CN102667955A - 热交换器、为此的方法以及核裂变反应堆系统 - Google Patents

热交换器、为此的方法以及核裂变反应堆系统 Download PDF

Info

Publication number
CN102667955A
CN102667955A CN2010800535514A CN201080053551A CN102667955A CN 102667955 A CN102667955 A CN 102667955A CN 2010800535514 A CN2010800535514 A CN 2010800535514A CN 201080053551 A CN201080053551 A CN 201080053551A CN 102667955 A CN102667955 A CN 102667955A
Authority
CN
China
Prior art keywords
heat
heat exchanger
exchanger body
fission
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800535514A
Other languages
English (en)
Inventor
J·D·麦克沃特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Searete LLC
Original Assignee
Searete LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/586,741 external-priority patent/US20110075786A1/en
Priority claimed from US12/653,653 external-priority patent/US20110075787A1/en
Priority claimed from US12/653,656 external-priority patent/US9275760B2/en
Application filed by Searete LLC filed Critical Searete LLC
Publication of CN102667955A publication Critical patent/CN102667955A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/181Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using nuclear heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/03Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders cooled by a coolant not essentially pressurised, e.g. pool-type reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/32Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core
    • G21C1/326Integral reactors, i.e. reactors wherein parts functionally associated with the reactor but not essential to the reaction, e.g. heat exchangers, are disposed inside the enclosure with the core wherein the heat exchanger is disposed next to or beside the core
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/24Promoting flow of the coolant
    • G21C15/243Promoting flow of the coolant for liquids
    • G21C15/247Promoting flow of the coolant for liquids for liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0054Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for nuclear applications
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C1/00Reactor types
    • G21C1/02Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders
    • G21C1/022Fast fission reactors, i.e. reactors not using a moderator ; Metal cooled reactors; Fast breeders characterised by the design or properties of the core
    • G21C1/026Reactors not needing refueling, i.e. reactors of the type breed-and-burn, e.g. travelling or deflagration wave reactors or seed-blanket reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明涉及热交换器、有关方法以及核裂变反应堆系统。热交换器包含将排放空腔室限定在其中的热交换器主体,形成排放空腔室的形状用于热一次传热流体均匀流动通过该腔室。多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定传热构件之间的多条流动通路。该流动通路通向排放空腔室。将传热构件隔开预定距离使一次传热流体均匀分发流过流动通路,跨过传热构件的表面,进入排放空腔室中。每个传热构件限定较冷二次传热流体从中通过的流动通道。随着一次传热流体流过腔室,并且随着二次传热流体同时流过流动通道,出现从热一次传热流体到较冷的二次传热流体的传热。

