CN102668133A - 形成于n-掺杂衬底上的多结太阳能电池 - Google Patents

形成于n-掺杂衬底上的多结太阳能电池 Download PDF

Info

Publication number
CN102668133A
CN102668133A CN201080052437XA CN201080052437A CN102668133A CN 102668133 A CN102668133 A CN 102668133A CN 201080052437X A CN201080052437X A CN 201080052437XA CN 201080052437 A CN201080052437 A CN 201080052437A CN 102668133 A CN102668133 A CN 102668133A
Authority
CN
China
Prior art keywords
knot
substrate
solar cell
tunnel junction
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201080052437XA
Other languages
English (en)
Inventor
迈克尔·W·维摩
侯曼·B·禺恩
维基特·A·萨博尼斯
迈克尔·J·谢尔登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solar Junction Corp
Original Assignee
Solar Junction Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Junction Corp filed Critical Solar Junction Corp
Publication of CN102668133A publication Critical patent/CN102668133A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

公开了“n-on-p”型多结太阳能电池结构,其利用了n型衬底用于III-V半导体材料的外延生长,其中“p-on-n”隧道结二极管设置在衬底与III-V半导体材料的一个或多个异质外延层之间。

Description

形成于N-掺杂衬底上的多结太阳能电池
相关申请的交叉引用
本申请根据35 USC 119(e)要求于2009年11月18日提交的、题为“MULTIJUNCTION SOLAR CELLS FORMED ON N-DOPEDSUBSTRATES(形成于N-掺杂衬底上的多结太阳能电池)”的第61/262,374号美国临时申请的权益,该申请的全部内容通过引用并入本文。
关于对在联邦资助的研究或开发下做出的发明的权利的声明
不适用
对以“序列表”、表格、或随压缩光盘提交的计算机程序表附件的引用
不适用
背景技术
本发明涉及用于构造基于III-V材料(诸如镓和砷化物)的太阳能电池的结构和技术。更具体地,本发明涉及形成用于含有III-V材料的装置或结构的电端子的可靠导电接触的问题。
如图1中的剖视图所示,传统或已知的基于III-V GaAs的太阳能电池可被分为三部分:下部、中部、以及上部。下部10是生长衬底,装置的各个层顺序地生长在生长衬底上。在典型的多结太阳能电池中,下部10通常为p-GaAs或p-Ge衬底,其余的层生长在该衬底上。此外,该下部可包括后部或底部电接触部11,以从电池向某些类型的负载导电。中部20代表异质外延III-V装置层,形成完全包含在中间区域内的至少一个p-n结。上部30代表需要完成与装置的电接触的半导体和金属层,此外,还代表常包含在这种装置内的抗反射涂层(ARC)。
通常,上部30中的金属和半导体层被构图为线条栅格40,如图3所示。栅格线图案的许多变型是可能的。用于栅格的金属堆叠的厚度必须足以使电池所产生的太阳能生成电流在较小电阻下传导。主要包含银或金的金属堆叠厚度通常为约5μm的量级。文献中和现有技术中描述了III-V太阳能电池的多种不同设计,这些设计使用各种材料和制造技术。图2中示出了两结太阳能电池的示意性剖视图。
面向太阳的层又称为最上部结的最上层或顶层。大多数太阳能电池结包括位于较厚p型基极区顶部的较薄n型发射极区(“n-on-p”型结构)。为了使电池适当地工作,III-V堆内的所有结均必须具有相同的定向。因此,如果一个结是“n-on-p”型,则电池中的所有结也必须是“n-on-p”型。多结太阳能电池堆叠中的结可包括背面电场和正面电场。隧道结可连接各种子电池p-n结。
因为III-V堆叠内的结需要统一的定向,故标准的“n-on-p”型太阳能电池通常生长于p-掺杂衬底(诸如p-GaAs或p-Ge)上。衬底在这种电池中常常被用作最下部结的底层。然而,p-掺杂GaAs衬底通常比可替换的n型或半绝缘(SI)变体更加昂贵。因此,期望通过使用低成本n-掺杂生长衬底来降低“n-on-p”型太阳电池的生产成本。然而,直接这样做将导致最下部结的反定向,从而导致太阳能电池无法正常工作。
发明内容
根据本发明,提供了一种使用n-GaAs(或其它n-掺杂半导体材料)作为用于“n-on-p”型太阳能电池设计的衬底的方法,该方法包括在衬底之上将“p-on-n”隧道结二极管沉积为第一层材料,以及将全部III-V堆叠沉积在隧道二极管之上。其它层可生长于衬底与第一隧道结之间,只要其它层的掺杂类型为n型或者为未掺杂的。与太阳能电池中的其它隧道结一样,该第一隧道结在非整流状态下工作。在电学方面上,隧道结像低阻值电阻器一样工作并且不阻碍电流流动。
通过下面结合附图的详细描述,本发明将被更好地理解。
附图说明
图1是代表太阳能电池的概括(现有技术)的截面图,其中太阳能电池包括金属层上的下部、中部和上部。
图2是代表双结n-on-p型太阳能电池堆叠的概括(现有技术)的截面图。
图3是示意性地描绘(现有技术)金属栅格布局的平面图。
图4是根据本发明的p-on-n型装置的示意性形式的截面图,其中隧道结已经插入衬底与III-V异质外延太阳能电池装置层之间,代表三结、四结或五结太阳能电池。
图5是在模拟的“1-太阳”太阳光谱构成的光施加至太阳能电池的情况下,InGaP/GaAs多结太阳能电池的电流-电压特性的图解表示。
具体实施方式
图4示出了本发明。“n-on-p”型太阳能电池装置包括上部30、中部20、以及作为下部10的n型衬底。附加的隧道结50沉积在下部10与中部20之间,并且隧道结50基本将衬底的n-掺杂表面转换为p-掺杂材料。可将标准的n型半导体和金属接触部11制造为n型衬底10。
具体实施方式在隧道结50上使用稀释氮化物子电池,导致太阳能电池能够吸收较长波长的能量,而不需要依赖对作为子电池结构的一部分的衬底的使用。该实施方式特别有利,因为其将较长波长子电池的性能与低成本n型GaAs衬底相结合,其中太阳能电池中的所有基极层和发射极层均是彼此晶格匹配的。稀释氮化物通常被认为是氮含量小于5%的III-V型半导体合金。在本文中,术语较长波长是指与小于1.42eV(等价于纯GaAs的带隙)的能量相对应的波长,或波长大于约870nm的波长。晶格匹配层的晶体结构是一致的,并且尽管在层中可能出现应力,层间也不松弛或分离。
通过适当选择成分,能够独立地改变稀释氮化物的带隙和晶格常数,从而允许稀释氮化物,例如,与砷化镓衬底晶格匹配,并具有用于具体装置设计的最佳带隙。例如,在三结太阳能电池的情况下,最长波长结的最佳带隙约为1eV(0.93eV至1.05eV)。使用稀释氮化物材料能够获得这种带隙,并保持与GaAs的晶格匹配。这类三结太阳能电池可具有由砷化镓和磷化铟镓构成的第二结和第三结。在这种情况下,所有n-on-p结中的大多数都能够与衬底晶格匹配。
另一个具体实施方式涉及将硅-锗合金作为最长波长吸收结的使用。硅-锗材料能够容易地与GaAs衬底晶格匹配。通过向锗添加约2%的硅,实现与GaAs的晶格匹配。将硅添加至锗特别有助于子电池与砷化镓衬底的晶格匹配。这种材料具有接近0.7eV的带隙。包括硅-锗子电池的三结装置可被构造为与上述基于稀释氮化物的结构类似。
制备于n-GaAs衬底上的“n-on-p”型太阳能电池使用该方法。图5示出了在约1个太阳的光学功率下工作的这种装置的电流-电压(IV)曲线。该示范装置是双结太阳能电池,该双结太阳能电池的设计与图2所示设计类似,但在衬底10与堆叠20之间具有额外的隧道结,如图4所示。该最底部隧道结由p++GaAs和n++GaAs形成。测量该装置并获得13.4mA/cm2的1-太阳短路电流、2.26V的开路电压、以及>85%的填充因子,清楚地说明该设计的可行性。
本发明将对具有1至n个结(其中n>1)的许多不同多结装置有效。本领域技术人员应理解,适于两结或三结装置的方案还可用于更多或更少结,诸如四结太阳能电池或五结太阳能电池。本发明能够与用于制造太阳能电池或太阳能电池结的许多不同材料和结构一起使用,包括但不限于稀释氮化物材料,变质InGaAs层、量子点、量子阱,等等。本文描述的本发明适用于任何广义上的“n-on-p”型太阳能电池装置,其中,所有太阳能吸收结均包含在图2中所示的堆叠20内。本发明可用于晶格匹配结构。衬底10不是太阳能吸收结的一部分。因此,本公开仅为代表性和示意性的,而非本领域技术人员可使用本发明的所有方法的决定性讨论。
本发明已经参照具体实施方式进行了说明。对于本领域技术人员来说,其它实施方式将是显而易见的。因此,除了所附权利要求所指示的之外,不打算对本发明进行限制。

