CN102653860A - 透明导电薄膜及其制备方法 - Google Patents

透明导电薄膜及其制备方法 Download PDF

Info

Publication number
CN102653860A
CN102653860A CN2011101174420A CN201110117442A CN102653860A CN 102653860 A CN102653860 A CN 102653860A CN 2011101174420 A CN2011101174420 A CN 2011101174420A CN 201110117442 A CN201110117442 A CN 201110117442A CN 102653860 A CN102653860 A CN 102653860A
Authority
CN
China
Prior art keywords
transparent conductive
conductive film
substrate
preparation
thermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101174420A
Other languages
English (en)
Inventor
刘同军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Hefei BOE Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd, Hefei BOE Optoelectronics Technology Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN2011101174420A priority Critical patent/CN102653860A/zh
Priority to US13/464,177 priority patent/US9051640B2/en
Publication of CN102653860A publication Critical patent/CN102653860A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1233Organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

本发明公开了一种透明导电薄膜及其制备方法,涉及液晶显示器制造领域,解决了现有技术制备透明导电薄膜时,原料和设备的成本高,且无法用于液晶显示器件像素电极的制备的问题。本发明实施例以草酸亚锡为原料,并用醋酸和氨水作为络合剂,形成了pH=6.5~7.5的中性络合体系,还采用了三氟乙酸作为掺杂剂,形成了F离子的稳定掺杂,且掺杂效率高。由于采用了价格便宜的草酸亚锡为原料,并且只需要用涂布和热处理的方法就能在基板上形成需要的透明导电薄膜,因此降低了制备透明导电薄膜的原料和设备成本,且由中性络合体系形成的中性溶胶体系可使得该制备方法能用于液晶显示器件像素电极的制备,而不会侵蚀阵列基板的金属线。