Description

热交换器、为此的方法以及核裂变反应堆系统
交叉参考相关申请
本申请涉及如下所列申请(“相关申请”)以及要求从如下所列申请中获得最早可用有效申请日的权益(例如,要求非临时专利申请的最早可用优先权日,或要求临时专利申请,以及相关申请的任何和所有父代、祖父代、曾祖父代等申请基于35USC§119(e)的权益)。相关申请以及相关申请的任何和所有父代、祖父代、曾祖父代等申请的所有主题以这样的主题不会与本文的主题相抵触的程度通过引用并入本文中。
相关申请
根据美国专利商标局(USPTO)的非法定要求,本申请构成2009年9月25日提交、发明人为Jon D.McWhirter、发明名称为“A HEAT EXCHANGER,METHODS THEREFOR AND A NUCLEAR FISSION REACTOR SYSTEM(热交换器、有关方法以及核裂变反应堆系统)”的美国专利申请第12/586,741号的部分继续申请,该申请当前同时待审,或者是给予当前同时待审申请以申请日的权益的申请。
根据美国专利商标局(USPTO)的非法定要求,本申请构成2009年12月15日提交、发明人为Jon D.McWhirter、发明名称为“A HEAT EXCHANGER,METHODS THEREFOR AND A NUCLEAR FISSION REACTOR SYSTEM(热交换器、有关方法以及核裂变反应堆系统)”的美国专利申请第12/653,656号的部分继续申请,该申请当前同时待审,或者是给予当前同时待审申请以申请日的权益的申请。
根据美国专利商标局(USPTO)的非法定要求,本申请构成2009年12月15日提交、发明人为Jon D.McWhirter、发明名称为“A HEAT EXCHANGER,METHODS THEREFOR AND A NUCLEAR FISSION REACTOR SYSTEM(热交换器、有关方法以及核裂变反应堆系统)”的美国专利申请第12/653,653号的部分继续申请,该申请当前同时待审,或者是给予当前同时待审申请以申请日的权益的申请。
美国专利商标局(USPTO)已经发布了内容是USPTO的计算机程序要求专利申请人引用序号和指示申请是继续申请还是部分继续申请的公告。有关细节请参阅可在http://www.uspto.gov/web/offices/com/sol/og/2003/week11/patbene.htm.上查到的文章Stephen G.Kunin,Benefit of Prior-Filed Application,USPTO Official Gazette March 18,2003。本申请实体(下文称为“申请人”)在上面已经提供了如法规所述要求其优先权的申请的特定引用。本申请人明白,该法规在其特定引用语言上是明确的,不需要序列或像“继续”或“部分继续”那样的任何表征来要求美国专利申请的优先权。尽管如上文所述,但本申请人明白,USPTO的计算机程序有某些数据输入要求,因此本申请人将本申请指定成如上所述它的父代申请的部分继续,但应明确指出,这样的指定决不能理解成除了其父代申请的主题之外,本申请是否包含某新主题的任何类型注释和/或承认。
技术领域
本申请一般涉及诱发核反应,包括系统、过程和元件(诸如反应堆堆芯、主热交换器或泵),所述元件浸没在容器中的液体冷却剂中实现这样的过程,并且本申请更具体地涉及热交换器、为此的方法以及核裂变反应堆系统。
背景技术
众所周知,在正在运行的核裂变反应堆中,已知能量的中子被具有大原子质量的核素吸收。所得到的复合核分解成包括两个较低原子质量裂变碎片以及衰变产物的裂变产物。已知通过所有能量的中子经受这样的裂变的核素包括铀-233,铀-235和钚-239,它们是可裂变核素。例如,具有0.0253eV(电子伏特)的动能的热中子可以用于使U-235核裂变。作为可转换核素的钍-232和铀-238将不经历诱发裂变,除非使用具有至少1MeV(百万电子伏特)的动能的快中子。从每个裂变事件中释放的总动能是大约200MeV。该动能转化为热。
在核反应堆中,上述可裂变和/或可转换材料通常容纳在限定核反应堆堆芯的多个紧密捆扎在一起的燃料组件中。可裂变和/或可转换材料可以是以燃料芯块的形式的铀和钚的氧化物的混合物,该燃料芯块容纳在被隔离物或螺旋形地围绕每根燃料棒缠绕的导线分隔开的燃料棒中。
另外,在商用核动力反应堆中,将裂变热转化成电。关于这方面,通过限定反应堆堆芯的反应堆燃料组件抽运和通过裂变过程加热反应堆一次冷却剂。在一些反应堆设计中,将加热的一次冷却剂传送到蒸汽发生器,在蒸汽发生器中加热的一次冷却剂将它的热量交给布置在蒸汽发生器中的二次冷却剂(即,水)。然后一次冷却剂返回到反应堆堆芯。接收一次冷却剂热量的一部分水蒸发成蒸汽,该蒸汽行进到涡轮发电机组以便发电。已经通过涡轮发电机组的蒸汽流到冷凝器,冷凝器使蒸汽凝结成水,水然后返回到蒸汽发生器。
能够安全发电的一种核裂变反应堆是池式液态钠快中子增殖反应堆。在这点上,铀-238可以用作可转换材料。铀-238吸收中子,并且依靠β衰变蜕变成可裂变钚-239。当钚-239又吸收中子时,发生产生热量的裂变。在快中子增殖反应堆中,可能不希望诸如水的慢化材料作为冷却剂。而是,在这样的池式液态钠快中子增殖核反应堆中,钠是选择的冷却剂,因为钠不使中子显著热化。此外,由于钠的传热特性,反应堆堆芯可以以较高功率密度运行,使得可以缩小反应堆的尺寸。另外,钠在大约100°C(大约212°F)熔化以及在大约900°C(大约1650°F)沸腾。因此,可以在高温使用钠而不沸腾,从而允许生成高温高压蒸汽。这又提供了提高的电厂热效率。
然而,循环通过反应堆堆芯的钠冷却剂由于吸收中子而变成放射性的。由于这种放射性,反应堆设计者利用(多个)一次钠冷却剂环路与蒸汽发生环路之间的中间热交换环路。这降低了涡轮发电机的放射性污染的风险。另外,可能出现蒸汽发生器管道泄漏。如果在将钠传送通过蒸汽发生器的管道系统中出现泄漏,则通过蒸汽发生器的热放射性钠将与蒸汽发生器中的水和蒸汽剧烈化学反应。这将放射性地污染蒸汽发生器中的水和蒸汽,从而增加了周围生物圈的放射性污染的风险。由于上述的原因,反应堆设计者在反应堆堆芯与蒸汽生发生器之间加入中间热交换器的使用,以避免堆芯中的钠与蒸汽发生器或涡轮发电机的直接接触。
因此,在上述的池式液态钠快中子增殖核反应堆中,中间热交换器形成反应堆池中的放射性一次钠与蒸汽发生器中的非放射性二次钠之间的边界。换句话说,与反应堆堆芯一起布置在液态钠池中的中间热交换器通常用于从快中子增殖反应堆堆芯中去热,并将该热量传递给外部蒸汽发生器。
已经进行尝试,以便通过利用中间热交换器提供热量从快中子裂变核反应堆堆芯的充分移除。1981年10月13日以Peter Humphreys等人的名义颁发和发明名称为“Nuclear Reactors(核反应堆)”的美国专利第4,294,658号公开了一种中间热交换模块,该中间热交换模块包含壳管式中间交换器和电磁流耦合器,其布置在用于驱动一次冷却剂通过热交换器的模块的基本区域中。该专利处理了当在相关二次冷却剂回路中的冷却剂流中存在中断,例如,如由二次冷却剂泵的故障引起时,对中间热交换器造成的严重热冲击。根据该专利,该发明的目的是在二次冷却剂回路中的流中存在中断的这种紧急情况下,减轻对池式的液态金属冷却核反应堆的中间热交换器造成的热冲击。
在1982年4月13日以Michael G.Sowers等人的名义颁发和发明名称为“Intermediate Heat Exchanger For A Liquid Metal Cooled Nuclear Reactor AndMethod(液态金属冷却核反应堆的中间热交换器及其方法)”的美国专利第4,324,617号中公开了另一种尝试,该尝试通过使用中间热交换器提供热量从快中子裂变核反应堆堆芯中的充分移除。该专利公开了一种用在多池、液态金属冷却核反应堆中的热交换器。该专利处理了调和(accommodate)热交换器的各结构组件之间的差别热膨胀。按照这个专利,通过与热池的热连通将热交换器的壳体加热到明显高于热交换器中的管道温度的温度,在运行期间通过壳体的所述加热拉伸所述管道,从而调和热交换器中的差别热膨胀。
尽管上文列举的技术可能公开了足以服务它们意图的目的的设备和方法,但上文列举的技术没有一种看起来公开了如本文所述和请求保护的热交换器、为此的方法以及核裂变反应堆系统。
发明内容
按照本公开的一个方面,提供了一种与能够发热的池式核裂变反应堆关联使用、能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器,所述热交换器能够布置在限制池流体的池壁的内围附近,所述热交换器包含:热交换器主体;以及与所述热交换器主体形成整体以便去热的装置。
按照本公开的一个另外方面,提供了一种与能够发热的池式核裂变反应堆关联使用、能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器,所述热交换器能够布置在限制池流体的池壁的内围附近,所述热交换器包含具有在其上形成的限定容腔(plenum volume)的一部分的表面的热交换器主体。
按照本公开的一个进一步方面,提供了一种与能够发热的池式核裂变反应堆关联使用、能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器,所述热交换器能够布置在限制池流体的池壁的内围附近,所述热交换器包含:将容腔限定在其中的热交换器主体,所述容腔被做成使传热流体预定流入容腔中的形状,所述热交换器主体具有在其上面形成、限定容腔的该部分的表面;以及与所述热交换器主体耦合的传热构件,所述传热构件限定从中通过的流动通道。
按照本公开的一个另外方面,提供了一种与能够发热的池式核裂变反应堆关联使用、能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器,所述热交换器能够布置在限制池流体的池壁的内围附近,所述热交换器包含:具有在其上形成的限定容腔的一部分的表面的热交换器主体,所述容腔被做成使传热流体预定流入容腔的该部分中的形状;以及与所述热交换器主体连接并隔开预定距离的多个相邻传热构件,用于限定所述多个相邻传热构件的相对传热构件之间的多条流动通路,用于分发传热流体流动通过多条流动通路。
按照本公开的一个方面,提供了一种与池式核裂变反应堆关联使用的系统,其包含:能够发热的核裂变反应堆堆芯;与所述核裂变反应堆堆芯相联系的热交换器主体,所述热交换器主体能够布置在池流体中和限制池流体的池壁的内围附近;以及与所述核裂变反应堆堆芯传热连通和与所述热交换器主体相联系以便去热的装置。
按照本公开的另一个方面,提供了一种与池式核裂变反应堆关联使用的系统,其包含:限定具有内围的池壁的容器,该池壁被配置为将池流体限定在其中;能够布置在所述容器中和能够发热的核裂变反应堆堆芯;能够与所述核裂变反应堆堆芯传热连通的热交换器主体,所述热交换器主体能够布置在池流体中和池壁的内围附近,所述热交换器主体具有在其上面形成的限定容腔的一部分的表面,所述容腔被做成实现传热流体进入容腔中的预定流动的形状;以及与所述核裂变反应堆堆芯传热连通和与所述热交换器主体相联系以便去热的装置。
按照本公开的一个另外方面,提供了一种与池式核裂变反应堆关联使用的系统,其包含:限定具有内围的池壁的压力容器,该池壁被配置为将池流体限定在其中;布置在所述压力容器中和能够发热的核裂变反应堆堆芯;能够与所述核裂变反应堆堆芯传热连通的热交换器主体,所述热交换器主体能够布置在池流体中和池壁的内围附近,所述热交换器主体具有在其上面形成、将容腔的一部分限定在其中的表面,所述容腔被做成使传热流体预定流入容腔中的形状;以及与所述热交换器主体耦合和隔开预定距离的多个相邻传热构件,用于限定所述多个相邻传热构件的相对传热构件之间的多条流动通路,用于分发传热流体流动通过多条流动通路。
按照本公开的一个进一步方面,提供了一种为了与能够发热的池式核裂变反应堆关联使用,组装能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器的方法,所述热交换器能够布置在限制池流体的池壁的内围附近,所述方法包含:接收热交换器主体;以及将装置与热交换器主体耦合用于去热。
按照本公开的一个方面,提供了一种为了与能够发热的池式核裂变反应堆关联使用,组装能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器的方法,所述热交换器能够布置在限制池流体的池壁的内围附近,所述方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。
按照本公开的一个方面,提供了一种为了与能够发热的池式核裂变反应堆关联使用,组装能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器的方法,所述热交换器能够布置在限制池流体的池壁的内围附近,所述方法包含:接收将容腔限定在其中的热交换器主体,所述容腔被做成使传热流体预定流入容腔中的形状,所述热交换器主体具有在其上面形成的限定容腔的一部分的表面;以及将传热构件与热交换器主体耦合,所述传热构件限定从中通过的流动通道。
按照本公开的另一个方面,提供了一种为了与能够发热的池式核裂变反应堆关联使用,组装能够布置在驻留在池式核裂变反应堆中的池流体中的热交换器的方法,所述热交换器能够布置在限制池流体的池壁的内围附近,所述方法包含:接收具有在其上形成的限定容腔的一部分的表面的热交换器主体,所述容腔被做成使传热流体预定流入容腔中的形状;以及将多个相邻传热构件与所述热交换器主体连接,所述多个相邻传热构件隔开预定距离,用于限定所述多个相邻传热构件的相对传热构件之间的多条流动通路,用于分发传热流体流动通过多条流动通路。
