CN102650025B - 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法 - Google Patents

一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法 Download PDF

Info

Publication number
CN102650025B
CN102650025B CN201110043459.6A CN201110043459A CN102650025B CN 102650025 B CN102650025 B CN 102650025B CN 201110043459 A CN201110043459 A CN 201110043459A CN 102650025 B CN102650025 B CN 102650025B
Authority
CN
China
Prior art keywords
alloy
zinc
aluminium
hot
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110043459.6A
Other languages
English (en)
Other versions
CN102650025A (zh
Inventor
张中可
门三泉
车云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd
Original Assignee
Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd filed Critical Guizhou Huake Aluminium Material Engineering Technology Research Co Ltd
Priority to CN201110043459.6A priority Critical patent/CN102650025B/zh
Priority to PCT/CN2011/081726 priority patent/WO2012113241A1/zh
Publication of CN102650025A publication Critical patent/CN102650025A/zh
Application granted granted Critical
Publication of CN102650025B publication Critical patent/CN102650025B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)

Abstract

本发明公开了一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法,按元素重量百分比计,该合金成分为Zn:28,Mg:10-4~15,合金强化剂:10-4~6.0,溶剂钝化剂:10-4~1.0,沉淀硬化剂:10-4~0.5,晶粒细化剂:10-4~1.0,稀土添加剂:10-4~1.0,基体界面反应缓冲剂:0.001~2.0,其余为Al和不可避免的微量杂质。本发明低锌热浸镀铝合金镀层材料,使得镀液与镀层对基体的润湿性好和附着力强,具有替代热浸镀及锌合金的良好前景,可增强钢铁与铝、锌行业的平衡发展,实现低成本产业化应用新型镀层材料的突破性发展。

Description

一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法
技术领域
