CN102677086B - 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法 - Google Patents

一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法 Download PDF

Info

Publication number
CN102677086B
CN102677086B CN201210180918.XA CN201210180918A CN102677086B CN 102677086 B CN102677086 B CN 102677086B CN 201210180918 A CN201210180918 A CN 201210180918A CN 102677086 B CN102677086 B CN 102677086B
Authority
CN
China
Prior art keywords
polyaniline
electrode
hybrid material
preparation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210180918.XA
Other languages
English (en)
Other versions
CN102677086A (zh
Inventor
郝晓刚
凌丽霞
王忠德
孙守斌
张忠林
马旭莉
刘世斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Yijia Environmental Protection Technology Co ltd
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201210180918.XA priority Critical patent/CN102677086B/zh
Publication of CN102677086A publication Critical patent/CN102677086A/zh
Application granted granted Critical
Publication of CN102677086B publication Critical patent/CN102677086B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法,其所述方法是采用电压脉冲一步共聚法在涂有碳纳米管的导电基体表面,通过调整电压脉冲参数调控复合膜中聚苯胺/铁氰化镍组分含量比和立方纳米颗粒尺度,制得聚苯胺/铁氰化镍杂化材料是电化学传感器和超级电容器的优良材料,具有优良的电催化性能和超级电容性能,而且制备方法简单,可控性强。

