CN102662148A - On-line feedback battery state of charge (SOC) predicting method - Google Patents
On-line feedback battery state of charge (SOC) predicting method Download PDFInfo
- Publication number
- CN102662148A CN102662148A CN2012101435745A CN201210143574A CN102662148A CN 102662148 A CN102662148 A CN 102662148A CN 2012101435745 A CN2012101435745 A CN 2012101435745A CN 201210143574 A CN201210143574 A CN 201210143574A CN 102662148 A CN102662148 A CN 102662148A
- Authority
- CN
- China
- Prior art keywords
- soc
- value
- battery
- time
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 230000008569 process Effects 0.000 claims abstract description 13
- 230000007704 transition Effects 0.000 claims description 29
- 230000003068 static effect Effects 0.000 claims description 23
- 230000000284 resting effect Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 11
- 230000010354 integration Effects 0.000 description 6
- 230000032683 aging Effects 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012067 mathematical method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Landscapes
- Secondary Cells (AREA)
Abstract
Description
技术领域 technical field
本发明涉及蓄电池荷电状态(State of Charge,SOC)预测技术领域,具体涉及一种在线反馈式蓄电池SOC预测方法。The invention relates to the technical field of battery state of charge (State of Charge, SOC) prediction, in particular to an online feedback battery SOC prediction method.
背景技术 Background technique
蓄电池的荷电状态(State of Charge,SOC)用于描述蓄电池的剩余容量,目前比较统一的是从电量角度定义SOC,其定义为电池在一定放电倍率下,剩余容量与相同条件下额定容量的比值,它是电池使用过程中的重要参数。准确的SOC可以有效得知蓄电池的使用状态,管理蓄电池的充放电情况,使其均衡及防止过充、过放,提高蓄电池组的使用寿命;对于电动汽车用蓄电池SOC还可以较准确的反映续驶里程,提醒驾驶人员何时充电或更换电池。因此,SOC的估算是电池管理的一项研究热点。目前SOC的预测方法主要有以下几种:The state of charge (State of Charge, SOC) of the battery is used to describe the remaining capacity of the battery. At present, it is relatively unified to define SOC from the perspective of electricity, which is defined as the difference between the remaining capacity of the battery under a certain discharge rate and the rated capacity under the same conditions. Ratio, it is an important parameter in the process of battery use. Accurate SOC can effectively know the use status of the battery, manage the charging and discharging of the battery, balance it and prevent overcharging and overdischarging, and improve the service life of the battery pack; it can also accurately reflect the battery SOC for electric vehicles. Driving range, reminding the driver when to charge or replace the battery. Therefore, the estimation of SOC is a research hotspot in battery management. At present, there are mainly the following methods for predicting SOC:
(1)根据电池内部参数的变化来推断SOC的大小,如铅酸电池的介质浓度与SOC有最直接的关系,但电池在充放电过程中介质浓度始终不能达到平衡,而且铅酸电池由于其密封性,使该方法很难应用于电池的SOC的在线估测;(1) Infer the size of the SOC according to the change of the internal parameters of the battery. For example, the medium concentration of the lead-acid battery has the most direct relationship with the SOC, but the medium concentration of the battery cannot reach equilibrium in the process of charging and discharging. The tightness makes it difficult to apply this method to the online estimation of the SOC of the battery;
(2)开路电压法,应用于内部达到平衡状态的蓄电池,其开路电压与SOC有很好的映射关系,但该方法不能用于在线估测;(2) The open-circuit voltage method is applied to the internally balanced battery, and its open-circuit voltage and SOC have a good mapping relationship, but this method cannot be used for online estimation;
(3)安时积分法,这是目前应用较多的方法,简单易行,其基本思想是把不同电流下的放电电量等效成某个特定电流下的放电电量,再根据剩余电量来判定SOC,但放电系数随很多因素的变化而变化,很难得到稳定的精确值。此外,在安时积分法中如何考虑电池自放电和充放电效率的问题,如何矫正因误差不断积累、SOC估计值最终可能严重偏离实际值的问题,是提高安时积分法准确度的难点所在;(3) The ampere-hour integration method, which is currently the most widely used method, is simple and easy to implement. Its basic idea is to equate the discharge power under different currents to the discharge power under a certain current, and then judge according to the remaining power SOC, but the discharge coefficient varies with many factors, and it is difficult to obtain a stable and accurate value. In addition, how to consider the battery self-discharge and charge-discharge efficiency in the ampere-hour integration method, and how to correct the problem that the SOC estimate may seriously deviate from the actual value due to the accumulation of errors are the difficulties in improving the accuracy of the ampere-hour integration method. ;
(4)内阻法,通过试验建立电池内阻与SOC的对应关系,因此需要建立模型来估算电池的内阻,再根据算出的内阻求出SOC,该方法计算量较大,且需建立电池模型,模型的准确性必然影响SOC的估测结果的准确性;(4) Internal resistance method. The corresponding relationship between battery internal resistance and SOC is established through experiments. Therefore, it is necessary to establish a model to estimate the internal resistance of the battery, and then calculate the SOC based on the calculated internal resistance. This method requires a large amount of calculation and needs to be established. Battery model, the accuracy of the model will inevitably affect the accuracy of the SOC estimation results;
(5)Kalman滤波法,由一系列数学公式递归描述,用一种高效的计算方法来估计过程的状态,并使估计均方误差最小。其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻的估计值和现时刻的观测值来更新对状态变量的估计,求出现在时刻的估计值。该方法需要建立电池模型,且方程的建立和求解都较复杂,很难实际应用。(5) Kalman filtering method, described recursively by a series of mathematical formulas, uses an efficient calculation method to estimate the state of the process and minimize the estimated mean square error. The basic idea is: use the state space model of signal and noise, use the estimated value at the previous moment and the observed value at the current moment to update the estimate of the state variable, and find the estimated value at the present moment. This method requires the establishment of a battery model, and the establishment and solution of the equations are complex and difficult to apply in practice.
目前应用最为广泛的是基于安时积分法的SOC估算。公开号为CN101359036A的中国专利申请“电池荷电状态的测定方法”采用基本安时法加修正函数φ(t)来估算SOC,如下式:The most widely used at present is the SOC estimation based on the ampere-hour integration method. The Chinese patent application with the publication number CN101359036A "Measurement method for the state of charge of the battery" uses the basic ampere-hour method plus a correction function φ(t) to estimate the SOC, as follows:
其中,修正系数φ(t)的测定采用如下方法:用公式计算多个时刻的SOC理论值SOC理,x表示多个时刻中的一个时刻,测得在该多个时刻的SOC实际值SOC实,然后采用最小二乘法计算得到用于表达SOC理和SOC实的差值与所用多个时刻之间的关系修正函数φ(t)。Among them, the determination of the correction coefficient φ(t) adopts the following method: use the formula Calculate the SOC theoretical value SOC theory at multiple moments, x represents a moment in the multiple moments, measure the SOC actual value SOC real at the multiple moments, and then use the least square method to calculate and obtain the SOC theory and SOC real value The relationship correction function φ(t) between the difference of and the number of times used.