本公开的一个特征是提供将腔室限定在其中的热交换器主体,所述腔室被做成使传热流体均匀流过腔室的形状。
本公开的另一个特征是提供与热交换器主体连接并隔开预定距离的多个相邻传热构件,用于限定所述多个相邻传热构件的各自传热构件之间的多条流动通路,以便使传热流体均匀地分散流过所述多条流动通路。
除了上文之外,在本公开的像正文(例如,权利要求书和/或详细描述)那样的讲述和/或附图中展示和描述了各种其它方法和/或设备方面。
上文是一个总结,因此可能包含细节的简化、概括、蕴含、和/或省略;因此,本领域的普通技术人员应该懂得,该总结只是例示性的,而决不是打算限制本发明的范围。除了上述的例示性方面、实施例、和特征之外,通过参考附图和如下详细描述,将使进一步的方面、实施例、和特征变得显而易见。
附图说明
虽然本说明书以特别指出和不同地声明本公开的主题的权利要求书作为结论,但相信本公开可以从结合附图所作的如下详细描述中得到更好理解。另外,用在不同图形中的相同符号通常表示相似或相同的项目。
图1是核裂变反应堆系统的示意性表示;
图2是包含多个核裂变反应堆模块和增殖燃料模块的六边形状核裂变反应堆堆芯的水平剖视图;
图3是多个核裂变反应堆模块之一和其中的多根控制棒的水平剖视图;
图4是为了清楚起见部分已除去的核燃料棒的等距视图;
图5是包含多个核裂变反应堆模块和增殖燃料模块的平行六面体状核裂变反应堆堆芯的水平剖视图;
图6是为了清楚起见部分已除去的三个示范性核裂变反应堆模块的垂直剖视图;
图7是热交换器的等距视图;
图8是剖视的和部分虚拟示出的热交换器的等距视图;
图8A是剖视的和示出引导结构的热交换器的等距视图;
图9是热交换器的垂直剖视图,这个视图示出了一次传热流体和二次传热流体的交叉流动;
图9A是热交换器的垂直剖视图,这个视图示出了一次传热流体和二次传热流体的相向流动;
图9B是为了清楚起见部分已除去的显示在图9A中的热交换器的分解等距例示图,这个视图示出了一次传热流体和二次传热流体的相向流动;
图9C是热交换器的垂直剖视图,这个视图示出了一次传热流体和二次传热流体的同向流动;
图9D是为了清楚起见部分已除去的显示在图9C中的热交换器的分解等距例示图,这个视图示出了一次传热流体和二次传热流体的同向流动;
图10是在其外表面上具有多个散热片(fin)的传热构件的等距视图;
图11是在其外表面上具有多个结的传热构件的等距视图;
图12是在其内表面上具有多个散热片的传热构件的等距视图;
图13是限定从中通过的流动通道和沿着流动通道布置的多根导管的传热构件的等距视图;
图13A是在其外表面上具有多个楔形散热片的传热构件的等距视图;
图13B是在其外表面上具有增大密度的结的传热构件的等距视图;
图14是布置在压力容器中的多个热交换器的示意性例示图;
图15是沿着图14的剖面线15-15截取的视图;
图16是属于核裂变反应堆系统的压力容器的水平剖视图,这个视图示出了布置在压力容器中的多个相邻热交换器;以及
图17-47是为了与核裂变反应堆关联使用、组装热交换器的例示性方法的流程图。
具体实施方式
在如下详细描述中,将参考形成其一部分的附图。在这些附图中,相似的符号通常表示相似的部件,除非上下文另有规定。描述在详细描述、附图和权利要求书中的例示性实施例并不意味着限制本发明的范围。可以不偏离本文展示的主题的精神或范围地利用其它实施例,以及可以作出其它改变。
另外,为了清晰地展示起见,本申请使用了形式上的概括性标题。但是,应该明白,这些概括性标题用于展示的目的,可以在整个申请中讨论不同类型的主题(例如,可以在过程/操作标题下描述设备/结构和/或可以在结构/过程标题下讨论过程/操作;和/或单个话题的描述可以跨越两个或更多个话题标题)。因此,形式上的概括性标题的使用决不是打算限制本发明的范围。
此外,本文所述的主题有时例示了包含在其它不同部件内,或与其它不同部件连接的不同部件。应该明白,这样描绘的架构仅仅是例示性的,事实上,可以实现许多实现相同功能的其它架构。从概念上来讲,有效地“联系”实现相同功能的部件的任何安排,以便实现所希望功能。因此,本文组合在一起实现特定功能的任何两个部件可以看作相互“联系”,使得与架构或中间部件无关地实现所希望功能。同样,如此联系的任何两个部件也可以视作实现所希望功能的相互“可操作地连接”或“可操作地耦合”,以及能够如此联系的任何两个部件也可以视作实现所希望功能的相互“可操作耦合”。可操作耦合的特例包括但不限于物理上可配对和/或物理上相互作用部件、可无线相互作用和/或无线相互作用部件、和/或逻辑上相互作用和或/逻辑上可相互作用部件。
在一些情况下,一个或多个部件在本文中可能被称为“配置为”,“可配置为”,“可起......作用/起......作用”,“适用于/可适用于”,“能够”,“可依照/依照”等。本领域的普通技术人员应该认识到,“配置为”一般可以包含活动状态部件、非活动状态部件和/或等待状态部件,除非上下文另有要求。
因此,参照图1,只举例而非限制性地示出了统称为10的池式快中子核裂变反应堆和系统。如下文更详细所述,核裂变反应堆系统10可以是“行波”核裂变反应堆系统。核裂变反应堆系统10产生在多条输电线(未示出)上输送给电力用户的电力。核裂变反应堆系统10可替代地可以用于进行像确定温度对反应堆材料的影响的测试那样的测试。
参照图1,2和3,核裂变反应堆系统10包含统称为20的核裂变反应堆堆芯,核裂变反应堆堆芯20包括多个核裂变燃料组件,或也如本文所称,核裂变模块30。核裂变反应堆堆芯20被密封地存放在核反应堆堆芯外壳40内,只举例而非限制性地,每个核裂变模块30可以形成如图所示,横截面是六边形状的结构,以便与像圆柱或圆球形状那样核裂变模块30的其它形状相比,可以在反应堆堆芯20内将更多的核裂变模块30紧密堆放在一起。每个核裂变模块30包含由于上述链式核裂变反应过程而发热的多根燃料棒50。如果需要的话,可以用燃料棒罐60围住多根燃料棒50,以便增加核裂变模块30的结构硬度,以及当核裂变模块30被布置在核裂变反应堆堆芯20中时,将核裂变模块30相互分开。将核裂变模块30相互分开避免了燃料棒50之间的横向冷却剂交叉流动。避免横向冷却剂交叉流动防止了燃料棒50的横向振动。要不然这样的横向振动可能增加损害燃料棒50的风险。另外,将核裂变模块30相互分开可以使我们逐个模块地控制冷却剂流动。控制冷却剂到各个核裂变模块30的流动像基本上按照反应堆堆芯20中的非均匀温度分布引导冷却剂流动那样,有效地管理反应堆堆芯20内的冷却剂流动。换句话说,可以将更多的冷却剂引向具有较高温度的那些核裂变模块30,以便提供跨过整个反应堆堆芯20基本上均匀的温度分布。在示范性钠冷却反应堆的情况下,在正常运行期间,冷却剂可以具有近似5.5m3/s(即,近似194ft3/s)的平均额定体流速、和近似2.3m/s(即,近似7.55ft/s)的平均额定速度。燃料棒50彼此相邻,其间限定燃料棒冷却剂流动通道80(参见图6),使冷却剂沿着燃料棒50的外部流动。罐子60可以包括支承燃料棒50和将燃料棒50捆绑在一起的装置(未示出)。因此,在罐子60内将燃料棒50捆在一起,以便形成前述六边形核裂变模块30。尽管燃料棒50彼此相邻,但如核动力反应堆设计领域的普通技术人员所众所周知,燃料棒50仍然被围绕并以盘旋方式沿着每根燃料棒50的长向螺旋状延伸的包装线90(参见图6)以隔开的关系保持着。
参照图3,将多根隔开、纵向延伸和纵向可移动控制棒95(只示出其中一些)的每一根都布置在控制棒导管或包壳(未示出)内。控制棒95被对称地布置在所选核裂变模块30内,并沿着预定数量核裂变模块30的长向延伸。显示成布置在预定数量六边形状核裂变模块30中的控制棒95控制发生在核裂变模块30中的中子裂变反应。换句话说,控制棒95包含具有可接受大中子吸收截面的适当中子吸收材料。关于这方面,吸收材料可以是从基本上由如下组成的群组中选择的金属或准金属:锂、银、铟、镉、硼、钴、铪、镝、钆、钐、铒、铕及其混合物。可替代的是,吸收材料可以是从基本上由如下组成的群组中选择的化合物或合金:银铟镉合金、碳化硼、二硼化锆、二硼化钛、二硼化铪、钛酸钆、钛酸镝及其混合物。控制棒95可控制地向反应堆堆芯20提供负反应。因此,控制面板95向反应堆堆芯20提供反应管理能力。换句话说,控制棒95能够控制跨过核反应堆堆芯20的中子通量曲线,因此影响核反应堆堆芯20内的温度。
尤其参考图2,3和4,每根燃料棒50含有首尾相接堆叠在其中的多个核燃料芯块100,核燃料芯块100被燃料棒包壳材料110密封地围住。核燃料芯块100包含像铀-235、铀-233或钚-239那样的上述可裂变核素。可替代的是,核燃料芯块100可以包含像钍-232和/或铀-238那样的可转换核素,它们在裂变过程中蜕变成上文刚提到的可裂变核素。这样的可转换核素材料可以存放在布置在专门指定增殖燃料模块115中的增殖棒中。如快中子增殖反应堆设计领域的普通技术人员所众所周知,这样的增殖燃料模块115可以被安排成围绕核裂变反应堆堆芯20的内围的“增殖毯”,以便增殖核燃料。进一步可替代的是,核燃料芯块100可以包含可裂变核素和可转换核素的预定混合物。
参照图4,只举例而非限制性地,核燃料芯块100可以由从基本上由如下组成的群组中选择的氧化物制成:一氧化铀(UO)、二氧化铀(UO2)、二氧化钍(ThO2)(也称为氧化钍)、三氧化铀(UO3),氧化铀-氧化钚(UO-PuO)、八氧化三铀(U3O8)及其混合物。可替代的是,核燃料芯块100可以主要包含与像(但不限于)锆或钍金属那样的其它金属合金或非合金的铀。作为又一种替代,核燃料芯块100可以主要包含铀的碳化物(UCx)或钍的碳化物(ThCx)。例如,核燃料芯块100可以由从基本上由如下组成的群组中选择的碳化物制成:一碳化铀(UC)、二碳化铀(UC2)、三碳化二铀(U2C3)、二碳化钍(ThC2)、碳化钍(ThC)及其混合物。作为另一个非限制性例子,核燃料芯块100可以由从基本上由如下组成的群组中选择的氮化物制成:氮化铀(U3N2)、氮化铀-氮化锆(U3N2Zr3N4)、氮化铀钚((U-Pu)N)、氮化钍(ThN)、铀-锆合金(UZr)及其混合物。密封地围住成堆核燃料芯块100的燃料棒包壳材料110可以是已知抗腐蚀和抗破裂的像ZIRCOLOYTM(西屋电气公司(Westinghouse Electric Corporation)的注册商标)那样的适当锆合金。包壳材料110也可以由像铁素体马氏体钢那样的其它材料制成。
返回到图1,反应堆堆芯20被布置在地下室或反应堆压力容器120内,以防止放射性粒子、气体或液体从反应堆堆芯20泄漏到周围生物界。由于上文提供的原因,具有内壁表面122的压力容器120基本上充满像液态钠那样的一池液体或冷却剂125,达到核裂变反应堆堆芯20浸没在该池冷却剂中的程度。压力容器120可以是适当大小和厚度的钢、混凝土或其他材料,以减小这样辐射泄漏的风险和支持所需压力负荷。另外,可能存在密封地围住核裂变反应堆系统10的一些部分的安全壳(未示出),以加强防止放射性粒子、气体或液体从反应堆堆芯20泄漏到周围生物界的保证。
再次参照图1,一次环路冷却管130与核裂变反应堆堆芯20耦合,使适当冷却剂可以沿着方向箭头135流过反应堆堆芯20,以便冷却核裂变反应堆堆芯20。一次环路冷却管130可以由像不锈钢那样的任何适当材料制成。应该懂得,如果需要的话,一次环路冷却管130不仅可以由铁合金制成,而且可以有色金属合金、锆基合金或其它适当结构材料或复合物制成。一次环路冷却管130传送的冷却剂可以是从基本上由如下组成的群组中选择的液态金属:钠、钾、锂、铅及其混合物。另一方面,冷却剂可以是像铅-铋(Pb-Bi)那样的金属合金。可替代的是,在本文设想的示范性实施例中,冷却剂是液态钠(Na)金属或像钠-钾(Na-K)那样的钠金属混合物。取决于特定反应堆堆芯设计和运行历史,钠冷却反应堆堆芯的正常运行温度可能相对较高。例如,在含有混合铀钚氧化物燃料的500到1,500兆瓦钠冷却反应堆的情况下,在正常运行期间反应堆堆芯出口温度可以从近似510°C(即,950°F)到近似550°C(即,1,020°F)。另一方面,在LOCA(冷却剂丧失事故)或LOFTA(流量短暂丧失事故)期间,取决于反应堆堆芯设计和运行历史,燃料包壳峰温度可能达到近似600°C(即,1,110°F)或更高。此外,在LOCA后和LOFTA后情形期间以及在反应堆暂停运行期间的衰变热积累可能造成不可接受的热积聚。因此,在一些情况下,在正常运行情形和事故后情形两者期间移除核裂变反应堆堆芯20产生的热量是合适的。
仍然参照图1,核裂变反应堆堆芯20生成的带热冷却剂沿着冷却剂流线或流径140流到也浸没在冷却剂池120中的中间热交换器150。中间热交换器150可以由像适当不锈钢那样,耐冷却剂池125中的钠冷却剂的热效应和腐蚀效应的任何方便材料制成。如下文更全面所述,沿着冷却剂流径140流动的冷却剂流过中间热交换器150,并继续流过一次环路冷却管130。应该懂得,如下文更全面公开,由于发生在中间热交换器1510中的热传递,离开中间热交换器150的冷却剂已经冷却了。可以是机电泵的第一泵110与一次环路冷却管130耦合,并与一次环路冷却管130传送的反应堆冷却剂流体连通,以便通过一次环路冷却管130,通过反应堆堆芯20,沿着却剂流径140将反应堆冷却剂抽运到中间热交换器150。
