CN102738158A - 一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 - Google Patents
一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 Download PDFInfo
- Publication number
- CN102738158A CN102738158A CN201210244090XA CN201210244090A CN102738158A CN 102738158 A CN102738158 A CN 102738158A CN 201210244090X A CN201210244090X A CN 201210244090XA CN 201210244090 A CN201210244090 A CN 201210244090A CN 102738158 A CN102738158 A CN 102738158A
- Authority
- CN
- China
- Prior art keywords
- layer
- cvd
- vapor deposition
- chemical vapor
- utilize
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Bipolar Transistors (AREA)
Abstract
本发明公开了一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法,首先在Si衬底上,制备埋层、集电区、深槽隔离以及集电极接触区,在此基础上,利用自对准工艺,自对准生成SiGe基区和Poly-Si发射区,形成HBT器件;制备PMOS器件有源区层结构,在PMOS器件有源区上制备漏极和栅极,形成PMOS器件;制备NMOS器件有源区层结构,在NMOS器件有源区制备栅介质层和栅多晶,形成NMOS器件;光刻引线,构成CMOS导电沟道为22~45nm的应变Si BiCMOS集成器件及电路;本发明在制备过程中采用了自对准工艺,而且充分利用了张应变Si材料迁移率各向异性的特点,在600~800℃,制备出了性能增强的应变Si BiCMOS集成电路。
Description
技术领域
本发明属于半导体集成电路技术领域,尤其涉及一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法。
背景技术
1958年出现的集成电路是20世纪最具影响的发明之一。基于这项发明而诞生的微电子学已成为现有现代技术的基础,加速改变着人类社会的知识化、信息化进程,同时也改变了人类的思维方式。它不仅为人类提供了强有力的改造自然的工具,而且还开拓了一个广阔的发展空间。
在信息技术高度发展的当代,以集成电路为代表的微电子技术是信息技术的关键。集成电路作为人类历史上发展最快、影响最大、应用最广泛的技术,其已成为衡量一个国家科学技术水平、综合国力和国防力量的重要标志。对于整机系统中集成电路的数量更是其系统先进性的直接表征。而现在,电路规模已由最初的小规模发展到现在的甚大规模。由于对集成度,功耗,面积,速度等各因素的综合考虑,CMOS得到了广泛的应用。
CMOS集成电路的一个重要性能指标,是空穴和电子的迁移率。要提高PMOS器件和NMOS器件两者的性能,这两种载流子的迁移率都应当尽可能地 高。CMOS电路的总体性能同样取决于NMOS器件和PMOS器件的性能,从而,取决于空穴和电子的迁移率。
众所周知的是,在半导体材料上施加应力,例如在半导体材料硅上施加应力,会改变电子和空穴的迁移率,从而,会改变半导体材料上所形成的NMOS器件和PMOS器件的性能。迁移率的提高会导致性能的提高,本专利提出一种利用硅材料的选择性加应力技术制备CMOS,提高应变Si BiCMOS器件与电路性能。
发明内容
本发明实施例的目的在于提供一种用在一个衬底片上制备应变Si垂直沟道PMOS器件、应变Si平面沟道NMOS器件和双多晶SiGe HBT器件,构成基于自对准工艺的应变Si BiCMOS集成器件,以实现器件与集成电路性能的最优化。
本发明的目的在于提供一种基于自对准工艺的应变Si BiCMOS集成器件,所述双应变平面BiCMOS集成器件采用双多晶SiGe HBT器件,应变Si平面沟道NMOS器件和应变Si垂直沟道PMOS器件。
进一步,所述的基于自对准工艺的应变Si BiCMOS集成器件,NMOS器件导电沟道为应变Si材料,沿沟道方向为张应变。
进一步,所述的基于自对准工艺的应变Si BiCMOS集成器件,CMOS器件中PMOS器件应变Si沟道为垂直沟道,沿沟道方向为压应变,并且为回型结构。
进一步,所述的基于自对准工艺的应变Si BiCMOS集成器件,双多晶SiGeHBT器件的发射极和基极采用多晶硅接触。
进一步,所述的基于自对准工艺的应变Si BiCMOS集成器件,SiGe HBT器件的制备过程采用自对准工艺,并为全平面结构。
本发明实施例的另一目的在于提供一种基于自对准工艺的应变Si BiCMOS集成器件的制备方法,包括如下步骤:
第一步、选取掺杂浓度为5×1014~5×1015cm-3的P型Si片作为衬底;
第二步、利用化学汽相淀积(CVD)的方法,在600~800℃,在外延Si层表面淀积一厚度为300~500nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
第三步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为1.5~2μm的N型Si外延层,作为集电区,该层掺杂浓度为1×1016~1×1017cm-3;
第四步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2,光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5~3.5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2和一层SiN,将深槽内表面全部覆盖,最后淀积SiO2将深槽内填满,形成深槽隔离;
第五步、利用化学汽相淀积(CVD)的方法,在600~800℃,在外延Si 层表面淀积一层厚度为500~700nm的SiO2层,光刻集电极接触区窗口,对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域,再将衬底在950~1100℃温度下,退火15~120s,进行杂质激活;
第六步、刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积二层材料:第一层为SiO2层,厚度为20~40nm;第二层为P型Poly-Si层,厚度为200~400nm,掺杂浓度为1×1020~1×1021cm-3;
第七步、光刻Poly-Si,形成外基区,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积SiO2层,厚度为200~400nm,利用化学机械抛光(CMP)的方法去除Poly-Si表面的SiO2;
第八步、利用化学汽相淀积(CVD)方法,在600~800℃,淀积一SiN层,厚度为50~100nm,光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;再利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一SiN层,厚度为10~20nm,干法刻蚀掉发射窗SiN,形成侧墙;
第九步、利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域,利用化学汽相淀积(CVD)方法,在600~750℃,在基区区域选择性生长SiGe基区,Ge组分为15~25%,掺杂浓度为5×1018~5×1019cm-3,厚度为20~60nm;
第十步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积Poly-Si,厚度为200~400nm,再对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
第十一步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面 淀积SiO2层,在950~1100℃温度下,退火15~120s,进行杂质激活;
第十二步、光刻PMOS器件有源区,用干法刻蚀工艺,在PMOS器件有源区,刻蚀出深度为2~2.9μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在PMOS器件有源区(即深槽)选择性外延生长七层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.4~1.7μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1018cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的漏区;第四层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第五层是厚度为22~45nm的N型应变Si层,掺杂浓度为5×1016~5×1017cm-3,作为PMOS器件的沟道;第六层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第七层是Ge组分为15~25%,厚度为200~400nm的P型SiGe,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的有源区;
第十三步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层SiO2;光刻NMOS器件有源区,在NMOS器件有源区,刻蚀出深度为1.9~2.8μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在NMOS器件有源区选择性外延生长四层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.5~2μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~ 5×1015cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1016~5×1017cm-3;第四层是厚度为10~15nm的P型应变Si层,掺杂浓度为5×1016~5×1017cm-3作为NMOS器件的沟道;
第十四步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在该区域刻蚀出深度为0.3~0.5μm的浅槽;再利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2,形成浅槽隔离;
第十五步、光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4~0.7μm漏沟槽;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;