该方法依赖电量测量装置确定初始容量C0、蓄电池的剩余电量或电量变化量,即所述的多个时刻的SOC实际值SOC实的获得及精确度都依赖于外加的电量测量装置;This method relies on the power measuring device to determine the initial capacity C 0 , the remaining power of the storage battery or the amount of power change, that is, the acquisition and accuracy of the actual SOC value SOC at multiple moments depends on the external power measuring device;
公开号为CN102162836的中国专利申请“一种汽车电池SOC的估算方法”应用开路电压和历史结果确定电池的初始容量,用安时积分法估算SOC,考虑影响SOC的各类因素对SOC进行校正,补偿校正考虑因素包括:The Chinese patent application with the publication number CN102162836 "A method for estimating the SOC of an automobile battery" uses the open circuit voltage and historical results to determine the initial capacity of the battery, uses the ampere-hour integral method to estimate the SOC, and considers various factors affecting the SOC to correct the SOC. Compensation correction considerations include:
1、充放电效率,根据Peukert经验公式,采用查表法对不同电流下的SOC进行修正;1. Charge and discharge efficiency, according to Peukert's empirical formula, use the look-up table method to correct the SOC under different currents;
2、温度,采集大量实验数据预先获得电池温度系数;2. Temperature, collect a large amount of experimental data to obtain the battery temperature coefficient in advance;
3、电池的一致性情况,设置电池差异性的多个点,根据不同的差异点对SOC进行修正;3. For the consistency of the battery, set multiple points of battery difference, and correct the SOC according to different points of difference;
4、电池的自放电,通过大量实验方法预先估计蓄电池的自放电情况,通过数据查表法校正;4. The self-discharge of the battery is pre-estimated by a large number of experimental methods, and corrected by the data look-up table method;
5、老化,SOCage=(SOC-AF)/(1-AF),SOCage为老化补偿后的SOC值,AF为衰老因子。5. Aging, SOC age = (SOC-A F )/(1-A F ), SOC age is the SOC value after aging compensation, and A F is the aging factor.
电池充满电时直接置SOC数值为100%,利用开路电压法得到SOC时,若电池环境温度超过电池工作极限温度,此时SOC为0,并切断充放电回路以保护电池。但系数通过查表获得,不能随电池的使用寿命、老化程度等改变,随着时间的累积其获得的系数不能真实反映电池当前状况,准确度会受到影响;并且表中数据的获得需作大量的实验,而且随电池组的种类、组合方法不同,数据都要重新做实验得出,难以实现。When the battery is fully charged, set the SOC value directly to 100%. When the SOC is obtained by the open circuit voltage method, if the battery ambient temperature exceeds the battery operating limit temperature, the SOC is 0 at this time, and the charging and discharging circuit is cut off to protect the battery. However, the coefficients are obtained by looking up the table and cannot change with the service life and aging degree of the battery. Over time, the obtained coefficients cannot truly reflect the current status of the battery, and the accuracy will be affected; and the data in the table needs to be obtained. In addition, with the different types and combinations of battery packs, the data must be obtained through repeated experiments, which is difficult to achieve.
专利申请“Method for Measuring SOC of a Battery in a BatteryManagement System and the Apparatus Thereof”同样用于开路电压-安时积分的方法求SOC,其开路电压通过搭建电路模型来求得,这种方法的缺点在于电池容量估算的精度取决于电池模型的精度。The patent application "Method for Measuring SOC of a Battery in a Battery Management System and the Apparatus Thereof" is also used to obtain SOC by the method of open circuit voltage-ampere-hour integration, and the open circuit voltage is obtained by building a circuit model. The disadvantage of this method is that The accuracy of battery capacity estimation depends on the accuracy of the battery model.
综上,现有安时积分修正方法或者依赖于外部装置,或者需要大量实验数据作依据,设备复杂,并且系数不能实现自适应校正。In summary, the existing ampere-hour integral correction methods either rely on external devices, or require a large amount of experimental data as a basis, the equipment is complex, and the coefficients cannot be adaptively corrected.
发明内容 Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
本发明要解决的技术问题是:如何提高蓄电池SOC预测准确度。The technical problem to be solved by the invention is: how to improve the prediction accuracy of battery SOC.
(二)技术方案(2) Technical solutions
为解决上述技术问题,本发明提供了一种在线反馈式蓄电池SOC预测方法,包括以下步骤:In order to solve the above-mentioned technical problems, the present invention provides an online feedback battery SOC prediction method, comprising the following steps:
S1、将蓄电池的工作状态分为充满静置、放完静置、普通静置和普通运行四种,并置蓄电池的初始工作状态为普通运行,所述充满静置指蓄电池达到浮充条件并保持一段时间以上;放完静置指蓄电池达到放电下限并保持一段时间以上;普通静置指充电电流小于一定值,不满足浮充条件且保持一段时间以上,或者,放电电流小于一定值,不满足放电下限且保持一段时间以上;以上三种状态以外的状态为普通运行;S1. Divide the working state of the storage battery into four types: fully charged, static, normal static, and normal operation. The initial working state of the juxtaposed battery is normal operation. Keep it for more than a period of time; rest after discharge means that the battery has reached the lower limit of discharge and keep it for more than a period of time; ordinary rest means that the charging current is less than a certain value, does not meet the floating charge condition and keeps it for a period of time, or, the discharge current is less than a certain value, not Satisfy the discharge lower limit and maintain it for more than a period of time; the state other than the above three states is normal operation;
S2、采集蓄电池电压U、电流I、温度T,然后进入步骤S3;S2, collect battery voltage U, current I, temperature T, and then enter step S3;
S3、判断蓄电池的工作状态,若为充满静置,则进入步骤S4,若为放完静置,则进入步骤S5,若为普通静置,则进入步骤S6,若为普通运行,则进入步骤S7;S3. Judging the working state of the battery, if it is fully charged, then enter step S4, if it is fully discharged, then enter step S5, if it is normal resting, then enter step S6, if it is normal operation, then enter step S3. S7;
S4、刷新荷电状态SOC,然后进入步骤S8;S4. Refresh the state of charge SOC, and then enter step S8;
S5、刷新SOC,然后进入步骤S9;S5, refreshing the SOC, and then entering step S9;
S6、将普通静置时间计时开始,刷新SOC,判断U与U0差值是否大于给定值,若满足,则校正自放电系数,然后进入步骤S10,其中U为当前时刻电压值,U0为进入普通静置时刻的电压值;S6. Start timing the ordinary resting time, refresh the SOC, and judge whether the difference between U and U 0 is greater than a given value. If it is satisfied, correct the self-discharge coefficient, and then enter step S10, wherein U is the voltage value at the current moment, and U 0 is the voltage value at the moment of normal rest;
S7、刷新SOC,然后进入步骤S11;S7. Refresh the SOC, and then enter step S11;
S8、进行第一状态转换判断,然后返回步骤S2;S8. Perform a first state transition judgment, and then return to step S2;
S9、进行第二状态转换判断,然后返回步骤S2;S9. Perform a second state transition judgment, and then return to step S2;
S10、进行第三状态转换判断,然后返回步骤S2;S10. Perform a third state transition judgment, and then return to step S2;
S11、进行第四状态转换判断,然后返回步骤S2。S11. Perform a fourth state transition judgment, and then return to step S2.