再次参照图1,配备从中间热交换器150中去热的二次环路管道180。二次环路管道180包含二次“热”支路管段190和二次“冷”支路管段200。二次热支路管段190和二次冷支路管段200整体与中间热交换器150连接。包括热支路管段190和冷支路管段200的二次环路管道180包含像从基本上由如下组成的群组中选择的液态金属那样的流体:钠、钾、锂、铅及其混合物。另一方面,该流体可以是像铅-铋(Pb-Bi)那样的金属合金。可替代的是,在本文设想的示范性实施例中,该流体适当地可以是液态钠(Na)金属或像钠-钾(Na-K)那样的钠金属混合物。由于刚才所述的原因,二次热支路管段190从中间热交换器150延伸到蒸汽发生器和过热器组合体210(下文称为“蒸汽发生器210”)。关于这方面,在通过蒸汽发生器210之后,由于发生在蒸汽发生器210内的热传递,流过二次环路管道180和离开蒸汽发生器210的冷却剂处在比进入蒸汽发生器210之前低的温度和焓上。在通过蒸汽发生器210之后,沿着延伸到提供上述热传递的中间热交换器150的的“冷”支路管段200,像通过可以是机电泵的第二泵220那样抽运冷却剂。下文将马上一般地描述蒸汽发生器210生成蒸汽的方式。
还再次参照图1,处在蒸汽发生器210中的是具有预定温度和压强的水体230。流过二次热支路管段190的流体通过传导将它的热量传递给处在比流过二次热支路管段190的流体低的温度上的水体230。随着流过二次热支路管段190的流体将它的热量传递给水体230,一部分水体230将按照蒸汽发生器210内的预定温度和压强蒸发成蒸汽240。然后,蒸汽240通过蒸汽管250行进,蒸汽管250的一端与蒸汽240蒸气连通,而另一端与水体230液体连通。旋转涡轮机260与蒸汽管250耦合,以便涡轮机260随着蒸汽240从中通过而旋转。像通过旋转涡轮机轴280那样与涡轮机260耦合的发电机270随着涡轮机180旋转而发电。另外,冷凝器290与蒸汽管250耦合,接收通过涡轮机260的蒸汽。冷凝器290使蒸汽凝结成液态水,并且将任何废热传递给像冷却塔300那样,与冷凝器29相联系的散热器。通过插在冷凝器290与蒸汽发生器210之间、可以是机电泵的第三泵3130将冷凝器290凝结的液态水沿着蒸汽管250从冷凝器290抽运到蒸汽发生器210。
如从图5中最佳看出,取代前述的六边形状配置,可以将核裂变模块30安排成限定统称为222的平行六面体状核裂变反应堆堆芯配置。关于这方面,由于下文提供的原因,核裂变反应堆堆芯222的反应堆堆芯外壳40限定第一端330和第二端340。
再次参照图5,与为核裂变反应堆堆芯选择的配置无关,核裂变反应堆堆芯20或222可以配置为行波核裂变反应堆堆芯。关于这方面,可以包括像(但不限于)U-233、U-235或Pu-239那样的可裂变核材料的浓缩同位素的相对较小和可拆除核裂变点火器350可以适当地处在反应堆堆芯222中。只举例而非限制性地,点火器350可以处在与反应堆堆芯340的第二端340相对的第一端330附近。点火器350释放出中子。点火器350释放的中子被核裂变模块30中的可裂变和/或可转换材料捕获,引发链式裂变反应。如果需要的话,一旦链式反应变成自持的,就可以拆除点火器350。
仍然参照图5,点火器350引发三维行进爆燃波或“燃烧波”360。当点火器350生成中子引起“点火”时,燃烧波360从第一端330附近的点火器330到反应堆堆芯220的第二端340向外行进,以便形成行进或传播燃烧波360。换句话说,每个核裂变模块30都能够随着燃烧波360传过反应堆堆芯222而接收至少一部分燃烧行波360。燃烧行波360的速度可以是恒定的或不恒定的。因此,可以控制燃烧波360传播的整数。例如,以预定或编程方式纵向移动前述控制棒95(参见图3)可以向下驱动或降低布置在核裂变模块30中的燃料棒50的中子反应性。这样,相对于燃烧波360前面的“未燃烧”核燃料50的中子反应性,向下驱动或降低处在燃烧波360的地点上当前正在燃烧的核燃料50的中子反应性。这种结果给出了方向箭头365所指的燃烧波传播方向。以这种方式控制反应性使受到反应堆堆芯220的运行约束的燃烧波360的传播速率达到最大。例如,使燃烧波360的传播速率达到最大提供了将燃耗控制在传播所需的最小值之上和部分通过反应堆堆芯结构材料的中子注量限制设置的最大值之下的手段。
这样行波核裂变反应堆的基本原理详细公开在2006年11月28日以Roderick A.Hyde等人的名字提交和发明名称为“Automated Nuclear PowerReactor For Long-Term Operation(长期运行的自动核动力反应堆)”的待审美国专利申请第11/605,943号中,该申请已转让给本申请的受让人,特此通过引用将其整个公开文本并入本文中。
参照图6,所示的是直立相邻六边形状核裂变模块30。虽然只示出了三个相邻核裂变模块30,但应该明白,在反应堆堆芯20中存在大量核裂变模块30。每个核裂变模块30被安装在水平延伸反应堆堆芯下支承板370上。反应堆堆芯下支承板370跨过所有核裂变模块30的底端部地适当延伸。由于下文提供的原因,反应堆堆芯下支承板370含有从中通过的埋头孔380。埋头孔380具有允许冷却剂流入的开口端390。跨过所有核裂变模块30的顶端部或排放部分水平延伸和可拆除地与核裂变模块30连接的是盖住所有核裂变模块30的反应堆堆芯上支承板400。反应堆堆芯上支承板400还限定允许冷却剂从中流过的多个流槽410。一次环路管道130和第一泵170(参见图1)沿着方向箭头140所指的冷却剂流径或流线将反应堆冷却剂输送到核裂变模块30。然后一次冷却剂继续沿着冷却剂流径140流动,并通过在下支承板370中形成的开口端390。
如前所述,与为反应堆堆芯20选择的配置无关,重要的是移动反应堆堆芯20和其中的核裂变模块30产生的热量。由于几方面原因,适当的去热很重要。例如,如果峰温度超过材料极限,则可能对反应堆堆芯结构材料造成热损伤。这样的峰温度可能因改变了结构的机械性质,尤其与热蠕变有关的那些性质而非所希望地缩短了经受这样峰温度的结构的运行寿命。此外,反应堆功率密度受堆芯结构材料不受损伤地承受高峰温度的能力限制。另外,核裂变反应堆10可替代地可以用于进行像确定温度对反应堆材料的影响的测试那样的测试。通过适当地从反应堆堆芯中去热控制反应堆堆芯温度对于成功进行这样的测试是重要的。
此外,可能希望传热流体通过中间热交换器150的流速达到均匀。这样的均匀流速另外可以避免到核裂变反应堆堆芯的不均匀冷却剂流动和导致堆芯反应性扰动。并且,可能希望提供冷却剂流过热交换器的均匀分布,以避免冷却剂通过热交换器的偏向流动。避免冷却剂的偏向流动可以缓解热交换器中的定域温度“热点”的发展。这样的定域温度“热点”另外可能缩短热交换器的运行寿命。均匀流也起跨过热交换器的传热表面均匀加强热交换,从而加强给定热交换区域的热交换的作用。中间热交换器150的结构和运行解决了这些担心。
现在描述中间热交换器150的结构。参照图1,7,8,8A和9,中间热交换器150包含附在压力容器120的内壁表面122上的热交换器主体420,以便将中间热交换器150支承在压力容器120内。作为一种替代品,限定池125的内壁表面122可以形成中间热交换器150的后壁。热交换器主体420包含将一次流体排放容腔或排放空腔室430限定在其中的直立大致L形(横截面)后部425。如下文更详细所述,一次流体排放空腔室430被做成通过一次流体排放空腔室430提供第一传热流体(即,一次传热流体)的均匀流的形状。通过热交换器主体420的后部425形成,但在一次流体排放空腔室430内的是通向一次环路冷却管130的一次流体排放口435。与后部425连接的是为热二次钠限定底空腔450的热交换器主体420的底部440。具有底空腔排放侧或排放口455的底空腔450形成盒状结构,该盒状结构上面具有像通过焊接那样,将多个直立板状传热构件470连成整体的顶表面460。每个传热构件470限定在流动通道460的各端上具有入口490和出口500的从中通过的流动通道480。入口490与流过冷支路管段200的传热流体流体连通。出口500与底空腔450中的传热流体流体连通。此外,应该懂得,不使用导管或歧管地将一次流体供应给热交换器主体420。换句话说,无导管或无歧管地将一次流体供应给热交换器主体420。另外,应该懂得,中间热交换器150的舱入口侧可以无歧管,并且中间热交换器150的出口侧也可以无歧管。因为不需要这样的导管或歧管,所以可以降低构建反应堆10的投资成本和/或热交换器150的制造成本。
参照图8,8A和9,中间热交换器150包含多个相邻传热构件470。多个相邻传热构件470被隔开相对较小预定距离“d”,预定距离“d”限定相邻传热构件470之间的多条流动通路510。距离“d”是在流动通路510之间实现均匀流动分布所需的那个距离。换句话说,将传热构件470隔开距离“d”,以便使一次传热流体均匀分散流过多条流动通路510。如果需要的话,可以将相邻传播构件470之间的距离“d”设计成对于不同反应堆堆芯配置具有不同值,以便使一次传热流体通过多条流动通路的流动达到均匀分布。这样做是因为特定反应堆堆芯配置可能具有随着传热流体向热交换器150行进而改变或干扰一次传播流体的自由流动的堆芯内结构。可以将距离“d”设计成具有不同值,以便补偿这种影响。在另一个实施例中,热交换器主体420可以包含将传热流体的流动引向热交换器150的引导结构515。引导结构515适当地跨过传热构件470并与流动通路510相联系,以便将传热流体引导到流动通路510中。热交换器主体420进一步包含密封地安装在后部425的上部和多个传热构件470的上部上或与它们连接的顶部520。顶部520将从蒸汽发生器210接收沿着流径532流动的冷却二次钠的顶空腔530限定在其中。沿着流径532流动的冷却二次钠和沿着流径140流动的一次传热流体限定交叉流动配置。在这种交叉流动配置中,流径532大致与中间热交换器150中的流径140垂直(即,±45°)。顶空腔530与入口490连通,以便使冷却二次钠流过入口490,流入流动通道470中,流过出口500并流入底空腔450中。
参照图9A和9B,一个可替代实施例的中间热交换器150包含冷却二次传热流体沿着流径532流过的冷支路管段200。关于这方面,冷却二次传热流体通过开口536a进入板件534中,从在板件534中形成的开口536b排放。二次传热流体继续沿着流径532流动,进入返回管段538中,使二次传热流体返回到蒸汽发生器210。沿着流径532流动的冷却二次钠和沿着流径140流动的一次传热流体限定相向流动配置。在这种相向流动配置中,流径532与中间热交换器150中的流径140平行但相反。
参照图9C和9D,一个可替代实施例的中间热交换器150包含冷却二次传热流体沿着流径532流过的冷支路管段200。关于这方面,冷却二次传热流体通过开口536a进入板件534中,从在板件534中形成的开口536b排放。二次传热流体继续沿着流径532流动,进入返回管段538中,使二次传热流体返回到蒸汽发生器210。沿着流径532流动的冷却二次传热流体和沿着流径140流动的一次传热流体限定同向流动配置。在这种同向流动配置中,流径532与中间热交换器150中的流径140平行且方向相同。
参照图10,11,12和13,所示的是传热构件470的可替代实施例。关于这方面,多个传热构件470的至少一个包含限定增强的传热表面550的壁540,增强的传热表面550调节一次传热流体沿着增强的传热表面550的流动。关于这方面,壁540将较热一次钠(即,第一传热流体)与较冷二次钠(即,第二传热流体)分开。多个传热构件470的至少一个包含从形成增强的传热表面550的壁540向外延伸的至少一个整体连接外散热片或外凸缘560。外凸缘560通过增加使传热增加的表面积来加强传热。可替代的是,多个传热构件470的至少一个包含从形成增强的传热表面550的壁540向外突出的至少一个结570。结570通过增加使传热增加的表面积来加强传热。作为另一种替代品,多个传热构件470的至少一个包含为了加强传热的目的从壁540向内延伸的至少一个整体连接内散热片或内凸缘580。内凸缘580通过增加使传热增加的表面积来加强传热。作为又一种替代品,多个传热构件470的至少一个包含沿着流动通道490延伸的至少一根导管590,用于调节冷却传热流体沿着导管590的流动。
图13A和13B展示了包括增强的传热表面550的进一步实施例。关于这方面,外凸缘560可以具有随着凸缘560从壁540的前部592延伸到壁540的后部594逐渐增大的传热表面积。热力学领域的普通技术人员应该懂得,因为一次传热流体从壁540的前部592流到壁540的后部594,所以较靠近壁540的前部592的地方比较靠近壁540的后部594的地方发生更大部分的传热。因此,在较靠近壁540的前部592的地方发生较多的传热,而在较靠近壁540的后部594的地方发生数量减少的传热。为了补偿壁540的后部594附近的减少传热,使凸缘560的传热表面积随着凸缘560从壁540的前部592延伸到壁540的后部594逐渐增大。例如,可以将凸缘560做成在前部592附近具有较小端部而在后部594附近具有较宽端部的楔形。作为另一种替代品,从壁540向外突出的结570的密度(即,单位面积结570的数量)可以从前部592到后部594逐渐增加,以便使传热表面积从壁540的前部592到壁540的后部594逐渐增大。结570的这种配置补偿了发生在壁540的后部594附近的传热的减少。
现在转到图14和15,所示的是核裂变反应堆系统10的可替代实施例,其中存在像第一热交换器600和第二热交换器610那样的多个热交换器。第一热交换器600和第二热交换器610的每一个分别通过将冷传热流体供应给热交换器600/610的第一冷支路管段620a和第二冷支路管段620b与蒸汽发生器210耦合。另外,第一热交换器600和第二热交换器610的每一个分别通过使得可以从热交换器600/610中提取加热传热流体的第一热支路管段630a和第二热支路管段620b与蒸汽发生器210耦合。此外,如果需要的话,由于当前所述的原因,可以存在安装在第一冷支路管段620a中的第一截止阀640a、和安装在第二冷支路管段620b中的第二截止阀640b。另外,由于当前所述的原因,可以存在安装在第一热支路管段630a中的第三截止阀650a、和安装在第二热支路管段630b中的第四截止阀650b。关于这方面,如果需要的话,可以关闭截止阀640a/650a以阻断去往和来自第一热交换器600的冷却剂流,从而隔离第一热交换器600。此外,如果需要的话,可以关闭截止阀640b/650b以阻断去往和来自第二热交换器610的冷却剂流,从而隔离第二热交换器610。如果在任何传热构件470的壁540中发生泄漏,则可能希望隔离第一热交换器600或第二热交换器610。另外,将像泵660a和660b那样的多个泵与多个热交换器600和610的各自一个耦合,以便将冷却传热流体从热交换器600和610抽运到核裂变反应堆堆芯20。