第十六步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4~0.7μm栅沟槽;利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为PMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在栅沟槽中淀积掺杂浓度为1~5×1020cm-3的P型Poly-SiGe,Ge组分为10~30%,将PMOS器件栅沟槽填满;光刻栅介质和栅Poly-SiGe,形成栅极和源极,最终形成PMOS器件结构;
第十七步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃, 淀积一SiO2层;光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在NMOS器件有源区淀积厚度为6~10nm的高介电常数的HfO2层,作为NMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在NMOS器件有源区淀积厚度为200~300nm的P型Poly-SiGe,掺杂浓度为1~5×1020cm-3,Ge组分为10~30%,光刻栅介质和栅Poly-SiGe,形成栅极;利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1~5×1018cm-3;
第十八步、利用化学汽相淀积(CVD)方法,在600~800℃,在整个衬底淀积一厚度为3~5nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2,形成NMOS器件栅极侧墙,利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件源区和漏区的掺杂浓度达到1~5×1020cm-3;
第十九步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻引线窗口,在整个衬底上溅射一层金属钛(Ti),合金,自对准形成金属硅化物,清洗表面多余的金属,形成金属接触;光刻引线,构成MOS导电沟道为22~45nm的基于自对准工艺的应变Si BiCMOS集成器件。
进一步、PMOS器件沟道长度根据第十二步淀积的N型应变Si层厚度确定,取22~45nm,NMOS器件的沟道长度由工艺决定,取22~45nm。
进一步、该制备方法中应变Si CMOS器件制造过程中所涉及的化学汽相淀 积(CVD)工艺温度决定,最高温度小于等于800℃。
进一步、基区厚度根据第九步SiGe的外延层厚度来决定,取20~60nm。
本发明实施例的另一目的在于提供一种基于自对准工艺的应变Si BiCMOS集成电路的制备方法,该制备方法包括如下步骤:
步骤1,集电区与深槽隔离制备的实现方法为:
(1a)选取掺杂浓度为5×1014cm-3的P型Si片,作为衬底;
(1b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一厚度为300nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
(1c)刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为1.5μm的N型外延Si层,作为集电区,该层掺杂浓度为1×1016cm-3;
(1d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiO2;
(1e)光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5μm的深槽;
(1f)利用化学汽相淀积(CVD)方法,在600℃,在深槽内表面淀积SiO2层,将深槽内表面全部覆盖;
(1g)利用化学汽相淀积(CVD)方法,在600℃,在深槽内SiO2层上再淀积一层SiN层,将深槽内表面全部覆盖;
(1h)利用化学汽相淀积(CVD)方法,在600℃,在深槽内填充SiO2,利用化学机械抛光(CMP)方法,除去多余的氧化层,形成深槽隔离;
步骤2,集电极接触区制备的实现方法为:
(2a)利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为50nm的N型外延Si层,作为集电区,该层掺杂浓度为1×1016cm-3;
(2b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一层厚度为500nm的氧化层;
(2c)光刻集电极接触区窗口;
(2d)对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019cm-3,形成集电极接触区域;
(2e)将衬底在950℃温度下,退火15s,进行杂质激活;
步骤3,基区接触制备的实现方法为:
(3a)刻蚀掉衬底表面氧化层,利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiO2层,厚度为20nm;
(3b)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一P型Poly-Si层,作为基区接触区,该层厚度为200nm,掺杂浓度为1×1020cm-3;
(3c)光刻Poly-Si,形成外基区,在600℃,在衬底表面淀积SiO2层,厚度为200nm,利用化学机械抛光(CMP)的方法,去除Poly-Si表面的SiO2;
(3d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiN 层,厚度为50nm;
(3e)光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;
(3f)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiN层,厚度为10nm;
步骤4,基区材料制备的实现方法为:
(4a)利用干法,刻蚀掉发射窗SiN,形成侧墙;
(4b)利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域;
(4c)利用化学汽相淀积(CVD)方法,在600℃,在基区区域选择性生长SiGe基区,Ge组分为15%,掺杂浓度为5×1018cm-3,厚度为20nm;
步骤5,发射区制备的实现方法为:
(5a)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积Poly-Si,厚度为200nm;
(5b)对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
(5c)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积SiO2层,在950℃温度下退火120s,激活杂质;
步骤6,PMOS器件有源区外延材料制备的实现方法为:
(6a)光刻PMOS器件有源区,用干法刻蚀方法,在PMOS器件有源区,刻蚀出深度为2μm的深槽;
(6b)利用化学汽相淀积(CVD)的方法,在600℃,在深槽中选择性生 长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(6c)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.4μm的P型SiGe层,Ge组分底部为0%,上层为25%的梯度分布,掺杂浓度为1×1018cm-3;
(6d)用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1019cm-3,作为PMOS器件的漏区;
(6e)用化学汽相淀积(CVD)的方法,在600℃,在P型SiGe层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6f)利用化学汽相淀积(CVD)的方法,在600℃,在P型应变Si层上选择性生长一层厚度为22nm的N型应变Si层,作为PMOS器件沟道区,掺杂浓度为5×1016cm-3;
(6g)用化学汽相淀积(CVD)的方法,在600℃,在N型应变Si层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6h)利用化学汽相淀积(CVD)的方法,在600℃,在应变Si层上选择性生长一层厚度为200nm的Ge组分固定为25%的P型应变SiGe层,作为PMOS器件源区,掺杂浓度为5×1019cm-3,形成PMOS器件有源区;
步骤7,NMOS器件有源区材料制备的实现方法为:
(7a)利用化学汽相淀积(CVD)的方法,在600℃,在衬底表面淀积一层SiO2;
(7b)光刻NMOS器件有源区,用干法刻蚀方法,在NMOS器件有源区,刻蚀出深度为1.9μm的深槽;
(7c)利用化学汽相淀积(CVD)的方法,在600℃,在NMOS器件有源区选择性生长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(7d)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.5μm的P型SiGe层,Ge组分梯度分布,底部为0%,顶部为25%,掺杂浓度为1×1015cm-3;
(7e)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1016cm-3;
(7f)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上生长一层厚度为10nm的P型应变Si层,NMOS器件沟道区,掺杂浓度为5×1016cm-3,形成NMOS器件有源区;
步骤8,PMOS器件隔离和漏沟槽制备的实现方法为:
(8a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(8b)光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在PMOS器件源漏隔离区刻蚀出深度为0.3μm的浅槽;
(8c)利用化学汽相淀积(CVD)方法,在600℃,在浅槽内填充SiO2, 形成源漏浅槽隔离;
(8d)光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4μm漏沟槽;
(8e)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积掺杂浓度为1×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;
步骤9,PMOS器件栅制备和PMOS器件形成的实现方法为:
(9a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(9b)光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4μm栅沟槽;
(9c)利用原子层化学汽相淀积(ALCVD)方法,在300℃,在衬底表面淀积高介电常数的HfO2层,作为PMOS器件的栅介质层,厚度为6nm;
(9d)利用化学汽相淀积(CVD)方法,在600℃,在栅沟槽中淀积掺杂浓度为1×1020cm-3的P型Poly-SiGe,Ge组分为30%,将PMOS器件栅沟槽填满;
(9e)刻栅介质和栅Poly-SiGe,在栅沟槽中形成PMOS器件栅极和源极,最终形成PMOS器件;