优选地,步骤S4、S5、S6、S7中刷新SOC的步骤包括如下步骤:判断普通静置时间是否大于给定值t5,若满足,则以当前的电压值作为开路电压值,根据以下公式(1)刷新电池初始容量值SOC0,然后计算SOC,若不满足,直接计算SOCPreferably, the steps of refreshing the SOC in steps S4, S5, S6, and S7 include the following steps: judging whether the ordinary resting time is greater than a given value t5, if satisfied, then using the current voltage value as the open circuit voltage value, according to the following formula ( 1) Refresh the battery initial capacity value SOC 0 , and then calculate the SOC, if not satisfied, directly calculate the SOC
SOC0=f(OCV) (1)。SOC 0 =f(OCV) (1).
优选地,步骤S4、S5、S6、S7中,根据SOC估算模型计算SOC,所述SOC估算模型如公式(2)所示:Preferably, in steps S4, S5, S6, and S7, the SOC is calculated according to the SOC estimation model, and the SOC estimation model is shown in formula (2):
其中,K1为库伦效率系数,K2为温度系数;K1代表在标准温度下,以标准电流IB放电放出的电量QIB与以不同放电电流I放电放出的电量QI之比,K2代表在标准温度TB下蓄电池的容量QTB与在温度T下蓄电池的容量QT之比,kdis为自放电系数,CB为蓄电池的额定容量,t1、t表示不同时刻。Among them, K 1 is the coulombic efficiency coefficient, K 2 is the temperature coefficient; K 1 represents the ratio of the electric quantity Q IB discharged by the standard current I B to the electric quantity Q I discharged by the different discharge current I at the standard temperature, K 2 represents the ratio of the battery capacity Q TB at the standard temperature T B to the battery capacity Q T at the temperature T, k dis is the self-discharge coefficient, C B is the rated capacity of the battery, and t1 and t represent different times.
优选地,步骤S8中所述第一状态转换判断的判断方法如下:判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态,同时判断是否满足电流小于给定值I1、电压小于给定值U1且保持时间大于给定值t4,若满足,则置普通静置状态并记录此时电压值U0和此时时刻t0。Preferably, the judgment method of the first state transition judgment in step S8 is as follows: judge whether the battery current is greater than a given value I 2 and the holding time is greater than a given value t 3 , if satisfied, set the normal running state, and judge whether Satisfied that the current is less than the given value I 1 , the voltage is less than the given value U 1 and the holding time is greater than the given value t 4 , if satisfied, put it in a normal resting state and record the current voltage value U 0 and the current moment t 0 .
优选地,步骤S9中所述第二状态转换判断的判断方法如下:判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态。Preferably, the judging method of the second state transition judgment in step S9 is as follows: judging whether the battery current is greater than a given value I 2 and the holding time is greater than a given value t 3 , and if so, set to a normal running state.
优选地,步骤S10中所述第二状态转换判断的判断方法如下:判断蓄电池电流小于给定值I1且电压达到放电电压值下限且保持时间大于给定值t4,若满足,则置放完静置状态,计时结束,同时判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态,计时结束。Preferably, the judgment method of the second state transition judgment in step S10 is as follows: judging that the battery current is less than a given value I 1 and the voltage reaches the lower limit of the discharge voltage value and the holding time is greater than a given value t 4 , if satisfied, then place After the static state, the timing ends, and at the same time, it is judged whether the battery current is greater than the given value I 2 and the holding time is greater than the given value t 3 , if so, it is set to the normal running state, and the timing ends.
优选地,步骤S11中所述第二状态转换判断的判断方法如下:Preferably, the judgment method of the second state transition judgment in step S11 is as follows:
121、判断蓄电池电流I是否小于I1且保持时间大于t2,若满足,则进入步骤122;121. Determine whether the battery current I is less than I 1 and the holding time is greater than t 2 , and if so, proceed to step 122;
122、判断蓄电池电压是否达到浮充电压值,若满足,进入步骤123,否则进入步骤124;122. Determine whether the battery voltage reaches the floating charge voltage value, if so, go to step 123, otherwise go to step 124;
123、令SOC=100%,SOC0=100%,进入步骤125;123. Let SOC=100%, SOC 0 =100%, go to step 125;
124、判断蓄电池电压是否达到放电下限值,若满足,则进入步骤128,若不满足,则进入步骤129;124. Judging whether the battery voltage reaches the discharge lower limit value, if it is satisfied, then enter
125、判断是否第一次满足I小于I1且保持时间大于t2,若满足,则进入步骤126,若不满足,则进入步骤127;125. Judging whether it is satisfied for the first time that I is less than I 1 and the holding time is greater than t 2 , if it is satisfied, then enter step 126, if not, then enter
126、置充满静置状态;126. Put it in a static state;
127、校正待修正库伦效率相关系数n、待修正温度系数kT,进入步骤126;127. Calibrate the coulombic efficiency correlation coefficient n to be corrected and the temperature coefficient k T to be corrected, and proceed to step 126;
128、令SOC=0%,SOC0=0%,进入步骤1210;128. Let SOC=0%, SOC 0 =0%, go to
129、置普通静置状态,记录此时电压值U0和此时时刻t0;129. Put it in an ordinary static state, and record the voltage value U 0 and the moment t 0 at this time;
1210、判断是否第一次满足I小于I1且保持时间大于t2,若满足,则进入步骤1211,若不满足,则进入步骤1212;1210. Judging whether it is the first time that I is less than I 1 and the holding time is greater than t 2 , if it is satisfied, go to
1211、置放完静置状态;1211. After placing it in a static state;
1212、校正系数n、kT,进入步骤1211。1212. Calibration coefficient n, k T , go to
优选地,步骤127和1212中校正系数n、kT的步骤具体为:电池首次进入充满静置或放完静置状态时,记为t00时刻,相应地置SOC=SOC0=100%或置SOC=SOC0=0%,当再次进入充满静置或放完静置状态时,记为t11时刻,相应地置SOC=SOC0=100%或置SOC=SOC0=0%,则算出公式(7)中的A值:Preferably, the step of correcting the coefficients n and kT in
A为算出的确定值,其中取已知n∈[1.15,1.42],kT∈[0.006,0.008],在n取值范围内取最小值,代入公式(7),求出kT,若kT在取值范围内,则刷新n、kT,若kT不在取值范围内,则将最小n值加固定步长取下一n值,再代入公式(7),求出kT,重复上述过程,直到取到合适的kT或,n值取到最大值。A is the calculated definite value, where Given that n∈[1.15, 1.42], k T ∈ [0.006, 0.008], take the minimum value within the value range of n, substitute it into formula (7), and find k T , if k T is within the value range, then Refresh n and k T , if k T is not within the value range, take the minimum n value plus a fixed step size to get the next n value, and then substitute it into formula (7) to find k T , repeat the above process until a suitable The k T or, n value takes the maximum value.