Claims (15)

1.一种装置,包括:
衬底,由n-掺杂半导体材料构成,并与金属导体电接触;
p-on-n隧道结二极管,设置于所述衬底之上;
一个或多个n-on-p结,设置于所述隧道结二极管之上;
金属栅格,与最上层半导体电接触,
其中所述衬底、所述p-on-n隧道结二极管、所述一个或多个n-on-p结以及所述金属栅格共同形成光伏装置。
2.根据权利要求1所述的装置,其中与所述金属栅格接触的所述最上层半导体为n型。
3.根据权利要求1所述的装置,其中所述隧道结二极管利用了n++GaAs上的p++GaAs。
4.根据权利要求1所述的装置,其中所形成的光伏装置是三结太阳能电池。
5.根据权利要求4所述的装置,其中所述n-on-p结中的至少一个具有约1eV的带隙或处于0.93eV与1.05eV之间的带隙。
6.根据权利要求5所述的装置,其中至少第一结包含与所述衬底晶格匹配的稀释氮化物材料。
7.根据权利要求6所述的装置,其中至少第二结和第三结包含砷化镓和磷化铟镓,并且所有所述n-on-p结均与所述衬底晶格匹配。
8.根据权利要求7所述的装置,其中所述衬底包含n型砷化镓。
9.根据权利要求5所述的装置,其中所述约1eV的结包含不与所述衬底晶格匹配的材料。
10.根据权利要求4所述的装置,其中至少一个结包含与所述衬底晶格匹配的硅-锗材料。
11.根据权利要求1所述的装置,其中所形成的光伏装置为四结太阳能电池。
12.根据权利要求11所述的装置,其中至少第一结包含与所述衬底晶格匹配的稀释氮化物材料。
13.根据权利要求1所述的装置,其中所形成的光伏装置为五结太阳能电池。
14.根据权利要求13所述的装置,其中至少第一结包含与所述衬底晶格匹配的稀释氮化物材料。
15.根据权利要求1所述的装置,其中所述一个或多个n-on-p结包括被确定为位于元素周期表的III族和V族中的材料。
CN201080052437XA 2009-11-18 2010-11-16 形成于n-掺杂衬底上的多结太阳能电池 Pending CN102668133A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US26237409P 2009-11-18 2009-11-18
US61/262,374 2009-11-18
US12/944,439 US20110114163A1 (en) 2009-11-18 2010-11-11 Multijunction solar cells formed on n-doped substrates
US12/944,439 2010-11-11
PCT/US2010/056800 WO2011062886A1 (en) 2009-11-18 2010-11-16 Multijunction solar cells formed on n-doped substrates

Publications (1)

Publication Number Publication Date
CN102668133A true CN102668133A (zh) 2012-09-12

Family

ID=44010382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080052437XA Pending CN102668133A (zh) 2009-11-18 2010-11-16 形成于n-掺杂衬底上的多结太阳能电池

Country Status (5)