步骤10,NMOS器件形成的实现方法为:
(10a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一 SiO2层;
(10b)光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300℃,在NMOS器件有源区表面淀积一层厚度为6nm的HfO2层,作为NMOS器件的栅介质;
(10c)利用化学汽相淀积(CVD)方法,在600℃,在栅介质层上淀积一层Ploy-SiGe层,Ge组分为30%,厚度为200nm,掺杂浓度为1×1020cm-3;
(10d)光刻栅介质和栅Poly-SiGe,形成栅极;
(10e)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1×1018cm-3;
(10f)利用化学汽相淀积(CVD)方法,在600℃,在NMOS器件有源区表面淀积一层3nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,在Ploy-SiGe侧壁保留下SiO2形成栅侧墙;
(10g)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件有源区的掺杂浓度达到1×1020cm-3,最终形成NMOS器件;
步骤11,构成BiCMOS集成电路的实现方法为:
(11a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(11b)光刻引线孔;
(11c)在衬底表面溅射一层金属钛(Ti),合金;
(11d)光刻引线,形成PMOS器件漏极金属引线、源极金属引线,栅极金属引线,NMOS器件漏极金属引线、源极金属引线、栅极金属引线,双极晶体管发射极金属引线、基极金属引线、集电极金属引线,构成MOS导电沟道为22nm的基于自对准工艺的应变Si BiCMOS集成器件及电路。
本发明具有如下优点:
1.本发明制造的基于自对准工艺的应变Si BiCMOS器件结构中,CMOS部分采用了应变Si材料制造导电沟道,由于应变Si材料载流子迁移率远高于体Si材料,因此用该BiCMOS器件结构制造的模拟和数模混合集成电路性能较用体Si制造的电路性能优异;
2.本发明制造的基于自对准工艺的应变Si BiCMOS器件结构中的CMOS结构,充分利用了应变Si材料应力的各向异性,在水平方向引入张应变,提高了NMOS器件电子迁移率;在垂直方向引入压应变,提高了PMOS器件空穴迁移率;因此,该器件频率与电流驱动能力等性能高于同尺寸的弛豫Si CMOS器件;
3.本发明的基于自对准工艺的应变Si BiCMOS器件制备过程中,应变Si层是用化学汽相淀积(CVD)方法淀积的,可以精确控制生长厚度,而CMOS中的PMOS器件的沟道长度即为Si层的厚度,从而避开了小尺寸光刻,减少了工艺复杂度,降低了成本;
4.本发明制备的基于自对准工艺的应变Si BiCMOS器件结构中PMOS器件的沟道为回型,即一个栅在沟槽中能够控制四面的沟道,因此,该器件在有 限的区域内增加了沟道的宽度,从而提高了器件的电流驱动能力,增加了集成电路的集成度,降低了集成电路单位面积的制造成本;
5.本发明制备的基于自对准工艺的应变Si BiCMOS器件中的CMOS结构,MOS器件采用了高K值的HfO2作为栅介质,提高了MOS器件的栅控能力,增强了CMOS器件的电学性能;
6.本发明制备的基于自对准工艺的应变Si BiCMOS器件中的CMOS结构,采用Poly-SiGe材料作为栅电极,其功函数随Ge组分的变化而变化,通过调节Poly-SiGe中Ge组分,实现CMOS阈值电压可连续调整,减少了工艺步骤,降低了工艺难度;
7.本发明制备的基于自对准工艺的应变Si BiCMOS器件,在制备过程中,采用全自对准工艺,有效地减小了寄生电阻与电容,提高了器件的电流与频率特性;
8.本发明制备的基于自对准工艺的应变Si BiCMOS器件,SiGe HBT器件的发射极和基极采用多晶,可以获得较薄的结深,减小器件的寄生参数,提高器件性能。
附图说明
图1是提供本发明方法制备应变Si BiCMOS集成器件及电路制备方法的实现流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例提供了一种基于自对准工艺的应变Si BiCMOS集成器件,所述双应变平面BiCMOS集成器件采用双多晶SiGe HBT器件,应变Si平面沟道NMOS器件和应变Si垂直沟道PMOS器件。
作为本发明实施例的一优化方案,该基于自对准工艺的应变Si BiCMOS集成器件,NMOS器件导电沟道为应变Si材料,沿沟道方向为张应变。
作为本发明实施例的一优化方案,该基于自对准工艺的应变Si BiCMOS集成器件,CMOS器件中PMOS器件应变Si沟道为垂直沟道,沿沟道方向为压应变,并且为回型结构。
作为本发明实施例的一优化方案,该基于自对准工艺的应变Si BiCMOS集成器件,双多晶SiGe HBT器件的发射极和基极采用多晶硅接触。
作为本发明实施例的一优化方案,该基于自对准工艺的应变Si BiCMOS集成器件,SiGe HBT器件的制备过程采用自对准工艺,并为全平面结构。
以下参照附图1,对本发明制备基于自对准工艺的应变Si BiCMOS集成器件及电路的工艺流程作进一步详细描述。
实施例1:制备沟道长度为22nm的基于自对准工艺的应变Si BiCMOS集成器件及电路,具体步骤如下:
步骤1,集电区与深槽隔离制备。
(1a)选取掺杂浓度为5×1014cm-3的P型Si片,作为衬底;
(1b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一厚度为300nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
(1c)刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为1.5μm的N型外延Si层,作为集电区,该层掺杂浓度为1×1016cm-3;
(1d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiO2;
(1e)光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5μm的深槽;
(1f)利用化学汽相淀积(CVD)方法,在600℃,在深槽内表面淀积SiO2层,将深槽内表面全部覆盖;
(1g)利用化学汽相淀积(CVD)方法,在600℃,在深槽内SiO2层上再淀积一层SiN层,将深槽内表面全部覆盖;
(1h)利用化学汽相淀积(CVD)方法,在600℃,在深槽内填充SiO2,利用化学机械抛光(CMP)方法,除去多余的氧化层,形成深槽隔离。
步骤2,集电极接触区制备。
(2a)利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为50nm的N型外延Si层,作为集电区,该层掺杂浓度为1× 1016cm-3;
(2b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一层厚度为500nm的氧化层;
(2c)光刻集电极接触区窗口;
(2d)对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019cm-3,形成集电极接触区域;
(2e)将衬底在950℃温度下,退火15s,进行杂质激活。
步骤3,基区接触制备。
(3a)刻蚀掉衬底表面氧化层,利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiO2层,厚度为20nm;
(3b)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一P型Poly-Si层,作为基区接触区,该层厚度为200nm,掺杂浓度为1×1020cm-3;
(3c)光刻Poly-Si,形成外基区,在600℃,在衬底表面淀积SiO2层,厚度为200nm,利用化学机械抛光(CMP)的方法,去除Poly-Si表面的SiO2;
(3d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiN层,厚度为50nm;
(3e)光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;
(3f)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiN层,厚度为10nm。
步骤4,基区材料制备。
(4a)利用干法,刻蚀掉发射窗SiN,形成侧墙;
(4b)利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域;
(4c)利用化学汽相淀积(CVD)方法,在600℃,在基区区域选择性生长SiGe基区,Ge组分为15%,掺杂浓度为5×1018cm-3,厚度为20nm。
步骤5,发射区制备。
(5a)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积Poly-Si,厚度为200nm;
(5b)对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
(5c)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积SiO2层,在950℃温度下退火120s,激活杂质。
步骤6,PMOS器件有源区外延材料制备。
(6a)光刻PMOS器件有源区,用干法刻蚀方法,在PMOS器件有源区,刻蚀出深度为2μm的深槽;
(6b)利用化学汽相淀积(CVD)的方法,在600℃,在深槽中选择性生长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(6c)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.4μm的P型SiGe层,Ge组分底部为0%,上层为25%的梯度分布,掺杂浓度为1×1018cm-3;
(6d)用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生 长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1019cm-3,作为PMOS器件的漏区;
(6e)用化学汽相淀积(CVD)的方法,在600℃,在P型SiGe层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6f)利用化学汽相淀积(CVD)的方法,在600℃,在P型应变Si层上选择性生长一层厚度为22nm的N型应变Si层,作为PMOS器件沟道区,掺杂浓度为5×1016cm-3;
(6g)用化学汽相淀积(CVD)的方法,在600℃,在N型应变Si层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6h)利用化学汽相淀积(CVD)的方法,在600℃,在应变Si层上选择性生长一层厚度为200nm的Ge组分固定为25%的P型应变SiGe层,作为PMOS器件源区,掺杂浓度为5×1019cm-3,形成PMOS器件有源区。
步骤7,NMOS器件有源区材料制备。
(7a)利用化学汽相淀积(CVD)的方法,在600℃,在衬底表面淀积一层SiO2;