Description

透明导电薄膜及其制备方法
技术领域
本发明涉及液晶显示器制造领域,尤其涉及透明导电薄膜及其制备方法。
背景技术
TFT-LCD(Thin Film Transistor-Liquid Crystal Display,薄膜晶体管液晶显示器)器件的像素电极目前主要采用磁控溅射制备的ITO(In2O3:Sn,氧化铟锡)薄膜。由于该薄膜采用了稀有元素In(铟),因而提高了制造成本。另外,由于制备该薄膜所使用的靶材及设备均为进口设备,因而也提高了器件成本。
作为ITO薄膜替代物的二氧化锡(SnO2)薄膜是一种禁带宽度为3.6eV的n型半导体材料,具有高电子迁移率(109.56cm2/Vs)、高载流子浓度(1.23×1019cm-3)、高透光性、高温化学稳定性以及低原材价格等优点,广泛应用于透明导电涂层、气敏元件、太阳能电池及锂离子电池电极等方面。
目前,SnO2薄膜的制备主要采用磁控溅射、LPCVD(Low Pressure ChemicalVapor Deposition,低压化学气相沉积)、高温喷涂法,sol-gel(溶胶-凝胶)等工艺。其中,LPCVD工艺最常用,该工艺的原料为:SnCl4(氯化锡)和HF(氢氟酸),存在原料和设备成本较高的问题。
Sol-gel法与其他几种方法相比,具有工艺简单、成本低、效率高、易于掺杂、能够在异型器件镀膜以及制备大面积均匀薄膜等优点。该工艺的原料为:SnCl2·2H2O(二水合氯化亚锡)和SnCl4·5H2O(五水合氯化锡),在SnO2薄膜的制备过程中,大量的Cl-(氯离子)会造成非化学计量的掺杂,从而会影响薄膜的导电性。同时,原料混合后的溶液必须保持一定的酸度(pH=1~2)以阻止SnCl2·2H2O和SnCl4·5H2O的强烈的水解反应。但是,用该方法制备TFT-LCD器件的像素电极时,酸性的环境会侵蚀TFT-LCD器件中的栅电极和数据线,从而限制了该方法在制备TFT-LCD器件像素电极中的应用。
发明内容
本发明的实施例提供一种透明导电薄膜及其制备方法,可降低原料和设备的成本,且该方法可用于TFT-LCD器件像素电极的制备。
为达到上述目的,本发明的实施例采用如下技术方案:
一种透明导电薄膜的制备方法,包括:将SnC2O4加入醋酸的水溶液中,进行搅拌形成悬浮体系;在所述悬浮体系中加入氨水,进行搅拌形成澄清溶液,所述澄清溶液的pH=6.5~7.5;在所述澄清溶液中加入三氟乙酸,进行搅拌形成含氟离子的溶胶体系;将所述含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺,以在所述基板上形成SnO2:F薄膜。
一种透明导电薄膜,由上述的透明导电薄膜的制备方法制得。
本发明实施例提供的透明导电薄膜及其制备方法中,以SnC2O4为原料,并用醋酸和氨水作为络合剂,形成了pH=6.5~7.5的中性络合体系,还采用了三氟乙酸作为掺杂剂,该掺杂剂通过与锡离子的络合,形成了F离子的稳定掺杂,且掺杂效率高。由于该制备方法采用了价格便宜的SnC2O4为原料,并且只需要用涂布和热处理的方法就能在基板上形成需要的透明导电薄膜,不需要额外、复杂的制造设备,因此降低了制备透明导电薄膜的原料和设备成本,且由中性络合体系形成的中性溶胶体系可使得该制备方法能用于TFT-LCD器件像素电极的制备,而不会侵蚀阵列基板的金属线。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例透明导电薄膜的制备方法的流程图;
图2为本发明实施例SnC2O4在NH3.H2O中产生的白色胶状沉淀的X射线衍射测试结果图。
具体实施方式
本发明实施例提供一种透明导电薄膜的制备方法,包括:将SnC2O4加入醋酸的水溶液中,进行搅拌形成悬浮体系;在所述悬浮体系中加入氨水,进行搅拌形成澄清溶液,所述澄清溶液的pH=6.5~7.5;在所述澄清溶液中加入三氟乙酸,进行搅拌形成含氟离子的溶胶体系;将所述含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺,以在所述基板上形成SnO2:F薄膜。
本发明实施例还提供一种透明导电薄膜,由上述的透明导电薄膜的制备方法制得。
本发明实施例提供的透明导电薄膜及其制备方法中,以SnC2O4为原料,并用醋酸和氨水作为络合剂,形成了pH=6.5~7.5的中性络合体系,还采用了三氟乙酸作为掺杂剂,该掺杂剂通过与锡离子的络合,形成了F离子的稳定掺杂,且掺杂效率高。由于该制备方法采用了价格便宜的SnC2O4为原料,并且只需要用涂布和热处理的方法就能在基板上形成需要的透明导电薄膜,不需要额外、复杂的制造设备,因此降低了制备透明导电薄膜的原料和设备成本,且由中性络合体系形成的中性溶胶体系可使得该制备方法能用于TFT-LCD器件像素电极的制备,而不会侵蚀阵列基板的金属线。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种透明导电薄膜的制备方法,如图1所示,该方法包括如下步骤。
101、将SnC2O4(草酸亚锡)加入醋酸的水溶液中,进行搅拌形成悬浮体系。
具体地,经过试验发现(见表1),在以水作溶剂的体系中,即使是采用过量的络合剂,如醋酸(HAc)或者氨水(NH3.H2O)等,SnC2O4也不能被单一的络合剂水溶液完全溶解络合而形成澄清、稳定的溶液体系。
  溶液体系   pH值   溶解现象
  Ac-H2O   3~4   不溶解
  NH3-H2O   >11   白色胶状沉淀
表1
这是由于醋酸与草酸相比,酸性弱于草酸。醋酸水溶液提供的羧酸根离子没有足够的络合能力能破坏SnC2O4原有的分子结构,产生具有四配位的Sn2+离子,而且水溶液中SnC2O4电离度极小,电离产生的可以进行四配位络合的Sn2+量以及水解作用产生的具有可被络合替代的-OH(氢氧根)的Sn(II)羟基基团量极少。