本发明涉及一种铝合金镀层材料及其制备方法,特别涉及一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法。
背景技术
腐蚀对钢铁造成的损失是极其严重的,据不完全统计,全世界每年钢材产量的1/3因腐蚀而损失,仅在中国每年造成的损失就达上亿元,同时腐蚀还会造成人员伤亡。而目前防治钢铁材料腐蚀的有效方法有两大类:一是金属的合金化;二是金属镀层防腐法。金属合金化的生产工艺复杂,价格昂贵,所以它的普及性受到限制。金属防镀层防腐法中热浸镀锌被公认为最有效最直接的保护钢铁的方法之一。
但是,众所周知,全世界每年热浸镀用锌消耗量达到锌金属总产量的70%以上,造成锌资源短缺的形势越来越严峻。2008年以来世界锌产量平均每年保持在1200万吨左右,热镀锌产业的消费量就达到850万吨以上,而镀锌钢铁制品的覆盖面还不到全世界钢产量的1/5。随着经济社会的发展,高端的镀层钢铁制品所占比例越来越大,但即使把全世界的锌都用来做镀层材料,也远远不能满足钢铁热浸镀需要。这种情况,在中国显得尤其突出。也就是说,开发可替代锌的钢铁热浸镀用新材料,是世界和中国技术经济发展的必然趋势和要求;而最有希望作为代锌的材料,是铝锌合金和铝合金。
为了降低新资源的消耗,提高钢铁镀层在更复杂的腐蚀环境中的保护能力,以适量Al代替Zn是一个行而有效的方法。它在降低热浸镀锌使用的同时,又能充分综合利用Zn和Al的保护特性。目前,有关Zn-Al合金或Al-Zn合金为主体组分的新型高性能镀层材料专利,主要集中在欧美和日本等发达国家,国内也有一些本行业的专利。研究比较成熟的Al-Zn合金镀层有55%Al-Zn合金镀层和5%Al-Zn合金镀层。成份为55%Al-43.4%Zn-1.6%Si 的Galvalume是美国专利,是目前得到实际产业化应用的高铝型锌合金镀层材料,虽然它对钢基的保护能力是纯锌镀层的2~7倍,又能大量节约锌资源,但也存在缺点,比如浸镀温度高(590~600℃),镀液对钢基的浸润能力差,易产生钢板针状漏镀,镀层对划伤和切口的阴极保护能力不足,成型加工、焊接以及涂装性能等方面存在欠缺。Galfan是比利时研制的5%Al-Zn体系的镀层材料,含有Fe、Si、Pb、Cd、Sn和稀土等微量元素,它的熔点低于纯锌,解决了Galvalume镀液对钢基的浸润能力差的问题,镀层具有高于锌的耐蚀性和良好的涂装性能、加工成型性能和和可焊性,存在的不足是Pb、Cd、Sn等低熔点金属容易引起镀层的晶间腐蚀(造成颜色改变)、对钢板冷却速度有着严格的限制、镀层容易产生大面积的坑凹、耐高温氧化能力差等问题,加上它仍含有90%以上的Zn,在节约锌资源方面的意义不大,不能解决热浸镀行业长期发展的问题。
近年来,出现了Zn-Al-Mg及其相关组成的多元体系合金镀层材料,美国有Zn-Al-Mg-Ti-B-Si、Zn-Al-Mg-Si专利产品;日本有铝含量5%~12%的热镀锌合金板、Zn-Al-Mg-Si、Zn-Al-Mg-Si-Mn-Cr和Zn-Al-Mg专利等等,但这些新产品和专利的铝含量大多在50%以下;而且基本上没有可以实现低成本产业化应用的新型镀层材料专利技术。
目前在中国申请的有关热浸镀技术的发明专利有一半以上是针对热浸镀装备、工艺、辅助材料和方法、镀层钢制品生产及其前后改性处理的技术,而专门针对新型高端镀层材料开发的专利较少,更谈不上实现工业应用。
对铝锌合金镀层材料来说,解决镀液与镀层对基体的润湿性和附着力问题,成为长期以来技术进步围绕的轴心。同时,由于镀层材料品种的改变要求热浸镀工艺条件(温度、镀液本身的腐蚀性等)也要有对应的变化,而这些变化在实际操作中会引起很多问题,包括钢铁制品前后的附加处理量增加、能耗提高和镀液容器材质改变、漏镀问题和镀液蒸发、成渣问题,速度和温度控制要求更严格等,这些问题会增加制造成本,是热浸镀制品生产者不愿接受的。鉴于此,研发的新型镀层材料,还应尽可能考虑与现有工艺技术的适应性,以降低应用成本和技术风险。