Description

一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法
技术领域
本发明涉及一种聚苯胺/铁氰化镍杂化材料的制备方法,特别是一种电压脉冲一步共聚法制备立方纳米颗粒聚苯胺/铁氰化镍杂化材料。
技术背景
有机无机杂化材料是一种均匀的多相材料,与具有较大微相尺寸的传统的复合材料相比有明显的区别。有机无机杂化材料具有纳米材料的小尺寸效应、表面效应、量子尺寸效应等性质。此外,这种材料的形态和性能可在相当大的范围内进行调节,使材料的性能呈现多样化。因此,该材料综合了有机无机各自的优点,具有较高的稳定性,在力学、热学、光学、电磁学和生物学等方面具有许多优异性能,成为材料学科研究的热点。
目前有机无机杂化材料的制备方法主要有溶胶凝胶法、共混法、原位聚合法、插层法、电化学方法等。溶胶凝胶法[Anal. Biochem., 2004, 329: 247-252] 一般会发生较为明显的相分离,很难得到均质的复合材料,从而严重影响了材料的光学和力学等性能;共混法[J. Membr. Sci., 2011, 378: 503-511] 有机相易发生团聚可导致材料的组分分布不均匀,难以达到可控制备;原位聚合法[Dyes Pigm., 2008, 79: 236] 制备时间较长,所制备材料的稳定性较差,原材料消耗较大;插层法[Thermochim. Acta, 2010, 507-508: 142-145]缺点是只适用于具有层状结构的无机物;电化学方法[Electrochem. Commun., 2005, 7: 875-878]因其突出优点受到广泛的关注,Lisowska-Oleksiak [J. Power Sources, 2007, 173: 829]等通过两步电化学聚合获得了PEDOT/MHCF 杂化膜;Kulesza [Electrochim. Acta, 2007, 53: 1235]等采用交替浸渍+电聚合方法合成了PyBA/PEDOT/NiHCF以及磷钼酸修饰的CNTs/PEDOT(PANI)杂化膜。由于带正电的导电聚合物与带负电的 MHCF之间的静电吸引作用复合材料显示出快速的离子传递能力和良好的化学稳定性, 但上述多步合成方法相当复杂且材料各方面性能尚需改进。
碳纳米管修饰电极拥有优异的电化学性能,与传统的碳材料相比,具有大的比表面积,可以为电化学反应提供足够的反应场所。而且,碳纳米管表面的石墨烯片层结构可以使其具有很大的疏水性和共轭性,可以和许多功能分子发生作用,从而提供更多的电化学功能。而碳纳米管复合材料修饰电极不仅具有碳纳米管的优异性能,还拥有与其复合的材料的独特性质,因而将具有更为优异的协同电催化性能。
发明内容
本发明要解决的技术问题是现有制备有机无机杂化材料的相融合性差、组分分布不均匀、电荷传导能力和稳定性差,提供一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法。
本发明上述所提供的一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法,其所述方法按下列步骤进行:
(1)将0.002~0.01mol·L-1 的铁氰化钾、0.002~0.01mol·L-1 的硫酸镍、0.25 mol·L-1 的硫酸钠、0.5 mol·L-1 的硫酸和0.01~0.2 mol·L-1的苯胺进行混合,获得混合溶液;
(2)采用三电极体系在导电基体上电压脉冲一步共聚制备聚苯胺/铁氰化镍杂化膜电极,脉冲信号设置:脉冲高电压为:0.7~1.2V;脉冲低电压为:-0.2~0.5V;高电压脉冲时间为:0.05~1.0s;低电压脉冲时间为:0.4~2s;脉冲次数为:100~300次;
(3)将制备好的聚苯胺/铁氰化镍杂化膜电极取出用蒸馏水冲洗,常温干燥,即得到立方纳米颗粒聚苯胺/铁氰化镍杂化材料。
上述技术方案所附加的技术特征在于:所述导电基体为碳纳米管修饰的惰性基体;所述三电极是碳纳米管修饰的惰性基体为工作电极,惰性电极为对电极,饱和甘汞电极为参比电极。
实施本发明上述的一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法的技术方案解决了现有溶胶凝胶法、共混法、原位聚合法和插层法在制备有机无机杂化材料过程中存在的操作复杂,制备所带来的二次污染,杂化材料电化学性能低等问题;同时改进了多步和其它电化学方法的制备结构缺陷。提供了一种操作简单、杂化材料可控和无二次污染的立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法,且该方法所制备的杂化材料电化学性能良好且稳定性较高。本发明方法与现有技术相比,其突出的特点主要体现在于:
(1)本方法制得的立方纳米颗粒聚苯胺/铁氰化镍杂化材料综合了有机无机各自的优点,使导电聚苯胺与无机铁氰化镍真正实现了分子杂化,增强了分子间的质、核传递性能。
(2)本方法通过调整电压脉冲参数,可调控复合膜中铁氰化镍/聚苯胺组分含量比和立方纳米颗粒尺度。
(3)本方法所采用的原料价廉易得,无需预处理,降低了制备成本。
(4)本方法合成反应过程工艺流程操作简单,通过调整电压脉冲参数便可控制杂化材料形貌与性能。
(5)本方法材料制备过程影响因素少,重现性好。
(6)本方法反应条件温和,在常温下进行,反应时间短,能耗少。
(7)本方法形成立方纳米颗粒,且分布均匀。
(8)本方法制得的杂化材料具有良好的电催化活性和超级电容性能,且稳定性高。
附图说明
图1是本发明方法实施例1下制备的铁氰化镍/聚苯胺复合膜的SEM照片。