(7b)光刻NMOS器件有源区,用干法刻蚀方法,在NMOS器件有源区,刻蚀出深度为1.9μm的深槽;
(7c)利用化学汽相淀积(CVD)的方法,在600℃,在NMOS器件有源 区选择性生长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(7d)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.5μm的P型SiGe层,Ge组分梯度分布,底部为0%,顶部为25%,掺杂浓度为1×1015cm-3;
(7e)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1016cm-3;
(7f)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上生长一层厚度为10nm的P型应变Si层,NMOS器件沟道区,掺杂浓度为5×1016cm-3,形成NMOS器件有源区。
步骤8,PMOS器件隔离和漏沟槽制备。
(8a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(8b)光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在PMOS器件源漏隔离区刻蚀出深度为0.3μm的浅槽;
(8c)利用化学汽相淀积(CVD)方法,在600℃,在浅槽内填充SiO2,形成源漏浅槽隔离;
(8d)光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4μm漏沟槽;
(8e)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积掺杂浓度为1×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS 器件漏沟槽表面以外的Poly-Si,形成漏连接区。
步骤9,PMOS器件栅制备和PMOS器件形成。
(9a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(9b)光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4μm栅沟槽;
(9c)利用原子层化学汽相淀积(ALCVD)方法,在300℃,在衬底表面淀积高介电常数的HfO2层,作为PMOS器件的栅介质层,厚度为6nm;
(9d)利用化学汽相淀积(CVD)方法,在600℃,在栅沟槽中淀积掺杂浓度为1×1020cm-3的P型Poly-SiGe,Ge组分为30%,将PMOS器件栅沟槽填满;
(9e)刻栅介质和栅Poly-SiGe,在栅沟槽中形成PMOS器件栅极和源极,最终形成PMOS器件。
步骤10,NMOS器件形成。
(10a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(10b)光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300℃,在NMOS器件有源区表面淀积一层厚度为6nm的HfO2层,作为NMOS器件的栅介质;
(10c)利用化学汽相淀积(CVD)方法,在600℃,在栅介质层上淀积一 层Ploy-SiGe层,Ge组分为30%,厚度为200nm,掺杂浓度为1×1020cm-3;
(10d)光刻栅介质和栅Poly-SiGe,形成栅极;
(10e)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1×1018cm-3;
(10f)利用化学汽相淀积(CVD)方法,在600℃,在NMOS器件有源区表面淀积一层3nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,在Ploy-SiGe侧壁保留下SiO2形成栅侧墙;
(10g)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件有源区的掺杂浓度达到1×1020cm-3,最终形成NMOS器件。
步骤11,构成BiCMOS集成电路。
(11a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(11b)光刻引线孔;
(11c)在衬底表面溅射一层金属钛(Ti),合金;
(11d)光刻引线,形成PMOS器件漏极金属引线、源极金属引线,栅极金属引线,NMOS器件漏极金属引线、源极金属引线、栅极金属引线,双极晶体管发射极金属引线、基极金属引线、集电极金属引线,构成MOS导电沟道为22nm的基于自对准工艺的应变Si BiCMOS集成器件及电路。
实施例2:制备沟道长度为30nm的基于自对准工艺的应变Si BiCMOS集 成器件及电路,具体步骤如下:
步骤1,集电区与深槽隔离制备。
(1a)选取掺杂浓度为1×1015cm-3的P型Si片,作为衬底;
(1b)利用化学汽相淀积(CVD)的方法,在700℃,在外延Si层表面淀积一厚度为400nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
(1c)刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)的方法,在700℃,在上层Si材料上生长一层厚度为1.8μm的N型外延Si层,作为集电区,该层掺杂浓度为5×1016cm-3;
(1d)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积一层SiO2;
(1e)光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为3μm的深槽;
(1f)利用化学汽相淀积(CVD)方法,在700℃,在深槽内表面淀积SiO2层,将深槽内表面全部覆盖;
(1g)利用化学汽相淀积(CVD)方法,在700℃,在深槽内SiO2层上再淀积一层SiN层,将深槽内表面全部覆盖;
(1h)利用化学汽相淀积(CVD)方法,在700℃,在深槽内填充SiO2,利用化学机械抛光(CMP)方法,除去多余的氧化层,形成深槽隔离。
步骤2,集电极接触区制备。
(2a)利用化学汽相淀积(CVD)的方法,在700℃,在上层Si材料上生长一层厚度为80nm的N型外延Si层,作为集电区,该层掺杂浓度为5×1016cm-3;
(2b)利用化学汽相淀积(CVD)的方法,在700℃,在外延Si层表面淀积一层厚度为600nm的氧化层;
(2c)光刻集电极接触区窗口;
(2d)对衬底进行磷注入,使集电极接触区掺杂浓度为5×1019cm-3,形成集电极接触区域;
(2e)将衬底在1000℃温度下,退火60s,进行杂质激活。
步骤3,基区接触制备。
(3a)刻蚀掉衬底表面氧化层,利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积一SiO2层,厚度为30nm;
(3b)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积一P型Poly-Si层,作为基区接触区,该层厚度为300nm,掺杂浓度为5×1020cm-3;
(3c)光刻Poly-Si,形成外基区,在700℃,在衬底表面淀积SiO2层,厚度为300nm,利用化学机械抛光(CMP)的方法,去除Poly-Si表面的SiO2;
(3d)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积一SiN层,厚度为80nm;
(3e)光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;
(3f)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积一层 SiN层,厚度为15nm。
步骤4,基区材料制备。
(4a)利用干法,刻蚀掉发射窗SiN,形成侧墙;
(4b)利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域;
(4c)利用化学汽相淀积(CVD)方法,在700℃,在基区区域选择性生长SiGe基区,Ge组分为20%,掺杂浓度为1×1019cm-3,厚度为40nm。
步骤5,发射区制备。
(5a)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积Poly-Si,厚度为300nm;
(5b)对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
(5c)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积SiO2层,在1000℃温度下退火60s,激活杂质。
步骤6,PMOS器件有源区外延材料制备。
(6a)光刻PMOS器件有源区,用干法刻蚀方法,在PMOS器件有源区,刻蚀出深度为2.4μm的深槽;
(6b)利用化学汽相淀积(CVD)的方法,在700℃,在深槽中选择性生长一层厚度为300nm的P型Si缓冲层,掺杂浓度3×1015cm-3;
(6c)利用化学汽相淀积(CVD)的方法,在700℃,在Si缓冲层上选择性生长一层厚度为1.4μm的P型SiGe层,Ge组分底部为0%,上层为20%的 梯度分布,掺杂浓度为3×1018cm-3;
(6d)用化学汽相淀积(CVD)的方法,在700℃,在SiGe层上选择性生长一层Ge组分为20%,厚度为300nm的P型SiGe层,掺杂浓度为8×1019cm-3,作为PMOS器件的漏区;
(6e)用化学汽相淀积(CVD)的方法,在700℃,在P型SiGe层上选择性生长一层厚度为4nm的P型应变Si层,掺杂浓度为3×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6f)利用化学汽相淀积(CVD)的方法,在700℃,在P型应变Si层上选择性生长一层厚度为30nm的N型应变Si层,作为PMOS器件沟道区,掺杂浓度为1×1017cm-3;
(6g)用化学汽相淀积(CVD)的方法,在700℃,在N型应变Si层上选择性生长一层厚度为4nm的P型应变Si层,掺杂浓度为3×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6h)利用化学汽相淀积(CVD)的方法,在700℃,在应变Si层上选择性生长一层厚度为300nm的Ge组分固定为20%的P型应变SiGe层,作为PMOS器件源区,掺杂浓度为8×1019cm-3,形成PMOS器件有源区。
步骤7,NMOS器件有源区材料制备。
(7a)利用化学汽相淀积(CVD)的方法,在700℃,在衬底表面淀积一层SiO2;
(7b)光刻NMOS器件有源区,用干法刻蚀方法,在NMOS器件有源区, 刻蚀出深度为2.4μm的深槽;
(7c)利用化学汽相淀积(CVD)的方法,在700℃,在NMOS器件有源区选择性生长一层厚度为300nm的P型Si缓冲层,掺杂浓度3×1015cm-3;
(7d)利用化学汽相淀积(CVD)的方法,在700℃,在Si缓冲层上选择性生长一层厚度为1.8μm的P型SiGe层,Ge组分梯度分布,底部为0%,顶部为20%,掺杂浓度为3×1015cm-3;
(7e)利用化学汽相淀积(CVD)的方法,在700℃,在SiGe层上选择性生长一层Ge组分为20%,厚度为300nm的P型SiGe层,掺杂浓度为1×1017cm-3;