优选地,所述校正自放电系数的步骤中按公式(8)刷新kdis值:Preferably, in the step of correcting the self-discharge coefficient, refresh the k dis value according to formula (8):
其中,U为当前电压值,t为当前时间,U0为刚进入普通静置时的电压值,t0为刚进入普通静置时的时间。Among them, U is the current voltage value, t is the current time, U 0 is the voltage value when it just enters the ordinary rest, and t 0 is the time when it just enters the ordinary rest.
(三)有益效果(3) Beneficial effects
本发明的方法在蓄电池在线运行过程中,利用历史数据进行SOC估算模型参数的修正,该方法考虑了温度、库伦效率、自放电对电池SOC的影响,只需监测蓄电池的基本运行参数,在电池运行过程中只要满足条件就修正相关系数,反复校正系数值,随着时间的累积,SOC的估测结果会更加接近真值,因此准确度高,能实现在线预测蓄电池SOC。The method of the present invention uses historical data to correct the parameters of the SOC estimation model during the online operation of the battery. The method takes into account the influence of temperature, Coulombic efficiency and self-discharge on the SOC of the battery. During operation, as long as the conditions are met, the correlation coefficient is corrected, and the coefficient value is corrected repeatedly. With the accumulation of time, the estimated result of SOC will be closer to the true value, so the accuracy is high, and online prediction of battery SOC can be realized.
附图说明 Description of drawings
图1为本发明实施例的方法流程图;Fig. 1 is the method flowchart of the embodiment of the present invention;
图2为计算SOC流程图;Fig. 2 is the flow chart of calculating SOC;
图3为状态转换判断1流程图;Fig. 3 is a flowchart of state transition judgment 1;
图4为状态转换判断2流程图;Fig. 4 is a flow chart of
图5为状态转换判断3流程图;Fig. 5 is a flow chart of
图6为状态转换判断4流程图;Fig. 6 is a flow chart of state transition judgment 4;
图7为校正系数流程图。Fig. 7 is a flowchart of the correction coefficient.
具体实施方式 Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be described in further detail below in conjunction with the accompanying drawings and examples. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
本发明利用历史数据进行SOC估算模型参数的修正,蓄电池在线运行过程中,定时采集所有单体电池的电流(I)、电压(U)、温度(T)等数据并存储,并将蓄电池运行过程分为充满静置、放完静置、普通静置和普通运行四种工作状态,充满静置指蓄电池达到浮充条件并保持一段时间以上;放完静置指蓄电池达到放电下限并保持一段时间以上;普通静置指充电电流小于一定值,不满足浮充条件且保持一段时间以上,或者,放电电流小于一定值,不满足放电下限且保持一段时间以上。本实施例中,充满静置指电池达到充满(此时SOC=100%)且保持充满一段时间,放完静置指电池达到放完(此时SOC=0%)且保持放完一段时间,普通静置时,0%<SOC<100%。系统上电开始,置初始状态为普通运行,初始化SOC,代入SOC估算模型参数初值,此后转入循环运行。在循环运行过程中,通过分析运行工况和数据变化,实现蓄电池管理系统工作状态转换。其中,The invention uses historical data to correct the parameters of the SOC estimation model. During the online operation of the storage battery, the current (I), voltage (U), temperature (T) and other data of all single batteries are regularly collected and stored, and the battery operation process It is divided into four working states: fully charged, fully discharged, normal static and normal operation. Fully charged and static means that the battery has reached the floating charge condition and maintained for a period of time; fully discharged and static means that the battery has reached the lower limit of discharge and maintained for a period of time. Above; Ordinary standing means that the charging current is less than a certain value, does not meet the floating charge condition and remains for a period of time, or, the discharge current is less than a certain value, does not meet the discharge lower limit and remains for a period of time. In this embodiment, fully charged and standing means that the battery is fully charged (at this time SOC = 100%) and remains fully charged for a period of time, and that the battery is fully discharged (at this time SOC = 0%) and remains fully charged for a period of time, When standing normally, 0%<SOC<100%. When the system is powered on, the initial state is set to normal operation, the SOC is initialized, the initial value of the model parameters is substituted into the SOC, and then it is transferred to cycle operation. During the cycle operation, the working state transition of the battery management system is realized by analyzing the operating conditions and data changes. in,
在普通运行状态下,依据SOC估算模型刷新SOC值,若满足充满静置条件,则置SOC=SOC0=100%,SOC0为蓄电池的初始容量值,SOC为蓄电池的当前容量值,并置工作状态为充满静置;若满足放完静置条件,则置SOC=SOC0=0%,并置工作状态为放完静置;若满足普通静置条件,则置工作状态为普通静置。In the normal running state, the SOC value is refreshed according to the SOC estimation model. If the condition of being fully charged is satisfied, then set SOC=SOC 0 =100%, SOC 0 is the initial capacity value of the battery, SOC is the current capacity value of the battery, and set The working state is full and resting; if the resting condition is met, set SOC=SOC 0 =0%, and set the working state as resting after putting; if the normal resting condition is met, set the working state as ordinary resting .
在充满静置状态下,刷新SOC值;在放完静置状态下,刷新SOC值;在普通静置状态下,记录系统处于普通静置的时间,刷新SOC值,满足校正自放电系数的条件时,校正自放电系数。Refresh the SOC value in the full static state; refresh the SOC value in the static state after discharging; in the normal static state, record the time the system is in the normal static state, refresh the SOC value, and meet the conditions for correcting the self-discharge coefficient , correct the self-discharge coefficient.
刷新SOC的过程包括,判断蓄电池普通静置的时间,若大于给定时间,则测出此时蓄电池的电压值,作为开路电压OCV(Open CircuitVoltage),根据系统给定的SOC0与OCV的对应关系函数f得到SOC0,刷新初始容量SOC0,然后根据SOC估算模型计算SOC;The process of refreshing the SOC includes judging the normal standing time of the battery. If it is longer than the given time, measure the voltage value of the battery at this time as the open circuit voltage OCV (Open Circuit Voltage). According to the correspondence between SOC 0 and OCV given by the system The relationship function f gets SOC 0 , refreshes the initial capacity SOC 0 , and then calculates SOC according to the SOC estimation model;
在系统满足充满静置条件或放完静置条件时,满足一定条件就修正安时积分中的库伦效率系数和温度系数。When the system satisfies the condition of being fully charged or fully discharged, the coulombic efficiency coefficient and temperature coefficient in the ampere-hour integration are corrected if certain conditions are met.