图2是本发明方法实施例1下制备的铁氰化镍/聚苯胺复合膜的红外光谱图。
具体实施方式
下面对本发明的具体实施方式进一步说明。
实施例1
本发明采用电压脉冲一步共聚法制备立方纳米颗粒聚苯胺/铁氰化镍杂化材料,该方法操作简单易行,通过调整脉冲参数可调控复合膜中铁氰化镍/聚苯胺组分含量比和立方纳米颗粒尺度。使用该方法制得的杂化材料综合了有机无机各自的优点,使导电聚苯胺与无机铁氰化镍真正实现了分子杂化,其稳定性和电化学性能得到提高。本发明采取的方法按下列步骤进行:
步骤1、将1.3142g的硫酸镍溶于500ml的水溶液中配置成0.01 mol/L的硫酸镍水溶液A;
步骤2、将88.7875g的硫酸钠溶于500ml的水溶液中配置成1.25 mol/L的硫酸钠水溶液B;
步骤3、将127.1625g的硫酸溶于500ml的水溶液中配置成2.5 mol/L的硫酸水溶液C;
步骤4、将1.6463g的铁氰化钾溶于500ml的水溶液中配置成0.01 mol/L的铁氰化钾水溶液D;
步骤5、将9.312g苯胺单体溶于100ml的水溶液中配置成1.0 mol/L的苯胺水溶液E;
步骤6、将溶液A, B, C, D, E分别取5ml置入烧杯中搅拌均匀;
步骤7、采用三电极体系(对电极为铂片,工作电极为0.5cm2经碳纳米管修饰过的铂片,饱和甘汞电极为参比电极)。设置双脉冲信号为:高电位=0.95V、时间0.4s,低电位=0.3V、时间1s,脉冲次数150次;
步骤8、将制备好的复合膜电极取出用蒸馏水冲洗干净,常温干燥48h,即可得到具有分布均匀纳米颗粒的复合膜。所制备复合膜中铁氰化镍(KNiFe(CN)6)和聚苯胺(-C6H4-NH-)4的摩尔比为1:2,检测双氧水灵敏度为1530mA·M-1·cm-2
实施例2
步骤1、将1.3142g的硫酸镍溶于500ml的水溶液中配置成0.01 mol/L的硫酸镍水溶液A;
步骤2、将88.7875g的硫酸钠溶于500ml的水溶液中配置成1.25 mol/L的硫酸钠水溶液B;
步骤3、将127.1625g的硫酸溶于500ml的水溶液中配置成2.5 mol/L的硫酸水溶液C;
步骤4、将1.6463g的铁氰化钾溶于500ml的水溶液中配置成0.01 mol/L的铁氰化钾水溶液D;
步骤5、将9.312g苯胺单体溶于100ml的水溶液中配置成1.0 mol/L的苯胺水溶液E;
步骤6、将溶液A, B, C, D, E分别取5ml置入烧杯中搅拌均匀;
步骤7、采用三电极体系(对电极为铂片,工作电极为0.5cm2经碳纳米管修饰过的铂片,饱和甘汞电极为参比电极)。设置双脉冲信号为:高电位=1.1V、时间1.0s,低电位=0.4V、时间1.0s,脉冲次数150次;
步骤8、将制备好的复合膜电极取出用蒸馏水冲洗干净,常温干燥48h,即可得到具有分布均匀纳米颗粒的复合膜。所制备复合膜中铁氰化镍(KNiFe(CN)6)和聚苯胺(-C6H4-NH-)4的摩尔比为1:3.2,在电流密度为 20 mA cm-2 充放电时复合膜的比容量高达361 F g-1
实施例3
步骤1、将1.3142g的硫酸镍溶于500ml的水溶液中配置成0.01 mol/L的硫酸镍水溶液A;
步骤2、将88.7875g的硫酸钠溶于500ml的水溶液中配置成1.25 mol/L的硫酸钠水溶液B;
步骤3、将127.1625g的硫酸溶于500ml的水溶液中配置成2.5 mol/L的硫酸水溶液C;
步骤4、将1.6463g的铁氰化钾溶于500ml的水溶液中配置成0.01 mol/L的铁氰化钾水溶液D;
步骤5、将9.312g苯胺单体溶于100ml的水溶液中配置成1.0 mol/L的苯胺水溶液E;
步骤6、将溶液A, B, C, D, E分别取5ml置入烧杯中搅拌均匀;
步骤7、采用三电极体系(对电极为铂片,工作电极为0.5cm2经碳纳米管修饰过的铂片,饱和甘汞电极为参比电极)。设置双脉冲信号为:高电位=0.95V、时间0.4s,低电位=0.3V、时间2s,脉冲次数150次;
步骤8、将制备好的复合膜电极取出用蒸馏水冲洗干净,常温干燥48h,即可得到具有分布均匀纳米颗粒的复合膜。所制备复合膜中铁氰化镍(KNiFe(CN)6)和聚苯胺(-C6H4-NH-)4的摩尔比为1:1.6,检测双氧水灵敏度为3119 mA·M-1·cm-2
实施例4
步骤1、将1.3142g的硫酸镍溶于500ml的水溶液中配置成0.01 mol/L的硫酸镍水溶液A;
步骤2、将88.7875g的硫酸钠溶于500ml的水溶液中配置成1.25 mol/L的硫酸钠水溶液B;
步骤3、将127.1625g的硫酸溶于500ml的水溶液中配置成2.5 mol/L的硫酸水溶液C;
步骤4、将1.6463g的铁氰化钾溶于500ml的水溶液中配置成0.01 mol/L的铁氰化钾水溶液D;
步骤5、将9.312g苯胺单体溶于100ml的水溶液中配置成1.0 mol/L的苯胺水溶液E;
步骤6、将溶液A, B, C, D, E分别取5ml置入烧杯中搅拌均匀;
步骤7、采用三电极体系(对电极为铂片,工作电极为0.5cm2经碳纳米管修饰过的铂片,饱和甘汞电极为参比电极)。设置双脉冲信号为:高电位=1.0V、时间0.4s,低电位=0.5V、时间1s,脉冲次数300次;
步骤8、将制备好的复合膜电极取出用蒸馏水冲洗干净,常温干燥48h,即可得到具有分布均匀纳米颗粒的复合膜。所制备复合膜中铁氰化镍(KNiFe(CN)6)和聚苯胺(-C6H4-NH-)4的摩尔比为1:2.5,在电流密度为 20 mA cm-2 充放电时复合膜的比容量高达232 F g-1