试验还发现SnC2O4在NH3.H2O中为白色胶状沉淀,该沉淀物质的XRD(X射线衍射)测试结果(如图2所示,图中横坐标为投射角度,纵坐标为强度)显示为Sn6O4(OH)4,即(Sn(OH)n)2-n的缩水结构,且(Sn(OH)n)2-n是能够被羧酸根离子络合的基团。SnC2O4在NH3.H2O中发生的化学反应分子式如下:
Figure BDA0000059699890000041
102、在所述悬浮体系中加入氨水,进行搅拌形成澄清溶液,所述澄清溶液的pH=6.5~7.5。
具体地,经过试验发现(见表2),在醋酸-氨水的混合水溶液中,pH值显著地影响SnC2O4的溶解性。
Figure BDA0000059699890000042
表2
在上述悬浮体系中加入碱性溶剂NH3.H2O后,可以促使(Sn(OH)n)2-n的产生,并且NH3.H2O提供的碱性环境也促进了醋酸的电离,即能促进羧酸根离子的产生,从而提高了羧酸根离子与Sn离子络合的几率。通过表2可知,要形成澄清、稳定溶液,需保证加入NH3.H2O的悬浮体系的pH=6.5~7.5。
络合工艺可结合下述分子式表达为如下三个步骤。
步骤1、碱性溶剂NH3.H2O的加入引入了OH-或者促进了溶剂H2O电离出OH-,OH-浓度的增加促进了SnC2O4分解形成Sn的羟基基团;
步骤2、碱性溶剂NH3.H2O的加入促进了羧基(-COOH)的电离,提供了更多的羧酸根离子(-COO-),使得络合能力增强;
步骤3、Sn的羟基基团中的羟基不断的被-COO-替代而最终形成以羧酸根为络合基的稳定Sn溶胶。
Figure BDA0000059699890000051
为了使最终形成的透明导电薄膜的导电性能优越,需要在上述澄清溶液中掺杂一定量的导电离子,通过下述步骤可实现导电离子的掺杂。
103、在所述澄清溶液中加入三氟乙酸,进行搅拌形成含氟离子的溶胶体系。
具体地,由于作为F(氟)离子掺杂剂的三氟乙酸(TFA)中F离子的含量是同类有机化合物中较高的,因此,能显著提高透明导电薄膜中F离子的掺杂效率。
另外,由于TFA的酸性稍强于醋酸而弱于草酸、柠檬酸等,因此Ac-NH3.H2O-H2O中的TFA才能在络合体系中如醋酸一样与Sn离子形成络合结构(分子式如下),从而提高了F离子在溶胶体系中的稳定性,因而提高了掺杂效率。
Figure BDA0000059699890000061
104、将所述含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺,以在所述基板上形成SnO2:F薄膜。其中,将所述含氟离子的溶胶体系涂布于基板上的方法可以是旋涂法。
具体地,干燥工艺及热处理工艺使得溶胶体系中的H2O及C、H元素高温挥发或发生氧化反应而消除,剩下的成分在基板上形成透明导电薄膜SnO2:F薄膜,即掺杂有F离子的二氧化锡薄膜。
本发明实施例提供的透明导电薄膜的制备方法以SnC2O4为原料,并用醋酸和氨水作为络合剂,形成了pH=6.5~7.5的中性络合体系,还采用了三氟乙酸作为掺杂剂,该掺杂剂通过与锡离子的络合,形成了F离子的稳定掺杂,且掺杂效率高。由于该制备方法采用了价格便宜的SnC2O4为原料,并且只需要用涂布和热处理的方法就能在基板上形成需要的透明导电薄膜,不需要额外、复杂的制造设备,因此降低了制备透明导电薄膜的原料和设备成本,且由中性络合体系形成的中性溶胶体系可使得该制备方法能用于TFT-LCD器件像素电极的制备,而不会侵蚀阵列基板的金属线。
需要说明的是:上述透明导电薄膜的制备方法中,热处理工艺的处理温度可为但不限于280℃~380℃,优选为300℃,且热处理工艺的处理时间可为但不限于3~15min,优选为5min。其中,min为分钟(minute的简称)。
其中,当热处理工艺的处理温度为300℃,且热处理工艺的处理时间为5min时,成膜效果比较好,具有较好的平整度和较好的导电性。
将含氟离子的溶胶体系旋涂于基板上的方法可以包括但不限于溶胶-凝胶法。
上述热处理工艺可以包括但不限于:在密闭的热处理容器中放置基板;对基板进行热处理;控制热处理容器中氢氟酸气体的分压,以控制SnO2:F薄膜中氟离子的掺杂效率。其中,氢氟酸气体由涂布在基板上的溶胶体系中的含氟有机物受热挥发生成。
在进行完一次涂布、干燥及热处理工艺后,若形成的薄膜厚度达不到要求的厚度,可重复上述将含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺,以使生成的SnO2:F薄膜达到指定的厚度。
本发明实施例还提供一种透明导电薄膜,该薄膜由上述透明导电薄膜的制备方法制得。
下面以四个具体实施例说明透明导电薄膜的制备方法,各实施例的各工艺参数见如下表3。
Figure BDA0000059699890000071
表3
表3中,1.65M/mL HAc表示所采用的醋酸的浓度。
各实施例对应的性能检测结果见下表4。
  实施例   透光率(%)  表面电阻(Ω/□)
  1   92   70
  2   92   90
  3   95   75
  4   93   80
表4
其中,透光率为可见光透过率,是通过UV-VIS光谱仪在波长380-900nm的可见光范围内测试获得;表面电阻是通过SDY-5型四探针仪采用标准的四探针法测试获得。
通过表4的数据可知,热处理的处理温度优选为300℃(实施例1、3),获得的透明导电薄膜具有较高的透光率和较低的表面电阻。
上述四个实施例获得的透明导电薄膜表面电阻为70~90Ω/□,透光率92~95%,均符合有关的使用标准。
本发明实施例主要用于TFT-LCD器件像素电极的制备。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