(7f)利用化学汽相淀积(CVD)的方法,在700℃,在SiGe层上生长一层厚度为12nm的P型应变Si层,NMOS器件沟道区,掺杂浓度为1×1017cm-3,形成NMOS器件有源区。
步骤8,PMOS器件隔离和漏沟槽制备。
(8a)在衬底表面利用化学汽相淀积(CVD)的方法,在700℃,淀积一SiO2层;
(8b)光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在PMOS器件源漏隔离区刻蚀出深度为0.4μm的浅槽;
(8c)利用化学汽相淀积(CVD)方法,在700℃,在浅槽内填充SiO2,形成源漏浅槽隔离;
(8d)光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.5μm漏沟槽;
(8e)利用化学汽相淀积(CVD)方法,在700℃,在衬底表面淀积掺杂浓度为3×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区。
步骤9,PMOS器件栅制备和PMOS器件形成。
(9a)在衬底表面利用化学汽相淀积(CVD)的方法,在700℃,淀积一SiO2层;
(9b)光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.5μm栅沟槽;
(9c)利用原子层化学汽相淀积(ALCVD)方法,在350℃,在衬底表面淀积高介电常数的HfO2层,作为PMOS器件的栅介质层,厚度为8nm;
(9d)利用化学汽相淀积(CVD)方法,在700℃,在栅沟槽中淀积掺杂浓度为3×1020cm-3的P型Poly-SiGe,Ge组分为20%,将PMOS器件栅沟槽填满;
(9e)刻栅介质和栅Poly-SiGe,在栅沟槽中形成PMOS器件栅极和源极,最终形成PMOS器件。
步骤10,NMOS器件形成。
(10a)在衬底表面利用化学汽相淀积(CVD)的方法,在700℃,淀积一SiO2层;
(10b)光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在350℃,在NMOS器件有源区表面淀积一层厚度为8nm的HfO2层,作 为NMOS器件的栅介质;
(10c)利用化学汽相淀积(CVD)方法,在700℃,在栅介质层上淀积一层Ploy-SiGe层,Ge组分为20%,厚度为240nm,掺杂浓度为3×1020cm-3;
(10d)光刻栅介质和栅Poly-SiGe,形成栅极;
(10e)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为3×1018cm-3;
(10f)利用化学汽相淀积(CVD)方法,在700℃,在NMOS器件有源区表面淀积一层4nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,在Ploy-SiGe侧壁保留下SiO2形成栅侧墙;
(10g)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件有源区的掺杂浓度达到3×1020cm-3,最终形成NMOS器件。
步骤11,构成BiCMOS集成电路。
(11a)在衬底表面利用化学汽相淀积(CVD)的方法,在700℃,淀积一SiO2层;
(11b)光刻引线孔;
(11c)在衬底表面溅射一层金属钛(Ti),合金;
(11d)光刻引线,形成PMOS器件漏极金属引线、源极金属引线,栅极金属引线,NMOS器件漏极金属引线、源极金属引线、栅极金属引线,双极晶体管发射极金属引线、基极金属引线、集电极金属引线,构成MOS导电沟道 为30nm的基于自对准工艺的应变Si BiCMOS集成器件及电路。
实施例3:制备沟道长度为45nm的基于自对准工艺的应变Si BiCMOS集成器件及电路,具体步骤如下:
步骤1,集电区与深槽隔离制备。
(1a)选取掺杂浓度为5×1015cm-3的P型Si片,作为衬底;
(1b)利用化学汽相淀积(CVD)的方法,在800℃,在外延Si层表面淀积一厚度为500nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
(1c)刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)的方法,在750℃,在上层Si材料上生长一层厚度为2.5μm的N型外延Si层,作为集电区,该层掺杂浓度为1×1017cm-3;
(1d)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积一层SiO2;
(1e)光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为3.5μm的深槽;
(1f)利用化学汽相淀积(CVD)方法,在800℃,在深槽内表面淀积SiO2层,将深槽内表面全部覆盖;
(1g)利用化学汽相淀积(CVD)方法,在800℃,在深槽内SiO2层上再淀积一层SiN层,将深槽内表面全部覆盖;
(1h)利用化学汽相淀积(CVD)方法,在800℃,在深槽内填充SiO2, 利用化学机械抛光(CMP)方法,除去多余的氧化层,形成深槽隔离。
步骤2,集电极接触区制备。
(2a)利用化学汽相淀积(CVD)的方法,在750℃,在上层Si材料上生长一层厚度为100nm的N型外延Si层,作为集电区,该层掺杂浓度为1×1017cm-3;
(2b)利用化学汽相淀积(CVD)的方法,在800℃,在外延Si层表面淀积一层厚度为700nm的氧化层;
(2c)光刻集电极接触区窗口;
(2d)对衬底进行磷注入,使集电极接触区掺杂浓度为1×1020cm-3,形成集电极接触区域;
(2e)将衬底在1100℃温度下,退火15s,进行杂质激活。
步骤3,基区接触制备。
(3a)刻蚀掉衬底表面氧化层,利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积一SiO2层,厚度为40nm;
(3b)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积一P型Poly-Si层,作为基区接触区,该层厚度为400nm,掺杂浓度为1×1021cm-3;
(3c)光刻Poly-Si,形成外基区,在800℃,在衬底表面淀积SiO2层,厚度为400nm,利用化学机械抛光(CMP)的方法,去除Poly-Si表面的SiO2;
(3d)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积一SiN层,厚度为100nm;
(3e)光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;
(3f)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积一层SiN层,厚度为20nm。
步骤4,基区材料制备。
(4a)利用干法,刻蚀掉发射窗SiN,形成侧墙;
(4b)利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域;
(4c)利用化学汽相淀积(CVD)方法,在750℃,在基区区域选择性生长SiGe基区,Ge组分为25%,掺杂浓度为5×1019cm-3,厚度为60nm。
步骤5,发射区制备。
(5a)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积Poly-Si,厚度为400nm;
(5b)对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
(5c)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积SiO2层,在1100℃温度下退火15s,激活杂质。
步骤6,PMOS器件有源区外延材料制备。
(6a)光刻PMOS器件有源区,用干法刻蚀方法,在PMOS器件有源区,刻蚀出深度为2.9μm的深槽;
(6b)利用化学汽相淀积(CVD)的方法,在750℃,在深槽中选择性生长一层厚度为400nm的P型Si缓冲层,掺杂浓度5×1015cm-3;
(6c)利用化学汽相淀积(CVD)的方法,在750℃,在Si缓冲层上选择性生长一层厚度为1.7μm的P型SiGe层,Ge组分底部为0%,上层为15%的梯度分布,掺杂浓度为5×1018cm-3;
(6d)用化学汽相淀积(CVD)的方法,在750℃,在SiGe层上选择性生长一层Ge组分为15%,厚度为400nm的P型SiGe层,掺杂浓度为1×1020cm-3,作为PMOS器件的漏区;
(6e)用化学汽相淀积(CVD)的方法,在750℃,在P型SiGe层上选择性生长一层厚度为5nm的P型应变Si层,掺杂浓度为5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6f)利用化学汽相淀积(CVD)的方法,在750℃,在P型应变Si层上选择性生长一层厚度为45nm的N型应变Si层,作为PMOS器件沟道区,掺杂浓度为5×1017cm-3;
(6g)用化学汽相淀积(CVD)的方法,在750℃,在N型应变Si层上选择性生长一层厚度为5nm的P型应变Si层,掺杂浓度为5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6h)利用化学汽相淀积(CVD)的方法,在750℃,在应变Si层上选择性生长一层厚度为400nm的Ge组分固定为15%的P型应变SiGe层,作为PMOS器件源区,掺杂浓度为1×1020cm-3,形成PMOS器件有源区。
步骤7,NMOS器件有源区材料制备。
(7a)利用化学汽相淀积(CVD)的方法,在800℃,在衬底表面淀积一 层SiO2;
(7b)光刻NMOS器件有源区,用干法刻蚀方法,在NMOS器件有源区,刻蚀出深度为2.8μm的深槽;
(7c)利用化学汽相淀积(CVD)的方法,在750℃,在NMOS器件有源区选择性生长一层厚度为400nm的P型Si缓冲层,掺杂浓度5×1015cm-3;
(7d)利用化学汽相淀积(CVD)的方法,在750℃,在Si缓冲层上选择性生长一层厚度为2μm的P型SiGe层,Ge组分梯度分布,底部为0%,顶部为15%,掺杂浓度为5×1015cm-3;
(7e)利用化学汽相淀积(CVD)的方法,在750℃,在SiGe层上选择性生长一层Ge组分为15%,厚度为400nm的P型SiGe层,掺杂浓度为5×1017cm-3;
(7f)利用化学汽相淀积(CVD)的方法,在750℃,在SiGe层上生长一层厚度为15nm的P型应变Si层,NMOS器件沟道区,掺杂浓度为5×1017cm-3,形成NMOS器件有源区。
步骤8,PMOS器件隔离和漏沟槽制备。
(8a)在衬底表面利用化学汽相淀积(CVD)的方法,在800℃,淀积一SiO2层;
(8b)光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在PMOS器件源漏隔离区刻蚀出深度为0.5μm的浅槽;
(8c)利用化学汽相淀积(CVD)方法,在800℃,在浅槽内填充SiO2,形成源漏浅槽隔离;
(8d)光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.6μm漏沟槽;
(8e)利用化学汽相淀积(CVD)方法,在800℃,在衬底表面淀积掺杂浓度为5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区。
步骤9,PMOS器件栅制备和PMOS器件形成。