因此,围绕添加多种合金元素来改善镀层的综合性能,采用更多的Al组分来代替Zn,重点是实现铝的包覆保护能力与锌的牺牲阴极保护能力的最佳结合,并保证以尽可能简单的热浸镀工艺技术装备,实现镀层钢板的抗剥落、高强度、易加工、易焊接、耐更高温度、耐酸碱盐类腐蚀等优良性能于一体,研发和推广绿色钢铁热浸镀工艺流程,在镀层材料的生产和应用两个环节同时实现减污、降本、增效、提质,是一个急需解决的技术难题。
发明内容
本发明要解决的技术问题是:针对以下问题:
1、铝锌合金镀层材料镀液与镀层对基体的润湿性差和附着力弱;2、大量取代锌的低成本高性能镀层材料的开发仍没有取得实质性突破;
3、镀层材料品种的改变要求热浸镀工艺条件(温度、镀液本身的腐蚀性等)和设备也要有对应的变化;
本发明提供了一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法。
本发明的技术方案:
一种含Mg多组合变质的低锌热浸镀铝合金镀层材料,按元素重量百分比计,该合金成分为Zn:28,Mg:10-4~15,合金强化剂:10-4~6.0,溶剂钝化剂:10-4~1.0,沉淀硬化剂:10-4~0.5,晶粒细化剂:10-4~1.0,稀土添加剂:10-4~1.0,基体界面反应缓冲剂:0.001~2.0,其余为Al和不可避免的微量杂质。
合金强化剂包括Cu以及含有Cu的合金。
溶剂钝化剂包括Co、Cr或Mn,以及含有Co、Cr或Mn的合金;3种元素可以单独使用,也可以混合使用。
沉淀硬化剂包括Bi、Pb或Tl,3种元素可以单独使用,也可以混合使用。
晶粒细化剂包括B、C或Zr及它们相互形成的化合物,以及B、C或Zr与高熔点过渡元素形成的高硬度高稳定性化合物。
稀土添加剂包括Pr或Sc,2种元素可以单独使用,也可以混合使用。
基体界面反应缓冲剂包括Fe或Si及其铝中间合金。
一种含Mg多组合变质的低锌热浸镀铝合金镀层材料的制备方法,包括如下步骤:
(1)在上述元素比例范围内,选定一组元素比例,再根据需要配制的合金总量,推算出所需的每种单质金属的质量,或者合金的质量,或者混合金属添加剂的质量,编制合金生产配料表,并按配料表选足备料;
(2)先往熔炼炉中加入适量的铝锭或熔融铝液,加热使之完全融化并在700~800℃下保温;
(3)再按配方比例加入基体界面反应缓冲剂、Mg、溶剂钝化剂、晶粒细化剂、合金强化剂、稀土添加剂和沉淀硬化剂,最后再加入锌,搅拌均匀;现场取样分析,根据分析结果和配方范围,调整添加量;然后继续熔炼和搅拌,再次取样分析,直至各元素比例完全符合配方要求。
(4)然后对上述合金熔体进行炉内精炼;往合金熔体中加入精炼剂,并搅拌均匀,熔体精炼在封闭环境中完成。
(5)精炼后除渣、除气、静置、调温至660~720℃,合金液倾倒出炉,同时过滤;滤液平缓倾入铸造锭模中,通过顺序式结晶方式,使熔体在锭模中自下而上凝结,形成银白色锭型。
在步骤(2)中,熔炼炉是指可以熔炼各种铝合金、锌合金或铜合金的工业熔炉,包括工频感应加热炉、中频感应加热炉、电阻炉、燃气加热炉或燃油加热炉。
本发明的优点:
本发明利用Mg和各类变质剂与低锌铝合金进行的超多元合金化和微合金化反应,获得了具有对钢基润湿性好、结合力强、强度高、延伸性好、耐高温、镀层薄、耐蚀性强、加工性和可焊性好等集多种优点于一身的优质钢铁热浸镀用铝合金镀层材料,把镀层材料的综合性能提升到一个新水平,体现了在变温条件下以“溶液模型”研究铝合金在多元溶质的复杂组分结构中行为特征的最新技术方法,其制备方法采用的均是冶金行业的常用设备,不需特制,可提高循环效率和再利用价值。