参照图16,所示的是围绕压力容器120的内壁122并排或相邻排列多个热交换器670a,670b,670c,670d,670e,670f和670g的实施例。这个实施例提供了使用中间热交换器150的另一种配置。
参照图1,6,7,8,8A,9,10,11,12和13,现在进一步描述中间热交换器150的运行。关于这方面,核裂变反应堆堆芯20中的燃料棒40因裂变过程生成的热量被本文也称为第一传热流体的一次传热流体吸收。随着热量生成,使第一泵170运行起来,从热交换器150中抽吸或吸取第一传热流体,然后经过燃料棒50,和通过上堆芯支承板400中的流槽将第一传热流体抽运到冷却剂池125中。然后,第一泵170继续运行,通过流动通路510将第一传热流体吸取到一次流体排放空腔室430中。随着第一传热流体流过流动通路510,第一传热流体将与增强的传热表面550密切接触。随着第一传热流体与增强的传热表面550密切接触地流动,较冷的二次传热流体从蒸汽发生器210流出,沿着冷支路管段200,进入顶空腔530中,通过流动通道480,通过出口500并进入底空腔450中。此后,第二传热流体通过排放口455从底空腔450中排放,被通过蒸汽发生器210的热支路管段190接收。沿着部分热支路管段190行进和通过蒸汽发生器210的第二传热流体将它的热量传递给水体230以便生成蒸汽。使第二泵220运行起来,将较冷的二次流体从蒸汽发生器210带入顶空腔520中。
仍然参照图1,6,7,8,8A,9,10,11,12和13,热量从流过流动通路510的较高温度的第一传热流体传递给流过流动通道480的较低温度的第二传热流体。这种传热通过传热构件470的壁540的传导发生。
仍然参照图1,6,7,8,8A,9,10,11,12和13,将多个相邻传热构件470隔开前述预定距离“d”,以便使一次传热流体均匀分散流过多条流动通路510。如前所述,将一次流体排放空腔室430做成使第一传热流体(即,一次传热流体)均匀流过一次流体排放空腔室430的形状。关于这方面,将一次流体排放空腔室430的上部布置成与内壁122较接近,以便一次流体排放空腔室430的上部具有比一次流体排放空腔室430的下部小的体积。换句话说,一次流体排放空腔室430的体积较靠近排放口435的地方比较靠近进入口490的地方大。一次流体排放空腔室430的这种形状使第一传热流体(即,一次传热流体)均匀流过一次流体排放空腔室430。
例示性方法
现在描述与核裂变反应堆系统和热交换器的示范性实施例相联系的例示性方法。
参照图17-47,为了与能够发热的核裂变反应堆关联使用,提供了组装热交换器的例示性方法。
现在转到图17,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法680从方块690开始。在方块700中,该方法包含接收热交换器主体。在方块710中,将装置与热交换器主体耦合用于去热。在方块720中结束该方法。
参照图18,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法730从方块740开始。在方块750中,该方法包含接收热交换器主体。在方块760中,该方法包含将装置与热交换器主体耦合用于去热。在方块770中,该方法包含耦合配置为实现传热流体进入热交换器主体中的预定流动的去热装置。在方块780中结束该方法。
参照图19,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法790从方块800开始。在方块810中,该方法包含接收热交换器主体。在方块820中,将装置与热交换器主体耦合用于去热。在方块830中,耦合配置为实现传热流体进入热交换器主体中的预定流动的去热装置。在方块840中,耦合配置为实现传热流体进入热交换器主体中的基本均匀流动的去热装置。在方块850中结束该方法。
参照图20,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法860从方块870开始。在方块880中,该方法包含接收热交换器主体。在方块890中,将装置与热交换器主体耦合用于去热。在方块900中,耦合具有增强的传热表面的去热装置。在方块910中结束该方法。
参照图21,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法920从方块930开始。在方块940中,该方法包含接收热交换器主体。在方块950中,将装置与热交换器主体耦合用于去热。在方块960中,接收将预定形状的容腔限定在其中的热交换器主体,用于实现传热流体通过热交换器主体的基本均匀流动。在方块910中结束该方法。
参照图21A,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法971从方块973开始。在方块975中,该方法包含接收热交换器主体。在方块977中,将装置与热交换器主体耦合用于去热。在方块978中,接收无歧管热交换器主体。在方块979中结束该方法。
参照图22,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法980从方块990开始。在方块1000中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1010中结束该方法。
参照图22A,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1011a从方块1013a开始。在方块1015a中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1017a中,接收用于引导池流体的流动的引导结构。在方块1019a中结束该方法。
参照图22B,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1011b从方块1013b开始。在方块1015b中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1017b中,接收用于引导池流体的流动的引导结构。在方块1018b中,接收配置为在热交换器主体的至少一部分内实现池流体的基本均匀流动的引导结构。在方块1019b中结束该方法。
参照图22C,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1011c从方块1013c开始。在方块1015c中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1017c中,接收含有用于引导池流体的入口流动的入口引导结构的热交换器主体。在方块1019c中结束该方法。
参照图22D,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1011d从方块1013d开始。在方块1015d中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1017d中,接收含有用于引导池流体的出口流动的出口引导结构的热交换器主体。在方块1019d中结束该方法。
参照图22E,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1011e从方块1013e开始。在方块1015e中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1017e中,接收用于防止池流体与池壁接触的引导结构,该池流体布置在热交换器主体的至少一部分中。在方块1019e中结束该方法。
参照图23,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1020从方块1030开始。在方块1040中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1050中,接收限定非均匀形状的出口容腔的一部分的反应堆容器。在方块1060中结束该方法。
参照图24,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1070从方块1080开始。在方块1090中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1100中,接收能够与核裂变反应堆堆芯传热连通的热交换器主体。在方块1110中结束该方法。
参照图25,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1120从方块1130开始。在方块1140中,该方法包含接收具有在其上形成的限定容腔的一部分的表面的热交换器主体。在方块1150中,方法包含接收无歧管热交换器主体。在方块1160中结束该方法。
参照图26,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1170从方块1180开始。在方块1190中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1200中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1210中结束该方法。
参照图27,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1220从方块1230开始。在方块1240中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1250中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1260中,耦合配置为实现传热流体进入热交换器主体中的预定流动的传热构件。在方块1270中结束该方法。
参照图28,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1280从方块1290开始。在方块1300中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1310中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1320中,耦合配置为实现传热流体进入热交换器主体中的预定流动的传热构件。在方块1330中,耦合配置为实现传热流体进入热交换器主体中的基本均匀流动的传热构件。在方块1340中结束该方法。
参照图29,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1350从方块1360开始。在方块1370中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1380中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1390中,耦合含有沿着流动通道延伸的导管的传热构件。在方块1400中结束该方法。
参照图30,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1410从方块1420开始。在方块1430中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1440中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1450中,接收能够与核裂变反应堆堆芯传热连通的热交换器主体。在方块1460中结束该方法。
参照图31,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1470从方块1480开始。在方块1490中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1500中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1510中,接收能够与核裂变反应堆堆芯传热连通的热交换器主体。在方块1515中,接收能够与行波核裂变反应堆堆芯传热连通的热交换器主体。在方块1520中结束该方法。
参照图32,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1521从方块1523开始。在方块1525中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1527中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1528中,接收无歧管热交换器主体。在方块1529中结束该方法。