(9a)在衬底表面利用化学汽相淀积(CVD)的方法,在800℃,淀积一SiO2层;
(9b)光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.7μm栅沟槽;
(9c)利用原子层化学汽相淀积(ALCVD)方法,在400℃,在衬底表面淀积高介电常数的HfO2层,作为PMOS器件的栅介质层,厚度为10nm;
(9d)利用化学汽相淀积(CVD)方法,在800℃,在栅沟槽中淀积掺杂浓度为5×1020cm-3的P型Poly-SiGe,Ge组分为10%,将PMOS器件栅沟槽填满;
(9e)刻栅介质和栅Poly-SiGe,在栅沟槽中形成PMOS器件栅极和源极,最终形成PMOS器件。
步骤10,NMOS器件形成。
(10a)在衬底表面利用化学汽相淀积(CVD)的方法,在800℃,淀积一SiO2层;
(10b)光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在400℃,在NMOS器件有源区表面淀积一层厚度为10nm的HfO2层,作为NMOS器件的栅介质;
(10c)利用化学汽相淀积(CVD)方法,在800℃,在栅介质层上淀积一层Ploy-SiGe层,Ge组分为10%,厚度为300nm,掺杂浓度为5×1020cm-3;
(10d)光刻栅介质和栅Poly-SiGe,形成栅极;
(10e)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为5×1018cm-3;
(10f)利用化学汽相淀积(CVD)方法,在800℃,在NMOS器件有源区表面淀积一层5nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,在Ploy-SiGe侧壁保留下SiO2形成栅侧墙;
(10g)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件有源区的掺杂浓度达到5×1020cm-3,最终形成NMOS器件。
步骤11,构成BiCMOS集成电路。
(11a)在衬底表面利用化学汽相淀积(CVD)的方法,在800℃,淀积一SiO2层;
(11b)光刻引线孔;
(11c)在衬底表面溅射一层金属钛(Ti),合金;
(11d)光刻引线,形成PMOS器件漏极金属引线、源极金属引线,栅极 金属引线,NMOS器件漏极金属引线、源极金属引线、栅极金属引线,双极晶体管发射极金属引线、基极金属引线、集电极金属引线,构成MOS导电沟道为45nm的基于自对准工艺的应变Si BiCMOS集成器件及电路。
本发明实施例提供的基于自对准工艺的应变Si BiCMOS集成器件及制备方法具有如下优点:
1.本发明制造的基于自对准工艺的应变Si BiCMOS器件结构中,CMOS部分采用了应变Si材料制造导电沟道,由于应变Si材料载流子迁移率远高于体Si材料,因此用该BiCMOS器件结构制造的模拟和数模混合集成电路性能较用体Si制造的电路性能优异;
2.本发明制造的基于自对准工艺的应变Si BiCMOS器件结构中的CMOS结构,充分利用了应变Si材料应力的各向异性,在水平方向引入张应变,提高了NMOS器件电子迁移率;在垂直方向引入压应变,提高了PMOS器件空穴迁移率;因此,该器件频率与电流驱动能力等性能高于同尺寸的弛豫Si CMOS器件;
3.本发明的基于自对准工艺的应变Si BiCMOS器件制备过程中,应变Si层是用化学汽相淀积(CVD)方法淀积的,可以精确控制生长厚度,而CMOS中的PMOS器件的沟道长度即为Si层的厚度,从而避开了小尺寸光刻,减少了工艺复杂度,降低了成本;
4.本发明制备的基于自对准工艺的应变Si BiCMOS器件结构中PMOS器 件的沟道为回型,即一个栅在沟槽中能够控制四面的沟道,因此,该器件在有限的区域内增加了沟道的宽度,从而提高了器件的电流驱动能力,增加了集成电路的集成度,降低了集成电路单位面积的制造成本;
5.本发明制备的基于自对准工艺的应变Si BiCMOS器件中的CMOS结构,MOS器件采用了高K值的HfO2作为栅介质,提高了MOS器件的栅控能力,增强了CMOS器件的电学性能;
6.本发明制备的基于自对准工艺的应变Si BiCMOS器件中的CMOS结构,采用Poly-SiGe材料作为栅电极,其功函数随Ge组分的变化而变化,通过调节Poly-SiGe中Ge组分,实现CMOS阈值电压可连续调整,减少了工艺步骤,降低了工艺难度;
7.本发明制备的基于自对准工艺的应变Si BiCMOS器件,在制备过程中,采用全自对准工艺,有效地减小了寄生电阻与电容,提高了器件的电流与频率特性;
8.本发明制备的基于自对准工艺的应变Si BiCMOS器件,SiGe HBT器件的发射极和基极采用多晶,可以获得较薄的结深,减小器件的寄生参数,提高器件性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种基于自对准工艺的应变Si BiCMOS集成器件,其特征在于,所述双应变平面BiCMOS集成器件采用双多晶SiGe HBT器件,应变Si平面沟道NMOS器件和应变Si垂直沟道PMOS器件。
2.根据权利要求1所述的基于自对准工艺的应变Si BiCMOS集成器件,其特征在于,NMOS器件导电沟道为应变Si材料,沿沟道方向为张应变。
3.根据权利要求1所述的基于自对准工艺的应变Si BiCMOS集成器件,其特征在于,CMOS器件中PMOS器件应变Si沟道为垂直沟道,沿沟道方向为压应变,并且为回型结构。
4.根据权利要求1所述的基于自对准工艺的应变Si BiCMOS集成器件,其特征在于,双多晶SiGe HBT器件的发射极和基极采用多晶硅接触。
5.根据权利要求1所述的基于自对准工艺的应变Si BiCMOS集成器件,其特征在于,SiGe HBT器件的制备过程采用自对准工艺,并为全平面结构。
6.一种基于自对准工艺的应变Si BiCMOS集成器件的制备方法,其特征在于,包括如下步骤:
第一步、选取掺杂浓度为5×1014~5×1015cm-3的P型Si片作为衬底;
第二步、利用化学汽相淀积(CVD)的方法,在600~800℃,在外延Si层表面淀积一厚度为300~500nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
第三步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为1.5~2μm的N型Si外延层,作为集电区,该层掺杂浓度为1×1016~1×1017cm-3;
第四步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2,光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5~3.5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2和一层SiN,将深槽内表面全部覆盖,最后淀积SiO2将深槽内填满,形成深槽隔离;
第五步、利用化学汽相淀积(CVD)的方法,在600~800℃,在外延Si层表面淀积一层厚度为500~700nm的SiO2层,光刻集电极接触区窗口,对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域,再将衬底在950~1100℃温度下,退火15~120s,进行杂质激活;
第六步、刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积二层材料:第一层为SiO2层,厚度为20~40nm;第二层为P型Poly-Si层,厚度为200~400nm,掺杂浓度为1×1020~1×1021cm-3;
第七步、光刻Poly-Si,形成外基区,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积SiO2层,厚度为200~400nm,利用化学机械抛光(CMP)的方法去除Poly-Si表面的SiO2;
第八步、利用化学汽相淀积(CVD)方法,在600~800℃,淀积一SiN层,厚度为50~100nm,光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;再利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一SiN层,厚度为10~20nm,干法刻蚀掉发射窗SiN,形成侧墙;
第九步、利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域,利用化学汽相淀积(CVD)方法,在600~750℃,在基区区域选择性生长SiGe基区,Ge组分为15~25%,掺杂浓度为5×1018~5×1019cm-3,厚度为20~60nm;
第十步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积Poly-Si,厚度为200~400nm,再对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
第十一步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积SiO2层,在950~1100℃温度下,退火15~120s,进行杂质激活;
第十二步、光刻PMOS器件有源区,用干法刻蚀工艺,在PMOS器件有源区,刻蚀出深度为2~2.9μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在PMOS器件有源区(即深槽)选择性外延生长七层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.4~1.7μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1018cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的漏区;第四层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第五层是厚度为22~45nm的N型应变Si层,掺杂浓度为5×1016~5×1017cm-3,作为PMOS器件的沟道;第六层是厚度为3~5nm的P型应变Si层,掺杂浓度为1~5×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);第七层是Ge组分为15~25%,厚度为200~400nm的P型SiGe,掺杂浓度为5×1019~1×1020cm-3,作为PMOS器件的有源区;
第十三步、利用化学汽相淀积(CVD)的方法,在600~800℃,在衬底表面淀积一层SiO2;光刻NMOS器件有源区,在NMOS器件有源区,刻蚀出深度为1.9~2.8μm的深槽;利用化学汽相淀积(CVD)方法,在600~750℃,在NMOS器件有源区选择性外延生长四层材料:第一层是厚度为200~400nm的P型Si缓冲层,掺杂浓度为1~5×1015cm-3;第二层是厚度为1.5~2μm的P型SiGe渐变层,底部Ge组分是0%,顶部Ge组分是15~25%,掺杂浓度为1~5×1015cm-3;第三层是Ge组分为15~25%,厚度为200~400nm的P型SiGe层,掺杂浓度为5×1016~5×1017cm-3;第四层是厚度为10~15nm的P型应变Si层,掺杂浓度为5×1016~5×1017cm-3作为NMOS器件的沟道;