——Mg与六类变质剂的有益作用如下:
·从Mg的电子构型看,其价电子结构为3S2,且原子半径较大,是Al原子半径的1.12倍,而Al原子价电子结构为3S23P1,因此从原子外层电子云密度看,Al原子的电子云密度比Mg原子的电子云密度大得多。当Mg溶入Al基体晶格后,一方面使基体晶格发生晶胀变形,从而宏观上以固溶强化提高合金的强度,另一方面Mg原子也受到基体晶格的反作用力而被压缩,其电子云密度增大,原子半径减小,本身的物理化学性质被极大地改变。在与Al达到平衡时,双方的电子云部分重合,应该形成较弱的共价键,由于是SP3杂化,应该形成正八面体的体心立方结构,但实际上根据加入量的变化,Mg与Al可以形成Mg2Al3、Mg23Al30以及Mg17Al 12等多种化合态,这些化合态多数是不稳定结构,而只有当Mg含量在15%以下时,以α(Al)固溶体形态存在时,具有比较稳定的性质。
Mg为碱土金属中最轻的结构金属之一,Mg原子最外层的两个电子很易失去,是很活泼的金属。由于化学活泼性高于Al,因此在铝合金中加入Mg形成的Al—Mg合金具有非常好的抗腐蚀能力。在酸性、中性和弱碱性溶液中金属Mg都会受到腐蚀而变成Mg2+离子,这使它在铝合金中担当着“牺牲阴极”的作用,从而保护了铝基体。Mg对Al有强化作用,加入Mn,可补充强化作用。因此加入Mn后可降低Mg含量,同时可降低热裂倾向,另外,Mn还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性及焊接性能。镁具有生成配位化合物的明显倾向。在合金中加入适量的Mg元素,可以明显改善合金的热加工塑性,提高拉伸塑性,还可以提高合金的持久寿命,改善缺口敏感性,改变合金的断裂行为,即改变断口性质,将脆性断口变为塑性断口。
·利用合金强化元素Cu以及含有Cu的合金的作用,生成强化相,最大程度地提高镀层的强度;实际强度可以超过钢基体。
·溶剂钝化元素Co、Cr或Mn,以及含有Co、Cr或Mn的合金,可在溶剂表面富集一层耐酸、碱、盐和高温环境大气腐蚀、兼有微观下网格固定保护和流动性自动覆盖损伤面而起保护功能的钝化膜层;为防止单一钝化元素氧化后出现不需要的颜色,可使用两种和两种以上混合元素钝化剂。
·利用晶粒细化元素B、C或Zr及它们相互形成的化合物,以及B、C或Zr与高熔点过渡元素形成的高硬度高稳定性化合物,在高温时通过溶解、扩散和弥散,成为纳米级乃至更为细小的异类原子团簇和稳定的分子团簇,在熔体冷却结晶时提供大量分布均匀的细小“晶种”、间隙相和间隙化合物,高效细化基体的结晶粒度,提高了镀层材料的强度、韧性、硬度、耐磨性和高温性能,进而提高镀件的加工性和可焊性。
·稀土元素Pr或Sc及其混合,具有原子极化、合金强化、晶粒细化、表面美化、除氢和增强抗腐蚀性的多种辅助作用,可增强Be、合金强化剂、溶剂钝化剂、晶粒细化剂的作用,并弥补其不足。
·沉淀硬化剂Bi、Pb或Tl也是时效强化剂,它们是熔点不高、化学活性也不高的金属元素,加入少量的这类元素,在合金体系中保持近单质状态,在体系虽然凝固但温度仍较高的状态下,它们依然保持液态,从而使体系在宏观上具备了半固态特征,为时效强化过程中加速合金中强化元素转化为实际的强化态(沉淀硬化或析出硬化)提供了条件;同时会赋予合金优良的加工性能和耐磨性能;通过控制沉淀硬化元素的种类和添加量,还可以得到镀件表面花纹。
·利用界面反应缓冲元素Fe或Si,以及含有Fe或Si的合金,可以有效抑制在浸镀时Al与Fe基体之间剧烈的化合反应,减少或杜绝生成“透镜状Fe2Al5”,强化“薄层状Fe2Al5”的生成机制,建立Fe—Al—Zn均匀梯度的反应机制,从而提高镀层质量、减薄镀层厚度,节省材料。
——本发明镀层材料的实验特征如下:
