies on NOx removal from flue gas via NO ozonation and absorption into NaOH solution
WO2021134927A1 (zh) 干法一体化烟气脱硫脱硝工艺
JP2015016434A (ja) 排ガス処理方法および排ガス処理装置
EP3043890A1 (en) Treatment of nitrogen oxides in flue gas streams
Kordylewski et al. Pilot plant studies on NO x removal via NO ozonation and absorption
Pfeffer et al. Combustion flue gas NO x treatment
PL234183B1 (pl) Sposób usuwania rtęci i tlenków azotu ze spalin powstających w elektrowniach węglowych
Pouralinazar et al. Controlling NOx emission from post-blast process gases

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160120

Termination date: 20210729