参见图1,本发明实施例的方法包括如下步骤:Referring to Fig. 1, the method of the embodiment of the present invention comprises the following steps:
1)开始1) start
2)初始化SOC,为库伦效率相关系数、温度系数、自放电系数赋初值,置蓄电池的初始运行状态为普通运行;2) Initialize the SOC, assign initial values for the coulombic efficiency correlation coefficient, temperature coefficient, and self-discharge coefficient, and set the initial operating state of the battery to normal operation;
3)采集蓄电池电压U、电流I、温度T,进入步骤4;3) Collect battery voltage U, current I, temperature T, and enter step 4;
4)判断蓄电池的工作状态,若为充满静置,则进入步骤5,若为放完静置,则进入步骤6,若为普通静置,则进入步骤7,若为普通运行,则进入步骤8;4) Judging the working status of the battery, if it is fully charged, go to
5)刷新SOC,进入步骤9;5) Refresh the SOC and go to
6)刷新SOC,进入步骤10;6) Refresh the SOC and go to step 10;
7)进入普通静置时间计时开始,刷新SOC,判断U与U0差值是否大于给定值(U为此刻电压值,U0为刚进入普通静置时刻电压值),若满足,则校正自放电系数。进入步骤11;7) Enter the normal resting time and start timing, refresh the SOC, and judge whether the difference between U and U 0 is greater than a given value (U is the voltage value at the moment, and U 0 is the voltage value at the moment when it just entered the normal resting time), and if it is satisfied, then correct self-discharge coefficient. Go to step 11;
8)刷新SOC,进入步骤12;8) Refresh the SOC and go to step 12;
9)状态转换判断1,返回步骤3;9) State transition judgment 1, return to
10)状态转换判断2,返回步骤3;10)
11)状态转换判断3,返回步骤3;11)
12)状态转换判断4,返回步骤3;12) State transition judgment 4, return to
进一步的,步骤5、6、7、8中刷新SOC包括如下过程,如附图2所示:判断普通静置时间是否大于给定值t5,若满足,则以此时的电池电压作为开路电压值,根据公式(1)Further, refreshing the SOC in
SOC0=f(OCV) (1)SOC 0 = f(OCV) (1)
刷新初始容量SOC0,然后按SOC估算模型计算SOC,若不满足,直接按SOC估算模型计算SOC;f(OCV)表示以OCV为参数的函数。Refresh the initial capacity SOC 0 , and then calculate the SOC according to the SOC estimation model, if not, directly calculate the SOC according to the SOC estimation model; f(OCV) represents a function with OCV as a parameter.
进一步的,所述公式(1)由实验获得,在标准温度下以标准电流放电,记录若干开路电压值,用安时积分法算出对应的若干SOC值,再应用数学方法求出SOC与OCV的关系函数f,例如,可以采用最小二乘法。将得到的函数关系存到系统的数据库中,估算过程中,由系统根据检测到的开路电压值OCV得到SOC0;Further, the formula (1) is obtained by experiments, discharge with a standard current at a standard temperature, record some open circuit voltage values, use the ampere-hour integral method to calculate corresponding SOC values, and then apply mathematical methods to obtain the relationship between SOC and OCV The relation function f, for example, may employ the method of least squares. Store the obtained functional relationship in the database of the system. During the estimation process, the system obtains SOC 0 according to the detected open circuit voltage value OCV;
进一步的,所述SOC估算模型如公式(2)所示:Further, the SOC estimation model is shown in formula (2):
其中K1为库伦效率系数,K2为温度系数;K1代表在标准温度下,以标准电流IB放电放出的电量QIB与以不同放电电流I放电放出的电量QI之比,K2代表在标准温度TB下蓄电池的容量QTB与在温度T下蓄电池的容量QT之比,kdis为自放电系数,CB为蓄电池的额定容量,t1、t表示不同时刻,IB根据电池的种类、生产厂家而定。进一步的,根据本领域技术人员所熟知的Peukert方程,如式(3)所示:Among them, K 1 is the coulombic efficiency coefficient, K 2 is the temperature coefficient; K 1 represents the ratio of the electric quantity Q IB discharged by the standard current I B to the electric quantity Q I discharged by the different discharge current I at the standard temperature, K 2 Represents the ratio of the capacity Q TB of the battery at standard temperature T B to the capacity Q T of the battery at temperature T, k dis is the self-discharge coefficient, C B is the rated capacity of the battery, t1 and t represent different moments, I B according to It depends on the type of battery and the manufacturer. further, According to the Peukert equation well known to those skilled in the art, as shown in formula (3):
In·t=K (3)I n t=K (3)
变形得In-1·I·t=K,即In-1·Q=K,Q为蓄电池容量,则有n为待修正库伦效率相关系数;根据已知的应用最为广泛的温度修正的经验公式(4):Transformed into I n-1 · I · t = K, that is, I n-1 · Q = K, Q is the capacity of the storage battery, then there is n is the correlation coefficient of Coulombic efficiency to be corrected; According to the known empirical formula (4) of the most widely used temperature correction:
QT=QTB·[1+kT·(T-TB)] (4)Q T = Q TB ·[1+k T ·(TT B )] (4)
则有其中TB为标准温度,例如取20℃,kT为待修正温度系数;整理得公式(5):then there is Where TB is the standard temperature, for example, 20°C, and k T is the temperature coefficient to be corrected; the formula (5) is obtained:
若系统每隔时间Δt刷新一次U、I、T,则式(5)可表示成公式(6):If the system refreshes U, I, and T every time Δt, formula (5) can be expressed as formula (6):
其中Ii、Ti为每次新采集到的电流、温度。in I i and T i are current and temperature newly collected each time.
进一步的,步骤9中所述状态转换判断1,参见图3所示,判断方法如下:判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态,同时判断是否满足电流小于给定值I1、电压小于给定值U1且保持时间大于给定值t4,若满足,则置普通静置状态并记录此时电压值U0和此时时刻t0;Further, the state transition judgment 1 mentioned in
进一步的,步骤10中所述状态转换判断2,参见图4所示,判断方法如下:判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态;Further, the
进一步的,步骤11中所述状态转换判断3,参见图5所示,判断方法如下:判断蓄电池电流小于给定值I1且电压达到放电电压值下限且保持时间大于给定值t4,若满足,则置放完静置状态,计时结束,同时判断蓄电池电流是否大于给定值I2且保持时间大于给定值t3,若满足,则置普通运行状态,计时结束;Further, the
进一步的,步骤12中所述状态转换判断4,参见图6所示,判断方法如下:Further, the state transition judgment 4 described in
121)判断蓄电池电流I是否小于I1且保持时间大于t2,若满足,则进入步骤122;121) Judging whether the battery current I is less than I 1 and the holding time is greater than t 2 , if satisfied, enter step 122;
122)判断蓄电池电压是否达到浮充电压值,若满足,进入步骤123,否则进入步骤124;122) Judging whether the battery voltage has reached the floating charge voltage value, if satisfied, enter
123)令SOC=100%,SOC0=100%,进入步骤125;123) Set SOC=100%, SOC 0 =100%, enter
124)判断蓄电池电压是否达到放电下限值,若满足,则进入步骤128,若不满足,则进入步骤129;124) Judging whether the battery voltage reaches the discharge lower limit value, if satisfied, then enter
125)判断是否第一次满足I小于I1且保持时间大于t2,若满足,则进入步骤126,若不满足,则进入步骤127;125) Judging whether it is satisfied for the first time that I is less than I1 and the holding time is greater than t2 , if satisfied, then enter step 126, if not satisfied, then enter
126)置充满静置状态;126) set full static state;
127)校正系数n、kT,进入步骤126;127) correction coefficient n, k T , enter step 126;
128)令SOC=0%,SOC0=0%,进入步骤1210;128) Set SOC=0%, SOC 0 =0%, enter
129)置普通静置状态,记录此时电压值U0和此时时刻t0;129) Put it in an ordinary static state, record the voltage value U 0 and the moment t 0 at this time;
1210)判断是否第一次满足I小于I1且保持时间大于t2,若满足,则进入步骤1211,若不满足,则进入步骤1212;1210) Judging whether it is satisfied for the first time that I is less than I 1 and the holding time is greater than t 2 , if it is satisfied, then enter
1211)置放完静置状态;1211) After placing the static state;
1212)校正系数n、kT,进入步骤1211;1212) correction coefficient n, k T , enter
进一步的,步骤127和1212中所述校正系数n、kT,参见图7所示,包括如下过程:系统首次进入充满静置或放完静置状态时,记为t00时刻,置SOC=SOC0=100%或置SOC=SOC0=0%,当系统再次进入充满静置或放完静置状态时,记为t11时刻,置SOC=SOC0=100%或置SOC=SOC0=0%,则可以算出公式(7)中的A值:Further, the correction coefficients n and k T described in
A为算出的确定值,其中取已知n∈[1.15,1.42],kT∈[0.006,0.008],在n取值范围内取最小值,代入公式(7),求出kT,若kT在取值范围内,则刷新n、kT,若kT不在取值范围内,则将最小n值加固定步长取下一n值,固定步长可自行设定,再代入公式(7),求出kT,重复上述过程,直到取到满足取值范围的kT或,n值取到最大值。A is the calculated definite value, where Given that n∈[1.15, 1.42], k T ∈ [0.006, 0.008], take the minimum value within the value range of n, substitute it into formula (7), and find k T , if k T is within the value range, then Refresh n and k T , if k T is not within the value range, add the minimum n value plus a fixed step size to get the next n value, the fixed step size can be set by yourself, and then substitute into formula (7) to find k T , Repeat the above process until kT or n that satisfies the value range is obtained, and the value of n reaches the maximum value.