试验结果表明,本发明最适宜采用的热浸镀工艺温度为680~720℃,该温度范围内镀液流动性好,漏镀率、成渣率低。在使用本发明热浸镀工艺的温度范围内,会使热浸镀前端工序即热轧带钢的防氧化控温比热镀锌时高达到850℃以上,而卷取温度则控制在600℃左右,从而可以抑制钢带表面氧化膜长厚和钝化,同时可降低酸洗量和酸洗废液对环境的污染。在使用本发明热浸镀工艺的温度范围内,在钢板浸镀后无须进行强制降温处理,从而为镀层材料自发的合金化钝化提供了合适的温度和尽可能长的时间条件。
浸镀后的钢板经过退火处理后,表面镀层具有高强高韧高硬度特征:抗拉强度400Mpa以上,断后伸长率可达8%以上,硬度HBS150以上;经分析,Al-Cu相具有最高的强度增长效应。
熔铸试验和电镜分析发现,B、C与Zr、Co、Cr、Mn形成的化合物,再与Al组成中间合金后,具有良好的细化变质效果;Al-稀土化合物具有相同的细化和变质特征。
对凝固的400~1000公斤重型锭进行超声波探伤检查,等厚度各部位声强均匀,内部无裂纹。
对本发明镀层钢板进行X射线荧光分析表明,内部结构均匀无缺陷。
熔炼过程中取样分析表明,熔体中包含难以确定的不同物相的细小结构形态,大多数是高熔点的具有复杂晶格结构的金属化合物。分析认为,这是晶粒细化、硬度提高的主要标志之一。
试样断口显微结构分析表明:材料结晶过程中产生了大量的共晶反应、包晶反应、共析反应和脱溶效应,在韧窝和晶粒内外有大量的细小球形异质晶核存在。此种晶体结构验证了异质晶核的在本发明中的细晶化作用。
熔体处理的结果显示,高效的熔体净化手段可以使试棒的强度和延伸率同时提升,提升的幅度:强度提升可达到100Mpa以上,延伸率提升可达10%以上。
耐热试验证明,经过24小时700℃以上高温大气环境,用浸镀本发明镀层新材料的钢铁制品外观颜色无明显变化。
耐蚀性:盐雾试验样品,镀层厚度20μ,实验时间≥280h,表面无明显受腐蚀现象(普通镀锌板48h即会出现黑点或黑斑);热反射率≥70%;抗高温氧化性:在315℃下高温环境100h以上不发生变色;耐湿热:49℃,湿度93±2%环境下经168h无锈蚀,无明显变色;镀层弯曲:d=a时,距离试样边部5mm以外不出现镀层脱落;镀层表面光滑平整,晶花均匀。
几种合金镀层钢板的耐蚀性对比试验:热浸镀钢材为Q235钢,热浸镀液为本发明新型热浸镀铝合金,浸镀温度为680~720℃,浸镀时间为10s,试样经碱洗除油→水洗→弱酸侵蚀→水洗→助镀→烘干→浸镀→空冷;然后分别在35℃5%NaCl盐水中浸泡260h,以及在温度35℃、相对湿度93~94%,含SO210ppm的酸雾中进行腐蚀试验,重量的损失对比如下表1:
表1  耐蚀性对比结果
在室温下对几种材料进行了屈服强度和抗拉强度的测定,结果如表2:
表2  材料强度对比结果
Figure 640510DEST_PATH_IMAGE002
研究镀层材料和钢基体结合层的物相组成和形貌特征,得到的物相达数百种之多,其中仅二元物系的物相种类就有200多种,而通过金相分析能够辨别的二元物相,仅仅是实际上可能存在的更多二元化合物的一部分,因为分子式相同的化合物往往具有多种不同晶体结构,虽然难以用金相分析辨别,但由于具有不一样的稳定性,也应该视为不同的物质。
当合金中某种元素含量相对较多时(例如,大于1%wt),会与其它溶质元素反应而生成更加复杂的三元和三元以上的金属化合物。这些多元组合而成的金属化合物也是不稳定的,在温度和酸碱度发生变化时,会自动分解,释放出有效原子,以保持整个合金体系的稳定,从而起到对镀层的钝化作用,提高对基体的保护能力。