Claims (1)

1.一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法,包括电压脉冲一步共聚法,其所述方法按下列步骤进行:
(1)将0.002~0.01mol·L-1 的铁氰化钾、0.002~0.01mol·L-1 的硫酸镍、0.25 mol·L-1 的硫酸钠、0.5 mol·L-1 的硫酸和0.01~0.2 mol·L-1 的苯胺进行混合,获得混合溶液;
(2)采用三电极体系在碳纳米管修饰的惰性基体上电压脉冲一步共聚制备聚苯胺/铁氰化镍杂化膜电极,脉冲信号设置:脉冲高电压为: 0.7~1.2V;脉冲低电压为:-0.2~0.5V;高电压脉冲时间为:0.05~1.0s;低电压脉冲时间为:0.4~2s;脉冲次数为:100~300次;
(3)将制备的聚苯胺/铁氰化镍杂化膜电极取出用蒸馏水冲洗,常温干燥,得到立方纳米颗粒聚苯胺/铁氰化镍杂化材料;
所述三电极是碳纳米管修饰的惰性基体为工作电极,惰性电极为对电极,饱和甘汞电极为参比电极。
CN201210180918.XA 2012-06-05 2012-06-05 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法 Active CN102677086B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210180918.XA CN102677086B (zh) 2012-06-05 2012-06-05 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210180918.XA CN102677086B (zh) 2012-06-05 2012-06-05 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法

Publications (2)

Publication Number Publication Date
CN102677086A CN102677086A (zh) 2012-09-19
CN102677086B true CN102677086B (zh) 2015-03-11

Family

ID=46809617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210180918.XA Active CN102677086B (zh) 2012-06-05 2012-06-05 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法

Country Status (1)

Country Link
CN (1) CN102677086B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214689B (zh) * 2013-03-20 2014-06-11 太原理工大学 一种离子印迹聚合物薄膜的制备方法
CN104264206B (zh) * 2014-10-09 2016-08-24 太原理工大学 一种合成无定形聚苯胺/磷酸锆复合膜的方法
CN110082414B (zh) * 2019-05-30 2021-07-27 山西大学 核酸适配体-镍铁氰纳米粒子-rgo电极的制备和应用
CN110470710B (zh) * 2019-07-04 2021-08-20 西安工程大学 一种电磁复合材料的制备及测试方法
CN114031308A (zh) * 2021-12-09 2022-02-11 上海第二工业大学 一种聚苯胺/铁氰化铜电致变色复合薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101358371A (zh) * 2008-09-20 2009-02-04 太原理工大学 单一结构铁氰化物薄膜单极脉冲电沉积的制备方法
CN101942090A (zh) * 2010-09-10 2011-01-12 太原理工大学 一种纳米纤维聚苯胺的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101358371A (zh) * 2008-09-20 2009-02-04 太原理工大学 单一结构铁氰化物薄膜单极脉冲电沉积的制备方法
CN101942090A (zh) * 2010-09-10 2011-01-12 太原理工大学 一种纳米纤维聚苯胺的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polyme;Kulesza P J等;《Electrochimica Acta》;20011231;第46卷(第26-27期);4065-4073页 *
单极脉冲电化学合成聚苯胺膜及其超级电容性能;李越等;《化工学报》;20101231;第61卷;120-125页 *
碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能;臧杨等;《物理化学学报》;20091231;第26卷;293页实验部分,297页结论部分 *