进一步的,所述校正自放电系数的步骤中按公式(8)刷新kdis值:Further, in the step of correcting the self-discharge coefficient, refresh the k dis value according to formula (8):
其中,f()表示公式(1)中开路电压与SOC对应关系的函数,U为当前电压值,t为当前时间,U0为刚进入普通静置时的电压值,t0为刚进入普通静置时的时间。Among them, f() represents the function of the corresponding relationship between the open circuit voltage and SOC in formula (1), U is the current voltage value, t is the current time, U 0 is the voltage value when it just enters normal rest, and t 0 is the voltage value just entered normal time at rest.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210143574.5A CN102662148B (en) | 2012-05-09 | 2012-05-09 | On-line feedback battery state of charge (SOC) predicting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210143574.5A CN102662148B (en) | 2012-05-09 | 2012-05-09 | On-line feedback battery state of charge (SOC) predicting method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102662148A true CN102662148A (en) | 2012-09-12 |
CN102662148B CN102662148B (en) | 2014-06-18 |
Family
ID=46771677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210143574.5A Expired - Fee Related CN102662148B (en) | 2012-05-09 | 2012-05-09 | On-line feedback battery state of charge (SOC) predicting method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102662148B (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103513188A (en) * | 2013-10-15 | 2014-01-15 | 清华大学 | Power calculation method of single battery in power system energy storage station |
CN103884989A (en) * | 2012-12-20 | 2014-06-25 | 北汽福田汽车股份有限公司 | Coulombic-efficiency detection method used for SOC estimation of power cell |
CN103969587A (en) * | 2014-01-17 | 2014-08-06 | 浙江吉利控股集团有限公司 | Power battery SOC (state of charge) estimation method for hybrid electric vehicles |
CN104076283A (en) * | 2013-03-25 | 2014-10-01 | 北汽福田汽车股份有限公司 | Power battery SOC initial value calculation method and power battery system |
CN104635165A (en) * | 2015-01-27 | 2015-05-20 | 合肥工业大学 | Accurate estimation method for residual electric quantity of accumulator of photoelectric complementary power supply system |
CN104937431A (en) * | 2013-01-21 | 2015-09-23 | 株式会社丰田自动织机 | Charge rate estimation device and charge rate estimation method |
CN105205298A (en) * | 2014-06-16 | 2015-12-30 | 重庆邮电大学 | Mutation-based SOC estimation correction method |
CN105353313A (en) * | 2015-09-28 | 2016-02-24 | 欣旺达电子股份有限公司 | Estimation method of battery state of charge and estimation device of battery state of charge |
CN105738828A (en) * | 2016-04-04 | 2016-07-06 | 北京航空航天大学 | Battery capacity accurate measurement method |
CN105759213A (en) * | 2016-02-16 | 2016-07-13 | 浙江安美科技有限公司 | Method for measuring storage battery residual capacity SOC |
CN105911481A (en) * | 2016-04-22 | 2016-08-31 | 成都雅骏新能源汽车科技股份有限公司 | Battery state-of-charge initial value estimation method |
CN105974323A (en) * | 2016-05-09 | 2016-09-28 | 深圳市鑫成泰科技有限公司 | Algorithm model improving electric automobile SOC estimation precision |
CN106125006A (en) * | 2016-08-31 | 2016-11-16 | 北京海博思创科技有限公司 | Battery charge state determines method and device |
CN106645953A (en) * | 2015-10-29 | 2017-05-10 | 宝山钢铁股份有限公司 | Lithium battery internal resistance value estimation method |
CN106845441A (en) * | 2017-02-15 | 2017-06-13 | 广州志正电气有限公司 | One kind is full of Forecasting Methodology based on image recognition aircraft battery electricity |
CN107024665A (en) * | 2017-05-17 | 2017-08-08 | 苏州协鑫集成储能科技有限公司 | The residual capacity calibration method of battery |
CN107329088A (en) * | 2016-04-29 | 2017-11-07 | 株式会社日立制作所 | The health status diagnostic device and method of battery |
CN109061518A (en) * | 2018-10-18 | 2018-12-21 | 国家电网有限公司 | A kind of communication storage battery health degree on-line monitoring method |
CN109061482A (en) * | 2018-06-28 | 2018-12-21 | 北京云数智汇科技有限公司 | Battery health degree prediction technique and device |
CN109669131A (en) * | 2018-12-30 | 2019-04-23 | 浙江零跑科技有限公司 | Power battery SOC estimation method under a kind of work condition environment |
CN110221218A (en) * | 2019-06-28 | 2019-09-10 | 蜂巢能源科技有限公司 | Calculate the method and apparatus and machine readable storage medium of the SOC of battery |
CN110249233A (en) * | 2017-02-09 | 2019-09-17 | Abb瑞士股份有限公司 | Health status for battery is estimated |
CN110596596A (en) * | 2019-10-12 | 2019-12-20 | 深圳中科新能源汽车技术有限公司 | Novel SOC successive correction method based on OCV curve |
CN110988706A (en) * | 2019-12-27 | 2020-04-10 | 四川长虹电器股份有限公司 | Method for calculating SOC (state of charge) capacity of cadmium-nickel battery |
CN111175666A (en) * | 2020-01-16 | 2020-05-19 | 郑州宇通客车股份有限公司 | SOH detection method and device |
CN111289905A (en) * | 2020-03-31 | 2020-06-16 | 太格尔技术(天津)有限公司 | Method and device for measuring SOC of storage battery on line |
CN111289898A (en) * | 2018-12-06 | 2020-06-16 | 中国科学院大连化学物理研究所 | A Method for Estimating Remaining Capacity of Metal/Air Batteries |
CN112072762A (en) * | 2020-11-10 | 2020-12-11 | 北京思凌科半导体技术有限公司 | Charging circuit and power terminal |
CN112345942A (en) * | 2020-11-09 | 2021-02-09 | 阳光三星(合肥)储能电源有限公司 | Battery system, BMS (battery management system) thereof and full-charge SOC (state of charge) calibration method |
CN112578282A (en) * | 2020-12-02 | 2021-03-30 | 重庆峘能电动车科技有限公司 | Method for estimating battery SOC, electric equipment and storage medium |
CN112952225A (en) * | 2019-12-11 | 2021-06-11 | 中车时代电动汽车股份有限公司 | SOC correction method and device of battery system |
CN117113026A (en) * | 2023-08-18 | 2023-11-24 | 温州锌时代能源有限公司 | A SOC assessment method for zinc-bromine flow batteries based on linear regression prediction |