参照图33,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1530从方块1540开始。在方块1550中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1560中,将传热构件与热交换器主体耦合,该传热构件限定从中通过的流动通道。在方块1570中,耦合具有在其上限定增强的传热表面的壁的传热构件。在方块1580中结束该方法。
参照图34,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1650从方块1660开始。在方块1670中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1680中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1690中结束该方法。
参照图35,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1700从方块1710开始。在方块1720中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1730中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1740中,连接配置为实现传热流体进入热交换器主体中的均匀流动的多个相邻传热构件。在方块1690中结束该方法。
参照图36,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1760从方块1770开始。在方块1780中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1790中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1800中,接收限定非均匀形状的出口容腔的一部分的反应堆容器。在方块1810中结束该方法。
参照图37,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1820从方块1830开始。在方块1840中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1850中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1860中,接收能够与核裂变反应堆堆芯传热连通的热交换器主体。在方块1870中结束该方法。
参照图38,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1880从方块1890开始。在方块1900中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1910中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1915中,接收能够与核裂变反应堆堆芯传热连通的热交换器主体。在方块1920中,接收能够与行波核裂变反应堆堆芯传热连通的热交换器主体。在方块1930中结束该方法。
参照图39,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法1940从方块1950开始。在方块1960中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块1970中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块1980中,容纳具有交叉流动取向的至少两种传热流体。在方块1990中结束该方法。
参照图40,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2000从方块2010开始。在方块2020中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2030中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2040中,容纳具有相向流动取向的至少两种传热流体。在方块2050中结束该方法。
参照图41,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2060从方块2070开始。在方块2080中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2090中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2100中,容纳具有同向流动取向的至少两种传热流体。在方块2110中结束该方法。
参照图42,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2120从方块2130开始。在方块2140中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2150中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2160中,耦合具有在其上限定增强的传热表面的壁以便使通过该壁的传热增加的多个相邻传热构件的至少一个。在方块2110中结束该方法。
参照图43,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2180从方块2190开始。在方块2200中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2210中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2220中,耦合具有在其上限定增强的传热表面的壁以便使通过该壁的传热增加的多个相邻传热构件的至少一个。在方块2230中,耦合含有从形成强加传热表面的壁向外延伸的凸缘的多个相邻传热构件的至少一个。在方块2240中结束该方法。
参照图44,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2250从方块2260开始。在方块2270中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2280中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2290中,耦合具有在其上限定增强的传热表面的壁以便使通过该壁的传热增加的多个相邻传热构件的至少一个。在方块2300中,耦合含有从形成强加传热表面的壁向内延伸的凸缘的多个相邻传热构件的至少一个。在方块2310中结束该方法。
参照图45,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2320从方块2330开始。在方块2340中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2350中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2360中,耦合具有在其上限定增强的传热表面的壁以便使通过该壁的传热增加的多个相邻传热构件的至少一个。在方块2370中,耦合含有从形成强加传热表面的壁向外突出的结的多个相邻传热构件的至少一个。在方块2380中结束该方法。
参照图46,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2390从方块2400开始。在方块2410中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2420中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2430中,耦合含有沿着流动通道延伸的导管以便使第二传热流体流过导管的传热构件。在方块2440中结束该方法。
参照图47,为了与能够发热的池式核裂变反应堆关联使用,组装热交换器的例示性方法2450从方块2460开始。在方块2470中,该方法包含接收将容腔限定在其中的热交换器主体,形成该容腔的形状用于传热流体到容腔中的预定流动,该热交换器主体具有在其上面形成的限定容腔的一部分的表面。在方块2480中,将多个相邻传热构件与热交换器主体连接并隔开预定距离,用于限定多个相邻传热构件的相对传热构件之间的多条流动通路,以便分发传热流体流动通过多条流动通路。在方块2490中,接收无歧管热交换器主体。在方块2500中结束该方法。
本领域的普通技术人员应该认识到,本文所述的部件(例如,操作)、设备、对象和伴随它们的讨论用作澄清概念的例子,可以设想出各种配置变型。因此,如本文所使用,展示的特定例子以及伴随的讨论旨在代表它们的更一般类别。一般说来,任何特定例子的使用都旨在代表它的类别,以及特定部件(例如,操作)、设备、和对象的未包括不应该看作是限制性的。
此外,本领域的普通技术人员应该懂得,前述的特定示范性过程、设备和/或技术代表像在随本文提交的权利要求书中和/或本申请中的其它地方那样,在本文其它地方讲述的更一般过程、设备和/或技术。
虽然已经显示和描述了本文所述的当前主题的特定方面,但对于本领域的普通技术人员来说,显而易见,可以根据本文的教导,不偏离本文所述的主题及其更宽广方面地作出改变和修改,因此,所附权利要求书将像在本文所述的主题的真正精神和范围之内那样的所有这样改变和修改包括在它的范围之内。本领域的普通技术人员应该明白,一般说来,用在本文中,尤其用在所述权利要求书(例如,所附权利要求书的主要部分)中的术语一般旨在作为“开放”术语(例如,动名词术语“包括”应该理解为动名词“包括但不限于”,动名词术语“含有”应该理解为动名词“至少含有”,动词术语“包括”应该理解为动词“包括但不限于”等)。本领域的普通技术人员还应该明白,如果有意表示特定数量的所介绍权利要求列举项,则在权利要求中将明确列举这样的意图,而在缺乏这样的列举的情况下,则不存在这样的意图。例如,为了帮助人们理解,如下所附权利要求书可能包含使用介绍性短语“至少一个”和“一个或多个”来介绍权利要求列举项。但是,即使同一个权利要求包括介绍性短语“一个或多个”或“至少一个”以及像“一个”或“一种”(例如,“一个”和/或“一种”通常应该理解成“至少一个”或“一个或多个”的意思)那样的不定冠词,这样短语的使用也不应该理解为暗示着通过不定冠词“一个”或“一种”介绍权利要求列举项将包含这样所介绍权利要求列举项的任何特定权利要求限制在只包含一个这样列举项的权利要求上;对于用于介绍权利要求列举项的定冠词的使用,这同样成立。另外,即使明确列举了特定数量的所介绍权利要求列举项,本领域的普通技术人员也应该认识到,这样的列举通常应该理解成至少具有所列举数量的意思(例如,在没有其它修饰词的情况下,仅列举“两个列举项”通常意味着至少两个列举项,或两个或更多个列举项)。而且,在使用类似于“A、B、和C等的至少一个”的习惯用法的那些情况下,一般说来,这样的结构旨在本领域的普通技术人员理解该习惯用法的意义上使用(例如,“含有A、B、和C的至少一个的系统”将包括但不限于只含有A,只含有B,只含有C,一起含有A和B,一起含有A和C,一起含有B和C,和/或一起含有A、B和C等的系统)。在使用类似于“A、B、或C等的至少一个”的习惯用法的那些情况下,一般说来,这样的结构旨在本领域的普通技术人员理解该习惯用法的意义上使用(例如,“含有A、B、或C的至少一个的系统”将包括但不限于只含有A,只含有B,只含有C,一起含有A和B,一起含有A和C,一起含有B和C,和/或一起含有A、B和C等的系统)。本领域的普通技术人员还应该明白,通常,无论在描述、权利要求书还是附图中,出现两个或更多个可替代项目的分隔词和/或短语应该理解成具有包括这些项目之一,这些项目的任一个,或两个项目的可能性,除非上下文另有所指。例如,短语“A或B”通常理解成包括“A”,“B”或“A和B”的可能性。
关于所附权利要求书,本领域的普通技术人员应该懂得,本文所列举的操作一般可以按任何次序执行。此外,尽管各种操作流程按顺序展示出来,但应该明白,各种操作可以按与所例示的次序不同的其它次序执行,或者可以同时执行。这样可替代排序的例子可以包括重叠、交错、截断、重排、递增、预备、补充、同时、反向、或其它衍生排序,除非上下文另有所指。而且,像“对...敏感”、“与...有关”或其它过去式形容词那样的术语一般无意排斥这样的衍生,除非上下文另有所指。
因此,所提供的是热交换器、有关方法以及核裂变反应堆系统。
虽然本文公开了各个方面和实施例,但其它方面和实施例对于本领域的普通技术人员来说是显而易见的。例如,参考图14,截止阀640a/640b/650a/650b的每一个可以与布置在管道620a/620b/630a/630b的多个热电偶(未示出)的各自一个耦合。取决于进入和离开热交换器600/610的传热流体的温度,控制器可以有选择地和渐进地打开和关闭截止阀。也就是说,可以将希望在热交换器内作为热电偶感测的温度的函数的传热量预编程和存储在控制器中。热交换器内的温度可以由控制器经由热电偶检测,然后控制器通过渐进地打开和关闭截止阀操作截止阀,以便使发生在热交换器内的传热与存储在控制器内的预编程值基本一致。这样,通过使控制器自动调整阀门可以使热交换器600/610有选择地运行,以便在热交换器内提供精确的传热量。
此外,本文公开的各个方面和实施例用于例示的目的,而无意限制本发明的范围,本发明的真正范围和精神由如下权利要求指出。另外,下面权利要求书中的所有装置或步骤以及功能元件的相应结构、材料、动作和等效物都旨在包括与如具体要求的其它所要求元件结合执行功能的任何结构、材料或动作。