Country Link
US (1) US20110114163A1 (zh)
EP (1) EP2502286A1 (zh)
JP (1) JP2013511845A (zh)
CN (1) CN102668133A (zh)
WO (1) WO2011062886A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
US20110232730A1 (en) 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US9214580B2 (en) 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US8962991B2 (en) 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8766087B2 (en) 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
WO2013074530A2 (en) 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells
US9153724B2 (en) 2012-04-09 2015-10-06 Solar Junction Corporation Reverse heterojunctions for solar cells
US20140373906A1 (en) * 2013-06-25 2014-12-25 Solar Junction Corporation Anti-reflection coatings for multijunction solar cells
EP3103142B1 (en) 2014-02-05 2020-08-19 Array Photonics, Inc. Monolithic multijunction power converter
US20170110613A1 (en) 2015-10-19 2017-04-20 Solar Junction Corporation High efficiency multijunction photovoltaic cells
CN106611805A (zh) * 2015-10-22 2017-05-03 中国科学院苏州纳米技术与纳米仿生研究所 光伏器件及其制备方法、多结GaAs叠层激光光伏电池
US10930808B2 (en) 2017-07-06 2021-02-23 Array Photonics, Inc. Hybrid MOCVD/MBE epitaxial growth of high-efficiency lattice-matched multijunction solar cells
EP3669402A1 (en) 2017-09-27 2020-06-24 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having a dilute nitride layer
US10586884B2 (en) * 2018-06-18 2020-03-10 Alta Devices, Inc. Thin-film, flexible multi-junction optoelectronic devices incorporating lattice-matched dilute nitride junctions and methods of fabrication
US11211514B2 (en) 2019-03-11 2021-12-28 Array Photonics, Inc. Short wavelength infrared optoelectronic devices having graded or stepped dilute nitride active regions