WO2024119645A1 (en) * | 2022-12-07 | 2024-06-13 | 惠州亿纬锂能股份有限公司 | Battery soc value estimation method, estimation apparatus, battery management system, and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5614804A (en) * | 1993-12-27 | 1997-03-25 | Honda Giken Kogyo Kabushiki Kaisha | Method of detecting residual capacity of battery for use on electric vehicle |
US5658682A (en) * | 1992-12-11 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Process for detecting remaining capacity of battery |
-
2012
- 2012-05-09 CN CN201210143574.5A patent/CN102662148B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5658682A (en) * | 1992-12-11 | 1997-08-19 | Honda Giken Kogyo Kabushiki Kaisha | Process for detecting remaining capacity of battery |
US5614804A (en) * | 1993-12-27 | 1997-03-25 | Honda Giken Kogyo Kabushiki Kaisha | Method of detecting residual capacity of battery for use on electric vehicle |
Non-Patent Citations (3)
Title |
---|
唐群: "《直流电源设备 中级工》", 31 January 1999, 中国电力出版社 * |
林志强: "阀控铅酸电池检测方法研究及在线监测系统设计", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
田晓辉: "锂离子电池SOC预测方法应用研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 * |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103884989B (en) * | 2012-12-20 | 2016-12-28 | 北汽福田汽车股份有限公司 | A kind of coulombic efficiency detection method for electrokinetic cell SOC estimation |
CN103884989A (en) * | 2012-12-20 | 2014-06-25 | 北汽福田汽车股份有限公司 | Coulombic-efficiency detection method used for SOC estimation of power cell |
CN104937431A (en) * | 2013-01-21 | 2015-09-23 | 株式会社丰田自动织机 | Charge rate estimation device and charge rate estimation method |
CN104076283A (en) * | 2013-03-25 | 2014-10-01 | 北汽福田汽车股份有限公司 | Power battery SOC initial value calculation method and power battery system |
CN103513188B (en) * | 2013-10-15 | 2016-02-10 | 清华大学 | The electricity computing method of battery cell in a kind of electric system energy storage station |
CN103513188A (en) * | 2013-10-15 | 2014-01-15 | 清华大学 | Power calculation method of single battery in power system energy storage station |
WO2015106691A1 (en) * | 2014-01-17 | 2015-07-23 | 宁波吉利罗佑发动机零部件有限公司 | Soc estimation method for power battery for hybrid electric vehicle |
CN103969587A (en) * | 2014-01-17 | 2014-08-06 | 浙江吉利控股集团有限公司 | Power battery SOC (state of charge) estimation method for hybrid electric vehicles |
CN103969587B (en) * | 2014-01-17 | 2016-08-17 | 科力远混合动力技术有限公司 | A kind of hybrid vehicle electrokinetic cell SOC estimation method |
CN105205298A (en) * | 2014-06-16 | 2015-12-30 | 重庆邮电大学 | Mutation-based SOC estimation correction method |
CN105205298B (en) * | 2014-06-16 | 2018-01-12 | 重庆邮电大学 | Mutation-based SOC estimation correction method |
CN104635165A (en) * | 2015-01-27 | 2015-05-20 | 合肥工业大学 | Accurate estimation method for residual electric quantity of accumulator of photoelectric complementary power supply system |
CN104635165B (en) * | 2015-01-27 | 2017-03-29 | 合肥工业大学 | A kind of accurate evaluation method of light-electricity complementary electric power system accumulator dump energy |
CN105353313A (en) * | 2015-09-28 | 2016-02-24 | 欣旺达电子股份有限公司 | Estimation method of battery state of charge and estimation device of battery state of charge |
CN106645953B (en) * | 2015-10-29 | 2019-11-22 | 宝山钢铁股份有限公司 | Lithium battery internal resistance value evaluation method |
CN106645953A (en) * | 2015-10-29 | 2017-05-10 | 宝山钢铁股份有限公司 | Lithium battery internal resistance value estimation method |
CN105759213A (en) * | 2016-02-16 | 2016-07-13 | 浙江安美科技有限公司 | Method for measuring storage battery residual capacity SOC |
CN105738828B (en) * | 2016-04-04 | 2018-07-17 | 北京航空航天大学 | A kind of battery capacity accurately measures method |
CN105738828A (en) * | 2016-04-04 | 2016-07-06 | 北京航空航天大学 | Battery capacity accurate measurement method |
CN105911481A (en) * | 2016-04-22 | 2016-08-31 | 成都雅骏新能源汽车科技股份有限公司 | Battery state-of-charge initial value estimation method |
CN105911481B (en) * | 2016-04-22 | 2019-03-26 | 成都雅骏新能源汽车科技股份有限公司 | A kind of battery charge state initial value evaluation method |
CN107329088B (en) * | 2016-04-29 | 2021-05-14 | 株式会社日立制作所 | Battery state of health diagnosis device and method |
CN107329088A (en) * | 2016-04-29 | 2017-11-07 | 株式会社日立制作所 | The health status diagnostic device and method of battery |
CN105974323B (en) * | 2016-05-09 | 2019-04-12 | 深圳市鑫成泰科技有限公司 | A kind of algorithm model improving electric car SOC estimation precision |
CN105974323A (en) * | 2016-05-09 | 2016-09-28 | 深圳市鑫成泰科技有限公司 | Algorithm model improving electric automobile SOC estimation precision |
CN106125006A (en) * | 2016-08-31 | 2016-11-16 | 北京海博思创科技有限公司 | Battery charge state determines method and device |
CN106125006B (en) * | 2016-08-31 | 2019-02-15 | 北京海博思创科技有限公司 | Battery charge state determines method and device |
US11101669B2 (en) | 2017-02-09 | 2021-08-24 | Abb Schweiz Ag | State of health estimation for batteries |
CN110249233B (en) * | 2017-02-09 | 2021-10-08 | Abb瑞士股份有限公司 | State of health estimation for battery |
CN110249233A (en) * | 2017-02-09 | 2019-09-17 | Abb瑞士股份有限公司 | Health status for battery is estimated |
CN106845441A (en) * | 2017-02-15 | 2017-06-13 | 广州志正电气有限公司 | One kind is full of Forecasting Methodology based on image recognition aircraft battery electricity |
CN106845441B (en) * | 2017-02-15 | 2022-02-01 | 广州志正电气有限公司 | Aviation storage battery electric quantity full-charge prediction method based on image recognition |
CN107024665B (en) * | 2017-05-17 | 2019-12-27 | 苏州协鑫集成储能科技有限公司 | Method for calibrating residual capacity of battery |
CN107024665A (en) * | 2017-05-17 | 2017-08-08 | 苏州协鑫集成储能科技有限公司 | The residual capacity calibration method of battery |
CN109061482B (en) * | 2018-06-28 | 2021-06-01 | 北京云数智汇科技有限公司 | Battery health degree prediction method and device |