第十四步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在该区域刻蚀出深度为0.3~0.5μm的浅槽;再利用化学汽相淀积(CVD)方法,在600~800℃,在浅槽内填充SiO2,形成浅槽隔离;
第十五步、光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4~0.7μm漏沟槽;利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积掺杂浓度为1~5×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;
第十六步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4~0.7μm栅沟槽;利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在衬底表面淀积厚度为6~10nm的高介电常数的HfO2层,作为PMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在栅沟槽中淀积掺杂浓度为1~5×1020cm-3的P型Poly-SiGe,Ge组分为10~30%,将PMOS器件栅沟槽填满;光刻栅介质和栅Poly-SiGe,形成栅极和源极,最终形成PMOS器件结构;
第十七步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300~400℃,在NMOS器件有源区淀积厚度为6~10nm的高介电常数的HfO2层,作为NMOS器件的栅介质层;利用化学汽相淀积(CVD)方法,在600~800℃,在NMOS器件有源区淀积厚度为200~300nm的P型Poly-SiGe,掺杂浓度为1~5×1020cm-3,Ge组分为10~30%,光刻栅介质和栅Poly-SiGe,形成栅极;利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1~5×1018cm-3;
第十八步、利用化学汽相淀积(CVD)方法,在600~800℃,在整个衬底淀积一厚度为3~5nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2,形成NMOS器件栅极侧墙,利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件源区和漏区的掺杂浓度达到1~5×1020cm-3;
第十九步、在衬底表面利用化学汽相淀积(CVD)的方法,在600~800℃,淀积一SiO2层;光刻引线窗口,在整个衬底上溅射一层金属钛(Ti),合金,自对准形成金属硅化物,清洗表面多余的金属,形成金属接触;光刻引线,构成MOS导电沟道为22~45nm的基于自对准工艺的应变Si BiCMOS集成器件。
7.根据权利要求6所述的方法,其特征在于,PMOS器件沟道长度根据第十二步淀积的N型应变Si层厚度确定,取22~45nm,NMOS器件的沟道长度由工艺决定,取22~45nm。
8.根据权利要求6所述的制备方法,其特征在于,该制备方法中应变SiCMOS器件制造过程中所涉及的化学汽相淀积(CVD)工艺温度决定,最高温度小于等于800℃。
9.根据权利要求6所述的制备方法,其特征在于,基区厚度根据第九步SiGe的外延层厚度来决定,取20~60nm。
10.一种基于自对准工艺的应变Si BiCMOS集成电路的制备方法,其特征在于,该制备方法包括如下步骤:
第一步、集电区与深槽隔离制备的实现方法为:
(1a)选取掺杂浓度为5×1014cm-3的P型Si片,作为衬底;
(1b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一厚度为300nm的SiO2层,光刻埋层区域,对埋层区域进行N型杂质的注入,形成N型重掺杂埋层区域;
(1c)刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为1.5μm的N型外延Si层,作为集电区,该层掺杂浓度为1×1016cm-3;
(1d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiO2;
(1e)光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5μm的深槽;
(1f)利用化学汽相淀积(CVD)方法,在600℃,在深槽内表面淀积SiO2层,将深槽内表面全部覆盖;
(1g)利用化学汽相淀积(CVD)方法,在600℃,在深槽内SiO2层上再淀积一层SiN层,将深槽内表面全部覆盖;
(1h)利用化学汽相淀积(CVD)方法,在600℃,在深槽内填充SiO2,利用化学机械抛光(CMP)方法,除去多余的氧化层,形成深槽隔离;
第二步、集电极接触区制备的实现方法为:
(2a)利用化学汽相淀积(CVD)的方法,在600℃,在上层Si材料上生长一层厚度为50nm的N型外延Si层,作为集电区,该层掺杂浓度为1×1016cm-3;
(2b)利用化学汽相淀积(CVD)的方法,在600℃,在外延Si层表面淀积一层厚度为500nm的氧化层;
(2c)光刻集电极接触区窗口;
(2d)对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019cm-3,形成集电极接触区域;
(2e)将衬底在950℃温度下,退火15s,进行杂质激活;
第三步、基区接触制备的实现方法为:
(3a)刻蚀掉衬底表面氧化层,利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiO2层,厚度为20nm;
(3b)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一P型Poly-Si层,作为基区接触区,该层厚度为200nm,掺杂浓度为1×1020cm-3;
(3c)光刻Poly-Si,形成外基区,在600℃,在衬底表面淀积SiO2层,厚度为200nm,利用化学机械抛光(CMP)的方法,去除Poly-Si表面的SiO2;
(3d)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一SiN层,厚度为50nm;
(3e)光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;
(3f)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积一层SiN层,厚度为10nm;
第四步、基区材料制备的实现方法为:
(4a)利用干法,刻蚀掉发射窗SiN,形成侧墙;
(4b)利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域;
(4c)利用化学汽相淀积(CVD)方法,在600℃,在基区区域选择性生长SiGe基区,Ge组分为15%,掺杂浓度为5×1018cm-3,厚度为20nm;
第五步、发射区制备的实现方法为:
(5a)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积Poly-Si,厚度为200nm;
(5b)对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
(5c)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积SiO2层,在950℃温度下退火120s,激活杂质;
第六步、PMOS器件有源区外延材料制备的实现方法为:
(6a)光刻PMOS器件有源区,用干法刻蚀方法,在PMOS器件有源区,刻蚀出深度为2μm的深槽;
(6b)利用化学汽相淀积(CVD)的方法,在600℃,在深槽中选择性生长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(6c)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.4μm的P型SiGe层,Ge组分底部为0%,上层为25%的梯度分布,掺杂浓度为1×1018cm-3;
(6d)用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1019cm-3,作为PMOS器件的漏区;
(6e)用化学汽相淀积(CVD)的方法,在600℃,在P型SiGe层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6f)利用化学汽相淀积(CVD)的方法,在600℃,在P型应变Si层上选择性生长一层厚度为22nm的N型应变Si层,作为PMOS器件沟道区,掺杂浓度为5×1016cm-3;
(6g)用化学汽相淀积(CVD)的方法,在600℃,在N型应变Si层上选择性生长一层厚度为3nm的P型应变Si层,掺杂浓度为1×1018cm-3,作为P型轻掺杂源漏结构(P-LDD);
(6h)利用化学汽相淀积(CVD)的方法,在600℃,在应变Si层上选择性生长一层厚度为200nm的Ge组分固定为25%的P型应变SiGe层,作为PMOS器件源区,掺杂浓度为5×1019cm-3,形成PMOS器件有源区;
第七步、NMOS器件有源区材料制备的实现方法为:
(7a)利用化学汽相淀积(CVD)的方法,在600℃,在衬底表面淀积一层SiO2;
(7b)光刻NMOS器件有源区,用干法刻蚀方法,在NMOS器件有源区,刻蚀出深度为1.9μm的深槽;
(7c)利用化学汽相淀积(CVD)的方法,在600℃,在NMOS器件有源区选择性生长一层厚度为200nm的P型Si缓冲层,掺杂浓度1×1015cm-3;
(7d)利用化学汽相淀积(CVD)的方法,在600℃,在Si缓冲层上选择性生长一层厚度为1.5μm的P型SiGe层,Ge组分梯度分布,底部为0%,顶部为25%,掺杂浓度为1×1015cm-3;
(7e)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上选择性生长一层Ge组分为25%,厚度为200nm的P型SiGe层,掺杂浓度为5×1016cm-3;
(7f)利用化学汽相淀积(CVD)的方法,在600℃,在SiGe层上生长一层厚度为10nm的P型应变Si层,NMOS器件沟道区,掺杂浓度为5×1016cm-3,形成NMOS器件有源区;
第八步、PMOS器件隔离和漏沟槽制备的实现方法为:
(8a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(8b)光刻PMOS器件源漏隔离区,利用干法刻蚀工艺,在PMOS器件源漏隔离区刻蚀出深度为0.3μm的浅槽;
(8c)利用化学汽相淀积(CVD)方法,在600℃,在浅槽内填充SiO2,形成源漏浅槽隔离;
(8d)光刻漏沟槽窗口,利用干法刻蚀工艺,在PMOS器件漏区域刻蚀出深度为0.4μm漏沟槽;
(8e)利用化学汽相淀积(CVD)方法,在600℃,在衬底表面淀积掺杂浓度为1×1020cm-3的P型Poly-Si,将PMOS器件漏沟槽填满,再去除掉PMOS器件漏沟槽表面以外的Poly-Si,形成漏连接区;
第九步、PMOS器件栅制备和PMOS器件形成的实现方法为:
(9a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(9b)光刻栅沟槽窗口,利用干法刻蚀工艺,在PMOS器件栅区域刻蚀出深度为0.4μm栅沟槽;