Claims (19)

1.一种用于与池式核裂变反应堆关联使用的系统,其包含:
(a)能够发热的核裂变反应堆堆芯;
(b)与所述核裂变反应堆堆芯相关联的热交换器主体,所述热交换器主体能够布置在池流体中和限制池流体的池壁的内围附近;以及
(c)与所述核裂变反应堆堆芯传热连通和与所述热交换器主体相关联用于移除热量的装置。
2.如权利要求1所述的系统,其中所述热量移除装置配置为实现传热流体到所述热交换器主体中的预定流动。
3.如权利要求1所述的系统,其中所述热量移除装置包含增强的传热表面。
4.如权利要求1所述的系统,其中所述热交换器主体将预定形状的容腔限定在其中,用于实现传热流体通过所述热交换器主体的基本均匀流动。
5.如权利要求1或16所述的系统,其中所述核裂变反应堆堆芯是行波核裂变反应堆堆芯。
6.如权利要求1,7或16所述的系统,其中所述热交换器主体是无歧管的。
7.一种用于与池式核裂变反应堆关联使用的系统,其包含:
(a)限定具有内围的池壁的容器,该池壁配置为将池流体限制在其中;
(b)能够布置在所述容器中和能够发热的核裂变反应堆堆芯;
(c)能够与所述核裂变反应堆堆芯传热连通的热交换器主体,所述热交换器主体能够布置在池流体中和池壁的内围附近,所述热交换器主体具有在其上形成的限定容腔的一部分的表面,形成所述容腔的形状用于实现传热流体到容腔中的预定流动;以及
(d)与所述核裂变反应堆堆芯传热连通和与所述热交换器主体相关联用于移除热量的装置。
8.如权利要求7或16所述的系统,其中由在所述热交换器主体上形成的表面限定的容腔的该部分被传热流体占据。
9.如权利要求7或16所述的系统,其中由在所述热交换器主体上形成的表面限定的容腔的该部分控制传热流体的流动。
10.如权利要求7所述的系统,其中所述热量移除装置包含与所述热交换器主体耦合的传热构件,所述传热构件限定从中通过的流动通道。
11.如权利要求10所述的系统,其中所述传热构件包含沿着流动通道延伸的导管。
12.如权利要求7所述的系统,其中所述传热构件包含在其上限定增强的传热表面的壁,用于增加通过所述壁的传热。
13.如权利要求12所述的系统,其中所述传热构件包含从如下选择的传热增强特征:从所述壁向外延伸的凸缘、从所述壁向内延伸的凸缘、和从所述壁向外突出的结。
14.如权利要求7或16所述的系统,其中所述热交换器主体具有入口侧,该入口侧是无歧管的。
15.如权利要求7或16所述的系统,其中所述热交换器主体具有出口侧,该出口侧具有歧管。
16.一种用于与池式核裂变反应堆关联使用的系统,其包含:
(a)限定具有内围的池壁的压力容器,该池壁配置为将池流体限制在其中;
(b)布置在所述压力容器中和能够发热的核裂变反应堆堆芯;
(c)能够与所述核裂变反应堆堆芯传热连通的热交换器主体,所述热交换器主体能够布置在池流体中和池壁的内围附近,所述热交换器主体具有在其上形成的在其中限定容腔的一部分的表面,形成所述容腔的形状用于实现传热流体到容腔中的预定流动;以及
(d)与所述热交换器主体耦合并隔开预定距离的多个相邻传热构件,所述预定距离用于限定所述多个相邻传热构件的相对传热构件之间的多条流动通路,用于分发传热流体流动通过多条流动通路。
17.如权利要求16所述的系统,其中所述多个相邻传热构件的至少一个包含在其上形成增强的传热表面的壁,用于增加的通过所述壁的传热。
18.如权利要求17所述的系统,其中所述多个相邻传热构件的至少一个包含从如下选择的传热增强特征:从所述壁向外延伸的凸缘、从所述壁向外突出的结、和沿着流动通道延伸的用于第二传热流体从中流动通过的导管。
19.如权利要求16所述的系统,其中所述热交换器主体和所述多个相邻传热构件容纳具有从交叉流动取向、相向流动取向和同向流动取向中选择的取向的至少两种传热流体。
CN2010800535514A 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统 Pending CN102667955A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US12/586,741 2009-09-25
US12/586,741 US20110075786A1 (en) 2009-09-25 2009-09-25 Heat exchanger, methods therefor and a nuclear fission reactor system
US12/653,653 US20110075787A1 (en) 2009-09-25 2009-12-15 Heat exchanger, methods therefor and a nuclear fission reactor system
US12/653,656 2009-12-15
US12/653,653 2009-12-15
US12/653,656 US9275760B2 (en) 2009-09-25 2009-12-15 Heat exchanger, methods therefor and a nuclear fission reactor system
PCT/US2010/002604 WO2011078872A2 (en) 2009-09-25 2010-09-22 A heat exchanger, methods therefor and a nuclear fission reactor system