1.一种透明导电薄膜的制备方法,其特征在于,包括:
将SnC2O4加入醋酸的水溶液中,进行搅拌形成悬浮体系;
在所述悬浮体系中加入氨水,进行搅拌形成澄清溶液,所述澄清溶液的pH=6.5~7.5;
在所述澄清溶液中加入三氟乙酸,进行搅拌形成含氟离子的溶胶体系;
将所述含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺,以在所述基板上形成SnO2:F薄膜。
2.根据权利要求1所述的方法,其特征在于,所述将所述含氟离子的溶胶体系涂布于基板上的方法是:旋涂法。
3.根据权利要求2所述的方法,其特征在于,所述旋涂法包括:溶胶-凝胶法。
4.根据权利要求1所述的方法,其特征在于,所述热处理工艺的处理温度为280℃~380℃;所述热处理工艺的处理时间为3~15min。
5.根据权利要求4所述的方法,其特征在于,所述热处理工艺的处理温度为300℃;所述热处理工艺的处理时间为5min。
6.根据权利要求1所述的方法,其特征在于,所述热处理工艺包括:
在密闭的热处理容器中放置所述基板;
对所述基板进行热处理;
控制所述热处理容器中氢氟酸气体的分压,以控制所述SnO2:F薄膜中氟离子的掺杂效率;所述氢氟酸气体由涂布在所述基板上的所述溶胶体系中的含氟有机物受热挥发生成。
7.根据权利要求1~6任一项所述的方法,其特征在于,还包括:
重复所述将所述含氟离子的溶胶体系涂布于基板上,依次进行干燥工艺及热处理工艺的步骤,以使所述SnO2:F薄膜达到指定的厚度。
8.一种透明导电薄膜,其特征在于,由权利要求1~7任一项所述的方法制得。
CN2011101174420A 2011-05-06 2011-05-06 透明导电薄膜及其制备方法 Pending CN102653860A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011101174420A CN102653860A (zh) 2011-05-06 2011-05-06 透明导电薄膜及其制备方法
US13/464,177 US9051640B2 (en) 2011-05-06 2012-05-04 Method of manufacturing transparent conductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101174420A CN102653860A (zh) 2011-05-06 2011-05-06 透明导电薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN102653860A true CN102653860A (zh) 2012-09-05