(9c)利用原子层化学汽相淀积(ALCVD)方法,在300℃,在衬底表面淀积高介电常数的HfO2层,作为PMOS器件的栅介质层,厚度为6nm;
(9d)利用化学汽相淀积(CVD)方法,在600℃,在栅沟槽中淀积掺杂浓度为1×1020cm-3的P型Poly-SiGe,Ge组分为30%,将PMOS器件栅沟槽填满;
(9e)刻栅介质和栅Poly-SiGe,在栅沟槽中形成PMOS器件栅极和源极,最终形成PMOS器件;
第十步、NMOS器件形成的实现方法为:
(10a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(10b)光刻NMOS器件有源区,利用原子层化学汽相淀积(ALCVD)方法,在300℃,在NMOS器件有源区表面淀积一层厚度为6nm的HfO2层,作为NMOS器件的栅介质;
(10c)利用化学汽相淀积(CVD)方法,在600℃,在栅介质层上淀积一层Ploy-SiGe层,Ge组分为30%,厚度为200nm,掺杂浓度为1×1020cm-3;
(10d)光刻栅介质和栅Poly-SiGe,形成栅极;
(10e)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,形成N型轻掺杂源漏结构(N-LDD),掺杂浓度均为1×1018cm-3;
(10f)利用化学汽相淀积(CVD)方法,在600℃,在NMOS器件有源区表面淀积一层3nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,在Ploy-SiGe侧壁保留下SiO2形成栅侧墙;
(10g)利用离子注入工艺,对NMOS器件有源区进行N型离子注入,自对准生成NMOS器件的源区和漏区,并快速热退火,使NMOS器件有源区的掺杂浓度达到1×1020cm-3,最终形成NMOS器件;
第十一步、构成BiCMOS集成电路的实现方法为:
(11a)在衬底表面利用化学汽相淀积(CVD)的方法,在600℃,淀积一SiO2层;
(11b)光刻引线孔;
(11c)在衬底表面溅射一层金属钛(Ti),合金;
(11d)光刻引线,形成PMOS器件漏极金属引线、源极金属引线,栅极金属引线,NMOS器件漏极金属引线、源极金属引线、栅极金属引线,双极晶体管发射极金属引线、基极金属引线、集电极金属引线,构成MOS导电沟道为22nm的基于自对准工艺的应变Si BiCMOS集成器件及电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210244090.XA CN102738158B (zh) | 2012-07-16 | 2012-07-16 | 一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210244090.XA CN102738158B (zh) | 2012-07-16 | 2012-07-16 | 一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102738158A true CN102738158A (zh) | 2012-10-17 |
CN102738158B CN102738158B (zh) | 2015-09-30 |
Family
ID=46993355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210244090.XA Expired - Fee Related CN102738158B (zh) | 2012-07-16 | 2012-07-16 | 一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102738158B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496184B2 (en) | 2014-04-04 | 2016-11-15 | International Business Machines Corporation | III-V, SiGe, or Ge base lateral bipolar transistor and CMOS hybrid technology |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142558A1 (en) * | 2001-03-29 | 2002-10-03 | Hsu Sheng Teng | Self-aligned SiGe HBT BiCMOS on SOI substrate and method of fabricating the same |
US20080142843A1 (en) * | 2003-12-26 | 2008-06-19 | Electronics And Telecommunications Research Institute | NMOS device, PMOS device, and SiGe HBT device formed on soi substrate and method of fabricating the same |
CN101673715A (zh) * | 2009-09-25 | 2010-03-17 | 中国电子科技集团公司第二十四研究所 | 浅结互补双极晶体管的制造方法 |
-
2012
- 2012-07-16 CN CN201210244090.XA patent/CN102738158B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020142558A1 (en) * | 2001-03-29 | 2002-10-03 | Hsu Sheng Teng | Self-aligned SiGe HBT BiCMOS on SOI substrate and method of fabricating the same |
US20080142843A1 (en) * | 2003-12-26 | 2008-06-19 | Electronics And Telecommunications Research Institute | NMOS device, PMOS device, and SiGe HBT device formed on soi substrate and method of fabricating the same |
CN101673715A (zh) * | 2009-09-25 | 2010-03-17 | 中国电子科技集团公司第二十四研究所 | 浅结互补双极晶体管的制造方法 |
Non-Patent Citations (1)
Title |
---|
颜哲: "应变CMOS器件结构模型研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9496184B2 (en) | 2014-04-04 | 2016-11-15 | International Business Machines Corporation | III-V, SiGe, or Ge base lateral bipolar transistor and CMOS hybrid technology |
US9812370B2 (en) | 2014-04-04 | 2017-11-07 | International Business Machines Corporation | III-V, SiGe, or Ge base lateral bipolar transistor and CMOS hybrid technology |
Also Published As
Publication number | Publication date |
---|---|
CN102738158B (zh) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102738160B (zh) | 一种基于回型沟道工艺的混合晶面SOI BiCMOS集成器件及制备方法 | |
CN102738152B (zh) | 一种双多晶的应变Si BiCMOS集成器件及制备方法 | |
CN102738158B (zh) | 一种基于自对准工艺的应变Si BiCMOS集成器件及制备方法 | |
CN102723331B (zh) | 一种基于应变Si回型沟道工艺的应变BiCMOS集成器件及制备方法 | |
CN102800681B (zh) | 一种SOI SiGe BiCMOS集成器件及制备方法 | |
CN102738154B (zh) | 一种垂直沟道混合晶面应变BiCMOS集成器件及制备方法 | |
CN102790052A (zh) | 一种基于SiGe HBT的三应变BiCMOS集成器件及制备方法 | |
CN102723335B (zh) | 一种双应变混合晶面SOI BiCMOS集成器件及制备方法 | |
CN102738157B (zh) | 一种应变Si/应变SiGe-HBT BiCMOS集成器件及制备方法 | |
CN102800680B (zh) | 一种混合晶面垂直沟道Si基BiCMOS集成器件及制备方法 | |
CN102738175B (zh) | 一种基于SOI衬底的BiCMOS集成器件及制备方法 | |
CN102842584B (zh) | 一种应变Si垂直沟道SOI BiCMOS集成器件及制备方法 | |
CN102738162B (zh) | 一种基于自对准工艺的混合晶面双多晶应变BiCMOS集成器件及制备方法 | |
CN102723343B (zh) | 一种基于晶面选择的三多晶平面BiCMOS集成器件及制备方法 | |
CN102723330B (zh) | 一种应变Si BiCMOS集成器件及制备方法 | |
CN102738151B (zh) | 一种SiGe HBT器件应变Si BiCMOS集成器件及制备方法 | |
CN102751280B (zh) | 一种应变SiGe回型沟道BiCMOS集成器件及制备方法 | |
CN102916015A (zh) | 一种基于SOI SiGe HBT的应变Si BiCMOS集成器件及制备方法 | |
CN102751289B (zh) | 一种基于晶面选择的三应变SOI Si基BiCMOS集成器件及制备方法 | |
CN102820297B (zh) | 一种应变SiGe垂直回型沟道BiCMOS集成器件及制备方法 | |
CN102751293B (zh) | 一种SOI三应变平面BiCMOS集成器件及制备方法 | |
CN102738177B (zh) | 一种基于SOI衬底的应变Si BiCMOS集成器件及制备方法 | |
CN102751292A (zh) | 一种基于三多晶SiGe HBT的混合晶面应变BiCMOS集成器件及制备方法 | |
CN102723340A (zh) | 一种SOI BJT双应变平面BiCMOS集成器件及制备方法 | |
CN102820307A (zh) | 一种基于SOI衬底的双多晶平面应变BiCMOS集成器件及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150930 Termination date: 20200716 |