Publications (1)

Publication Number Publication Date
CN102667955A true CN102667955A (zh) 2012-09-12

Family

ID=44196378

Family Applications (3)

Application Number Title Priority Date Filing Date
CN2010800535393A Pending CN102667954A (zh) 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统
CN201080053536XA Pending CN102667953A (zh) 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统
CN2010800535514A Pending CN102667955A (zh) 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN2010800535393A Pending CN102667954A (zh) 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统
CN201080053536XA Pending CN102667953A (zh) 2009-09-25 2010-09-22 热交换器、为此的方法以及核裂变反应堆系统

Country Status (7)

Country Link
EP (3) EP2481054A2 (zh)
JP (3) JP2013506132A (zh)
KR (3) KR20120083434A (zh)
CN (3) CN102667954A (zh)
GB (3) GB2485752A (zh)
RU (3) RU2012113143A (zh)
WO (3) WO2011078871A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426486B (zh) * 2013-08-06 2015-12-30 华北电力大学 自然循环多功能气体抬升器装置
CN103839600B (zh) * 2014-03-18 2016-03-02 中国科学院合肥物质科学研究院 一种用于池式自然循环反应堆的流量测量装置及测量方法
US11034796B1 (en) 2015-08-06 2021-06-15 Cornell University Poly(arylamine)s and uses thereof
US10446284B2 (en) * 2016-06-01 2019-10-15 Terrapower, Llc Instrumentation conduit housing
CN107145175B (zh) * 2017-05-26 2020-11-06 中国核动力研究设计院 一种蒸汽发生器给水温度控制模拟系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737337A (en) * 1985-05-09 1988-04-12 Stone & Webster Engineering Corporation Nuclear reactor having double tube helical coil heat exchanger
US5499277A (en) * 1994-08-19 1996-03-12 General Electric Company Method and apparatus for enhancing reactor air-cooling system performance
US20040247067A1 (en) * 2001-07-10 2004-12-09 Sadao Hattori Nuclear reactor
US20090232268A1 (en) * 2006-11-28 2009-09-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for operating a modular nuclear fission deflagration wave reactor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1322221A (en) * 1970-02-06 1973-07-04 Atomic Energy Authority Uk Valves self closable in the event of reverse flow particularly for fast-fission liquid metal cooled fast reactors
FR2350566A1 (fr) * 1976-05-04 1977-12-02 Commissariat Energie Atomique Echangeur de chaleur
FR2524687B1 (fr) * 1982-04-01 1988-03-18 Commissariat Energie Atomique Reacteur nucleaire a neutrons rapides
JPS5935782A (ja) * 1982-08-20 1984-02-27 Toshiba Corp 高速炉用熱交換器
US4560533A (en) * 1984-08-30 1985-12-24 The United States Of America As Represented By The United States Department Of Energy Fast reactor power plant design having heat pipe heat exchanger
US4983353A (en) * 1989-03-13 1991-01-08 General Electric Company Novel passive approach to protecting the primary containment barrier formed by the intermediate heat exchanger from the effects of an uncontrolled sodium water reaction
EP0667623A1 (en) * 1994-02-14 1995-08-16 FINMECCANICA S.p.A. AZIENDA ANSALDO A system for passively dissipating heat from the interior of a nuclear reactor containment structure
US6916430B1 (en) * 1996-10-25 2005-07-12 New Qu Energy Ltd. Superconducting heat transfer medium
WO1998019859A1 (en) * 1996-10-25 1998-05-14 Yuzhi Qu Super conducting heat transfer medium
GB9926466D0 (en) * 1999-11-10 2000-01-12 Chart Marston Limited Heat exchanger
US7278474B2 (en) * 2001-10-09 2007-10-09 Mikros Manufacturing, Inc. Heat exchanger
CN100578683C (zh) * 2007-11-09 2010-01-06 中国核动力研究设计院 非能动的固有安全的管池式反应堆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4737337A (en) * 1985-05-09 1988-04-12 Stone & Webster Engineering Corporation Nuclear reactor having double tube helical coil heat exchanger
US5499277A (en) * 1994-08-19 1996-03-12 General Electric Company Method and apparatus for enhancing reactor air-cooling system performance
US20040247067A1 (en) * 2001-07-10 2004-12-09 Sadao Hattori Nuclear reactor
US20090232268A1 (en) * 2006-11-28 2009-09-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for operating a modular nuclear fission deflagration wave reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶文铨: "《传热学》", 31 December 2006, 西北工业大学出版社 *

Also Published As

Publication number Publication date
RU2012113143A (ru) 2013-10-27
JP2013506130A (ja) 2013-02-21
RU2012113145A (ru) 2013-10-27
EP2481053A4 (en) 2013-02-27
EP2481054A2 (en) 2012-08-01
EP2481053A2 (en) 2012-08-01
WO2011078870A3 (en) 2011-08-18
GB201205572D0 (en) 2012-05-16
WO2011078872A2 (en) 2011-06-30
GB201205571D0 (en) 2012-05-16
RU2012113142A (ru) 2013-10-27
EP2481055A2 (en) 2012-08-01
GB2485754A (en) 2012-05-23
GB2485753A (en) 2012-05-23
WO2011078871A3 (en) 2011-08-18
JP2013506132A (ja) 2013-02-21
WO2011078870A2 (en) 2011-06-30
WO2011078872A3 (en) 2011-08-18
GB2485752A (en) 2012-05-23
CN102667953A (zh) 2012-09-12
KR20120083433A (ko) 2012-07-25
JP2013506131A (ja) 2013-02-21
KR20120083432A (ko) 2012-07-25
KR20120083434A (ko) 2012-07-25
GB201205569D0 (en) 2012-05-16
CN102667954A (zh) 2012-09-12
WO2011078871A2 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
CN102598149B (zh) 核裂变反应堆、透气式核裂变燃料模块、其方法以及透气式核裂变燃料模块系统
CN102804282A (zh) 行波核裂变反应堆、燃料组件以及控制其中燃耗的方法
US20110075786A1 (en) Heat exchanger, methods therefor and a nuclear fission reactor system
CN102667955A (zh) 热交换器、为此的方法以及核裂变反应堆系统
US9275760B2 (en) Heat exchanger, methods therefor and a nuclear fission reactor system
US9221093B2 (en) Heat exchanger, methods therefor and a nuclear fission reactor system
CN102804283B (zh) 具有流量控制组件的核裂变反应堆
CN102460590A (zh) 配置用于由行波核裂变反应堆中的燃烧波释放的挥发性裂变产物和热量的受控移除的核裂变反应堆燃料组件和系统及其方法
Goett REACTOR CONTROL
Cooper IMPROVEMENTS IN OR RELATING TO NUCLEAR REACTOR PLANT

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120912