Also Published As

Publication number Publication date
CN102677086A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
Arthisree et al. Optically active polymer nanocomposite composed of polyaniline, polyacrylonitrile and green-synthesized graphene quantum dot for supercapacitor application
Su et al. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes
Ajdari et al. New synthesized ionic liquid functionalized graphene oxide: synthesis, characterization and its nanocomposite with conjugated polymer as effective electrode materials in an energy storage device
Wu et al. Facile fabrication of polyaniline nanotubes using the self-assembly behavior based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical supercapacitor electrode
Li et al. Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances
Huang et al. Ordered polypyrrole nanowire arrays grown on a carbon cloth substrate for a high-performance pseudocapacitor electrode
Jiang et al. Nanostructured ternary nanocomposite of rGO/CNTs/MnO2 for high-rate supercapacitors
Wu et al. Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor
Shao et al. Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors
Hu et al. A hierarchical nanostructure consisting of amorphous MnO2, Mn3O4 nanocrystallites, and single-crystalline MnOOH nanowires for supercapacitors
Li et al. Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors
CN101671478B (zh) 一种碳纳米管/聚苯胺网状复合材料的制备方法
Zhao et al. An electrochemical capacitor electrode based on porous carbon spheres hybrided with polyaniline and nanoscale ruthenium oxide
Oskueyan et al. Nitrogen and sulfur Co-Doped graphene quantum dots decorated CeO2 nanoparticles/polyaniline: As high efficient hybrid supercapacitor electrode materials
CN101942090B (zh) 一种纳米纤维聚苯胺的制备方法
Liu et al. One-step potentiodynamic synthesis of poly (1, 5-diaminoanthraquinone)/reduced graphene oxide nanohybrid with improved electrocatalytic activity
CN102677086B (zh) 一种立方纳米颗粒聚苯胺/铁氰化镍杂化材料的制备方法
Dong et al. The synthesis of graphene/PVDF composite binder and its application in high performance MnO2 supercapacitors
Luo et al. Synthesis of polyaniline/SnO2 nanocomposite and its improved electrochemical performance
Ma et al. Capacitance comparison of poly (indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte
Anandhu et al. High areal capacitance and enhanced cycling stability of binder-free, pristine polyaniline supercapacitor using hydroquinone as a redox additive
Das et al. Self-assembled nanostructured MoS2 quantum dot polyaniline hybrid gels for high performance solid state flexible supercapacitors
Chahal et al. Novel manganese oxide decorated polyaniline/graphitic carbon nitride nanohybrid material for efficient supercapacitor application
Zou et al. Tungsten oxide and polyaniline composite fabricated by surfactant‐templated electrodeposition and its use in supercapacitors
Li et al. Preparation of core–shell CQD@ PANI nanoparticles and their electrochemical properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210915

Address after: 043700 low carbon circular economy industrial cluster in Yuanqu County, Yuncheng City, Shanxi Province

Patentee after: Shanxi Yijia Environmental Protection Technology Co.,Ltd.

Address before: 030024 No. 79 West Main Street, Taiyuan, Shanxi, Yingze

Patentee before: Taiyuan University of Technology

PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Preparation method of cubic nano particle polyaniline / nickel ferricyanide hybrid material

Effective date of registration: 20220527

Granted publication date: 20150311

Pledgee: Yunsheng commercial factoring (Shenzhen) Co.,Ltd.

Pledgor: Shanxi Yijia Environmental Protection Technology Co.,Ltd.

Registration number: Y2022140000018

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230519

Granted publication date: 20150311

Pledgee: Yunsheng commercial factoring (Shenzhen) Co.,Ltd.

Pledgor: Shanxi Yijia Environmental Protection Technology Co.,Ltd.

Registration number: Y2022140000018

PC01 Cancellation of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A Preparation Method of Cubic Nanoparticle Polyaniline/Nickel Ferricyanide hybrid material

Effective date of registration: 20230522

Granted publication date: 20150311

Pledgee: Yunsheng commercial factoring (Shenzhen) Co.,Ltd.

Pledgor: Shanxi Yijia Environmental Protection Technology Co.,Ltd.

Registration number: Y2023140000024

PE01 Entry into force of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Granted publication date: 20150311

Pledgee: Yunsheng commercial factoring (Shenzhen) Co.,Ltd.

Pledgor: Shanxi Yijia Environmental Protection Technology Co.,Ltd.

Registration number: Y2023140000024