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4404421A (en) * 1982-02-26 1983-09-13 Chevron Research Company Ternary III-V multicolor solar cells and process of fabrication
US4881979A (en) * 1984-08-29 1989-11-21 Varian Associates, Inc. Junctions for monolithic cascade solar cells and methods
JPS63100781A (ja) * 1986-10-17 1988-05-02 Nippon Telegr & Teleph Corp <Ntt> 半導体素子
US5061562A (en) * 1987-09-22 1991-10-29 Fuji Photo Film Co., Ltd. Method for preparing a magnetic recording medium and a magnetic disk using the same
US4935384A (en) * 1988-12-14 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Method of passivating semiconductor surfaces
JPH02218174A (ja) * 1989-02-17 1990-08-30 Mitsubishi Electric Corp 光電変換半導体装置
US5223043A (en) * 1991-02-11 1993-06-29 The United States Of America As Represented By The United States Department Of Energy Current-matched high-efficiency, multijunction monolithic solar cells
US5166761A (en) * 1991-04-01 1992-11-24 Midwest Research Institute Tunnel junction multiple wavelength light-emitting diodes
US5342453A (en) * 1992-11-13 1994-08-30 Midwest Research Institute Heterojunction solar cell
US5316593A (en) * 1992-11-16 1994-05-31 Midwest Research Institute Heterojunction solar cell with passivated emitter surface
US5800630A (en) * 1993-04-08 1998-09-01 University Of Houston Tandem solar cell with indium phosphide tunnel junction
US5376185A (en) * 1993-05-12 1994-12-27 Midwest Research Institute Single-junction solar cells with the optimum band gap for terrestrial concentrator applications
US5405453A (en) * 1993-11-08 1995-04-11 Applied Solar Energy Corporation High efficiency multi-junction solar cell
US5689123A (en) * 1994-04-07 1997-11-18 Sdl, Inc. III-V aresenide-nitride semiconductor materials and devices
FR2722612B1 (fr) * 1994-07-13 1997-01-03 Centre Nat Rech Scient Procede de fabrication d'un materiau ou dispositif photovoltaique, materiau ou dispositif ainsi obteu et photopile comprenant un tel materiau ou dispositif
US5911839A (en) * 1996-12-16 1999-06-15 National Science Council Of Republic Of China High efficiency GaInP NIP solar cells
JP3683669B2 (ja) * 1997-03-21 2005-08-17 株式会社リコー 半導体発光素子
US6281426B1 (en) * 1997-10-01 2001-08-28 Midwest Research Institute Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge
US5944913A (en) * 1997-11-26 1999-08-31 Sandia Corporation High-efficiency solar cell and method for fabrication
US6150603A (en) * 1999-04-23 2000-11-21 Hughes Electronics Corporation Bilayer passivation structure for photovoltaic cells
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US6340788B1 (en) * 1999-12-02 2002-01-22 Hughes Electronics Corporation Multijunction photovoltaic cells and panels using a silicon or silicon-germanium active substrate cell for space and terrestrial applications
JP4064592B2 (ja) * 2000-02-14 2008-03-19 シャープ株式会社 光電変換装置
US6815736B2 (en) * 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
US7233028B2 (en) * 2001-02-23 2007-06-19 Nitronex Corporation Gallium nitride material devices and methods of forming the same
US6787385B2 (en) * 2001-05-31 2004-09-07 Midwest Research Institute Method of preparing nitrogen containing semiconductor material
US6586669B2 (en) * 2001-06-06 2003-07-01 The Boeing Company Lattice-matched semiconductor materials for use in electronic or optoelectronic devices
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
US7119271B2 (en) * 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US6764926B2 (en) * 2002-03-25 2004-07-20 Agilent Technologies, Inc. Method for obtaining high quality InGaAsN semiconductor devices
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US6756325B2 (en) * 2002-05-07 2004-06-29 Agilent Technologies, Inc. Method for producing a long wavelength indium gallium arsenide nitride(InGaAsN) active region
US8173891B2 (en) * 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US6967154B2 (en) * 2002-08-26 2005-11-22 Micron Technology, Inc. Enhanced atomic layer deposition
US7255746B2 (en) * 2002-09-04 2007-08-14 Finisar Corporation Nitrogen sources for molecular beam epitaxy
US7122733B2 (en) * 2002-09-06 2006-10-17 The Boeing Company Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds
US6765238B2 (en) * 2002-09-12 2004-07-20 Agilent Technologies, Inc. Material systems for semiconductor tunnel-junction structures
US7126052B2 (en) * 2002-10-02 2006-10-24 The Boeing Company Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
US7122734B2 (en) * 2002-10-23 2006-10-17 The Boeing Company Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
US7071407B2 (en) * 2002-10-31 2006-07-04 Emcore Corporation Method and apparatus of multiplejunction solar cell structure with high band gap heterojunction middle cell