Family

ID=46729588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101174420A Pending CN102653860A (zh) 2011-05-06 2011-05-06 透明导电薄膜及其制备方法

Country Status (2)

Country Link
US (1) US9051640B2 (zh)
CN (1) CN102653860A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451610A (zh) * 2014-11-24 2015-03-25 辽宁大学 氟掺杂二氧化锡透明导电薄膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘同军: "溶胶-凝胶法制备的透明导电氧化物(TCO)薄膜", 《中国博士学位论文全文数据库 工程科技I辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451610A (zh) * 2014-11-24 2015-03-25 辽宁大学 氟掺杂二氧化锡透明导电薄膜的制备方法

Also Published As

Publication number Publication date
US9051640B2 (en) 2015-06-09
US20120280188A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
CN105895807B (zh) 一种掺杂TiO2薄膜的制备方法
JPWO2011102350A1 (ja) 透明導電膜の製造方法及び透明導電膜、それを用いた素子、透明導電基板並びにそれを用いたデバイス
CN102943253A (zh) 一种掺铝氧化锌透明导电薄膜及其制备方法
Li et al. A facile process to produce highly conductive poly (3, 4-ethylenedioxythiophene) films for ITO-free flexible OLED devices
CN105549278A (zh) Ips型tft-lcd阵列基板的制作方法及ips型tft-lcd阵列基板
JP5255039B2 (ja) 酸化インジウム錫スパッタリングターゲット及びこれを利用して作製される透明伝導膜
CN106435533A (zh) 一种制备高性能azo透明导电薄膜的方法
CN106158997B (zh) 一种掺杂氧化锡透明导电薄膜的制备方法
CN102653860A (zh) 透明导电薄膜及其制备方法
CN103400632A (zh) 一种石墨烯掺杂材料、制备方法及其应用
Chen et al. NiO films prepared by e-beam evaporation for Mg2+ based electrochromic devices
CN1868948B (zh) 铟锡氧化物前驱物浆料制备和ito薄膜制备方法
CN103274435B (zh) 一种氧化铝钛薄膜及其制备方法和应用
JPWO2008117605A1 (ja) 大面積透明導電膜およびその製造方法
CN108863091A (zh) 一种防眩光玻璃的制备方法
CN116300232A (zh) 一种多价离子电解质全固态柔性电致变色器件及其制备方法
CN208872988U (zh) 电致变色器件组件及电致变色器件
JP2759470B2 (ja) 錫酸ゾル及びその製造方法
CN106894044A (zh) 一种azo镀膜液的电化学制备方法、一种azo导电玻璃及其制备方法
CN103204633B (zh) 一种具有多种刻蚀模式的刻蚀系统
CN102903456A (zh) 三掺杂新型透明导电薄膜的制备方法
US6074471A (en) Sol-gel route to transparent metal oxide films
Liu et al. The effect of electrolytes on the electrochromic performance of nickel-substituted tungstophosphate and TiO 2 nanowire composite films
CN107012478A (zh) 一种fto镀膜液的电化学制备方法、一种fto导电玻璃及其制备方法
CN106298066B (zh) 一种柔性透明导电膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120905