CN109061482A (en) * | 2018-06-28 | 2018-12-21 | 北京云数智汇科技有限公司 | Battery health degree prediction technique and device |
CN109061518A (en) * | 2018-10-18 | 2018-12-21 | 国家电网有限公司 | A kind of communication storage battery health degree on-line monitoring method |
CN111289898B (en) * | 2018-12-06 | 2022-02-11 | 中国科学院大连化学物理研究所 | A Method for Estimating Remaining Capacity of Metal/Air Batteries |
CN111289898A (en) * | 2018-12-06 | 2020-06-16 | 中国科学院大连化学物理研究所 | A Method for Estimating Remaining Capacity of Metal/Air Batteries |
CN109669131B (en) * | 2018-12-30 | 2021-03-26 | 浙江零跑科技有限公司 | SOC estimation method of power battery under working condition environment |
CN109669131A (en) * | 2018-12-30 | 2019-04-23 | 浙江零跑科技有限公司 | Power battery SOC estimation method under a kind of work condition environment |
CN110221218A (en) * | 2019-06-28 | 2019-09-10 | 蜂巢能源科技有限公司 | Calculate the method and apparatus and machine readable storage medium of the SOC of battery |
CN110596596A (en) * | 2019-10-12 | 2019-12-20 | 深圳中科新能源汽车技术有限公司 | Novel SOC successive correction method based on OCV curve |
CN112952225A (en) * | 2019-12-11 | 2021-06-11 | 中车时代电动汽车股份有限公司 | SOC correction method and device of battery system |
CN112952225B (en) * | 2019-12-11 | 2023-05-23 | 中车时代电动汽车股份有限公司 | SOC correction method and device for battery system |
CN110988706A (en) * | 2019-12-27 | 2020-04-10 | 四川长虹电器股份有限公司 | Method for calculating SOC (state of charge) capacity of cadmium-nickel battery |
CN110988706B (en) * | 2019-12-27 | 2022-04-22 | 四川长虹电器股份有限公司 | Method for calculating SOC (state of charge) capacity of cadmium-nickel battery |
CN111175666A (en) * | 2020-01-16 | 2020-05-19 | 郑州宇通客车股份有限公司 | SOH detection method and device |
CN111175666B (en) * | 2020-01-16 | 2020-09-29 | 郑州宇通客车股份有限公司 | SOH detection method and device |
CN111289905A (en) * | 2020-03-31 | 2020-06-16 | 太格尔技术(天津)有限公司 | Method and device for measuring SOC of storage battery on line |
CN112345942A (en) * | 2020-11-09 | 2021-02-09 | 阳光三星(合肥)储能电源有限公司 | Battery system, BMS (battery management system) thereof and full-charge SOC (state of charge) calibration method |
CN112345942B (en) * | 2020-11-09 | 2024-02-23 | 阳光储能技术有限公司 | Battery system and BMS (battery management system) and full charge-discharge SOC (system on chip) calibration method thereof |
CN112072762A (en) * | 2020-11-10 | 2020-12-11 | 北京思凌科半导体技术有限公司 | Charging circuit and power terminal |
CN112072762B (en) * | 2020-11-10 | 2021-01-29 | 北京思凌科半导体技术有限公司 | Charging circuit and power terminal |
CN112578282A (en) * | 2020-12-02 | 2021-03-30 | 重庆峘能电动车科技有限公司 | Method for estimating battery SOC, electric equipment and storage medium |
WO2024119645A1 (en) * | 2022-12-07 | 2024-06-13 | 惠州亿纬锂能股份有限公司 | Battery soc value estimation method, estimation apparatus, battery management system, and storage medium |
CN117113026A (en) * | 2023-08-18 | 2023-11-24 | 温州锌时代能源有限公司 | A SOC assessment method for zinc-bromine flow batteries based on linear regression prediction |
Also Published As
Publication number | Publication date |
---|---|
CN102662148B (en) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102662148A (en) | On-line feedback battery state of charge (SOC) predicting method | |
US9709635B2 (en) | System and method for SOC estimation of a battery | |
CN102445663B (en) | Method for estimating battery health of electric automobile | |
CN105277898B (en) | A kind of detection method of battery charge state | |
US8529125B2 (en) | Dynamic estimation of cell core temperature by simple external measurements | |
JP5466564B2 (en) | Battery degradation estimation method, battery capacity estimation method, battery capacity equalization method, and battery degradation estimation apparatus | |
CN103250066B (en) | The system and method for sensing battery capacity | |
EP1707974B1 (en) | Remaining capacity calculating device and method for electric power storage | |
CN103797374B (en) | System and method for battery monitoring | |
CN102761141B (en) | Electric quantity correction and control method of lithium ion power storage battery | |
CN110261779A (en) | A kind of ternary lithium battery charge state cooperates with estimation method with health status online | |
EP3343689B1 (en) | Deterioration degree estimation device and deterioration degree estimation method | |
CN113777501B (en) | SOH estimation method of battery module | |
CN111190109B (en) | A method for estimating state of charge of lithium battery without current sensor | |
CN102854470A (en) | Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set | |
CN105319515A (en) | A combined estimation method for the state of charge and the state of health of lithium ion batteries | |
CN108717164A (en) | The state-of-charge SOC scaling methods and system of battery | |
CN110632528A (en) | A lithium battery SOH estimation method based on internal resistance detection | |
JP2006242880A (en) | Power supply state detection device, power supply device, and initial characteristic extraction device used for power supply device | |
CN103675683A (en) | Lithium battery state of charge (SOC) estimation method | |
CN110098439A (en) | A kind of method of power battery charging time Estimate | |
CN105388426A (en) | Method and apparatus for estimating state of health (SOH) of battery | |
CN107748336A (en) | The state-of-charge On-line Estimation method and system of lithium ion battery | |
CN111707947B (en) | Method and device for online battery capacity identification and iterative calibration | |
CN112305426A (en) | A Power State Estimation System for Li-ion Battery under Multiple Constraints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140618 Termination date: 20150509 |
|
EXPY | Termination of patent right or utility model |