WO2004054003A1 (en) * 2002-12-05 2004-06-24 Blue Photonics, Inc. High efficiency, monolithic multijunction solar cells containing lattice-mismatched materials and methods of forming same
US7812249B2 (en) * 2003-04-14 2010-10-12 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
US7123638B2 (en) * 2003-10-17 2006-10-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Tunnel-junction structure incorporating N-type layer comprising nitrogen and a group VI dopant
JP5248782B2 (ja) * 2004-01-20 2013-07-31 シリアム・テクノロジーズ・インコーポレーテッド エピタキシャルに成長させた量子ドット材料を有する太陽電池
US7807921B2 (en) * 2004-06-15 2010-10-05 The Boeing Company Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US7473941B2 (en) * 2005-08-15 2009-01-06 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Structures for reducing operating voltage in a semiconductor device
US11211510B2 (en) * 2005-12-13 2021-12-28 The Boeing Company Multijunction solar cell with bonded transparent conductive interlayer
US20070227588A1 (en) * 2006-02-15 2007-10-04 The Regents Of The University Of California Enhanced tunnel junction for improved performance in cascaded solar cells
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20090078310A1 (en) * 2007-09-24 2009-03-26 Emcore Corporation Heterojunction Subcells In Inverted Metamorphic Multijunction Solar Cells
US7872252B2 (en) * 2006-08-11 2011-01-18 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
US7842881B2 (en) * 2006-10-19 2010-11-30 Emcore Solar Power, Inc. Solar cell structure with localized doping in cap layer
US20080149173A1 (en) * 2006-12-21 2008-06-26 Sharps Paul R Inverted metamorphic solar cell with bypass diode
US7825328B2 (en) * 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US20080257405A1 (en) * 2007-04-18 2008-10-23 Emcore Corp. Multijunction solar cell with strained-balanced quantum well middle cell
JP2009010175A (ja) * 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd 受光素子およびその製造方法
WO2009009111A2 (en) * 2007-07-10 2009-01-15 The Board Of Trustees Of The Leland Stanford Junior University GaInNAsSB SOLAR CELLS GROWN BY MOLECULAR BEAM EPITAXY
JP5417694B2 (ja) * 2007-09-03 2014-02-19 住友電気工業株式会社 半導体素子およびエピタキシャルウエハの製造方法
US8895342B2 (en) * 2007-09-24 2014-11-25 Emcore Solar Power, Inc. Heterojunction subcells in inverted metamorphic multijunction solar cells
GB0719554D0 (en) * 2007-10-05 2007-11-14 Univ Glasgow semiconductor optoelectronic devices and methods for making semiconductor optoelectronic devices
US20090155952A1 (en) * 2007-12-13 2009-06-18 Emcore Corporation Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells
US20090255575A1 (en) * 2008-04-04 2009-10-15 Michael Tischler Lightweight solar cell
US20090255576A1 (en) * 2008-04-04 2009-10-15 Michael Tischler Window solar cell
US20090272438A1 (en) * 2008-05-05 2009-11-05 Emcore Corporation Strain Balanced Multiple Quantum Well Subcell In Inverted Metamorphic Multijunction Solar Cell
US20090288703A1 (en) * 2008-05-20 2009-11-26 Emcore Corporation Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
US8309374B2 (en) * 2008-10-07 2012-11-13 Applied Materials, Inc. Advanced platform for processing crystalline silicon solar cells
US8912428B2 (en) * 2008-10-22 2014-12-16 Epir Technologies, Inc. High efficiency multijunction II-VI photovoltaic solar cells
KR20100084843A (ko) * 2009-01-19 2010-07-28 삼성전자주식회사 다중접합 태양전지
US20100282306A1 (en) * 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100282305A1 (en) * 2009-05-08 2010-11-11 Emcore Solar Power, Inc. Inverted Multijunction Solar Cells with Group IV/III-V Hybrid Alloys
US20100319764A1 (en) * 2009-06-23 2010-12-23 Solar Junction Corp. Functional Integration Of Dilute Nitrides Into High Efficiency III-V Solar Cells
MX2012001218A (es) * 2009-07-29 2012-06-01 Cyrium Technologies Inc Celda solar y metodo de fabricacion de la misma.
JP5649157B2 (ja) * 2009-08-01 2015-01-07 住友電気工業株式会社 半導体素子およびその製造方法
US20110232730A1 (en) * 2010-03-29 2011-09-29 Solar Junction Corp. Lattice matchable alloy for solar cells
US20110303268A1 (en) * 2010-06-15 2011-12-15 Tan Wei-Sin HIGH EFFICIENCY InGaAsN SOLAR CELL AND METHOD OF MAKING
US8642883B2 (en) * 2010-08-09 2014-02-04 The Boeing Company Heterojunction solar cell
US9214580B2 (en) * 2010-10-28 2015-12-15 Solar Junction Corporation Multi-junction solar cell with dilute nitride sub-cell having graded doping
US8962991B2 (en) * 2011-02-25 2015-02-24 Solar Junction Corporation Pseudomorphic window layer for multijunction solar cells
US8927857B2 (en) * 2011-02-28 2015-01-06 International Business Machines Corporation Silicon: hydrogen photovoltaic devices, such as solar cells, having reduced light induced degradation and method of making such devices
US8766087B2 (en) * 2011-05-10 2014-07-01 Solar Junction Corporation Window structure for solar cell
WO2013074530A2 (en) * 2011-11-15 2013-05-23 Solar Junction Corporation High efficiency multijunction solar cells

Also Published As

Publication number Publication date
EP2502286A1 (en) 2012-09-26
WO2011062886A1 (en) 2011-05-26
US20110114163A1 (en) 2011-05-19
JP2013511845A (ja) 2013-04-04

Similar Documents

Publication Publication Date Title
CN102668133A (zh) 形成于n-掺杂衬底上的多结太阳能电池
US9293615B2 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
US10326042B2 (en) Highly doped layer for tunnel junctions in solar cells
JP6194283B2 (ja) 多接合ソーラーセル及びその形成方法
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
US10263129B2 (en) Multijunction photovoltaic device having SiGe(Sn) and (In)GaAsNBi cells
US20090229662A1 (en) Off-Cut Substrates In Inverted Metamorphic Multijunction Solar Cells
US20090288703A1 (en) Wide Band Gap Window Layers In Inverted Metamorphic Multijunction Solar Cells
JP2010263222A (ja) Iv/iii−v族ハイブリッド合金を有する多接合太陽電池
JP2015073130A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
WO2014018125A2 (en) Reverse heterojunctions for solar cells
JP2010534922A (ja) 高効率の縦列太陽電池用の低抵抗トンネル接合
US20110278537A1 (en) Semiconductor epitaxial structures and semiconductor optoelectronic devices comprising the same
WO2003100868A1 (en) Low-bandgap, monolithic, multi-bandgap, optoelectronic devices
EP2148378B1 (en) Barrier layers in inverted metamorphic multijunction solar cells
US11233161B2 (en) Focused energy photovoltaic cell
CN112563354A (zh) 四结太阳能电池及其制备方法
Welser et al. AlxGa1− x) 0.65 In0. 35As monolithic multijunction solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120912