Co、Cr是周期表中典型的多价位d区过渡元素,从它们能与Al、Zn溶剂和Fe基体元素生成多种金属化合物的特点,可以知道它们都是基体的牺牲保护元素;此外,它们在固溶体表面与氧化剂发生作用时,在不同的pH值条件下能够生成多种不同氧化态的化合物和水合离子,由于都具有较高的氧化物容积比(大于1.5),其钝化保护的能力远远高于单纯的氧化铝膜;这些化合物和水合离子有些是刚性的,在形成后作为永久性的网格保护层存在,有些是弱流动性的,而有些具有较好的流动性,当镀件表面被划伤后,具有流动性的化合物和水合离子会立即弥补、覆盖创口,使镀层和基体不至于因长时间裸露而遭受过量腐蚀,这就解决了单纯的铝锌合金包覆保护能力差的问题。
——本发明镀层材料的理论分析如下:
关于超多元合金化的变质机理,目前没有一种公认的理论解释;既不能用二元合金相图的多重迭加法来说明,也不能用已有的多元合金中各微量元素对主元素作用的一般公知常识和经验进行解释。
但有两种模式可以对超多元合金的元素作用机理进行定性的分析,一种是对原子结构层面的解析,一种是溶质在溶剂中溶解和析出溶液模型理论方法的运用,二者的结合,可以对新型镀层材料的优异性能做出具有很好符合性的解释。
在超多元合金体系处于均匀稳定的液态状态时,整个体系实际上是一种价电子(自由电子)包围的多核心“海洋”,假定每一种微量元素都在主元素的“海水”里均匀分布,即处于一种理想状态,这时候描述整个体系特征的因素,主要应该包括平均价电子浓度、平均电负性或平均电极电位、密度、温度、体积、压力,以及体系自由能、焓、熵等热力学指标。但从微观角度看,不同的原子对其周围自由电子的吸引作用是千差万别的,因此各类元素的原子与其单质状态下的原子结构和性质就产生了差异,这些差异表现在合金的宏观性质上,即造成显著的性能变化。
新元素进入合金溶液体系的变化顺序:第一步是电离,即首先变成单个的离子,这时候会有作为合金溶液基本粒子的尺寸变化:电负性比溶剂元素强的元素本身原子半径缩小,同时吸引周围自由电子而带有一定的负电荷,成为准负离子,而电负性比溶剂元素弱的元素则产生相反的变化,成为准正离子,最后达到平衡时,应有两种类型的溶质离子:比单质状态原子半径小的负离子和比单质状态原子半径大的正离子;第二步是溶解,进入溶剂基体的晶格;第三步是扩散,占据尽可能广阔的体系空间,溶解和扩散总是同时进行;第四步,在基体的晶格内变化,形成置换的或间隙的固溶体;第五,固溶体浓度达到饱和;第六,形成的固溶体晶格发生变化,变成与基体不共格的化合物;第七,形成的金属间化合物又溶解于基体之中,形成以分子和分子团为单位参与基体共格的区域特异共格结构;第八,元素的固溶体和金属化合物的固溶体一起达到饱和;第九,元素与其它溶质元素或化合物形成复杂结构(原子数目多、空间群多样化)的化合物大分子;第十,各种原子与分子的聚集和分解,随温度、压力和界面而发生的应变。实际上,元素固溶体的形成与化合物的形成也是同时进行的,是否与基体生成化合物,以及生成的量及其稳定性,则视基体与新元素的电负性差值、原子间距、价电子数及价电子轨道结构等参数而定。
过渡元素在合金中的表现及作用是极其复杂的,它们不同于化学特性明显而确定的金属和非金属元素。由于最外层和次外层电子轨道能级的错位,过渡元素得失电子的能力、提供共价电子的能力及其数目调整的能力都是很强大的,加上较小的原子半径,使之容易与活泼的金属、活泼的非金属乃至常温下不活泼的元素都能发生化学反应,生成相对稳定、但随温度和酸碱度变化比较明显、伴随各种颜色变化的化合物和配合物,其分子内部的键形和键能结构复杂,既容易形成,也容易受外界影响而解体,即使是同类元素(同一周期或同一副族的相邻或相近的元素)的原子,也能很容易地改变已经形成的复杂结构,甚至同一种元素的不同价位的离子,也能很容易地改变已经形成的复杂结构。
电极电位或电负性相差越大,两种元素间越易形成稳定的(熔点高)的化合物,根据溶度积原理,其它含有一种或多种同样组分的不稳定的化合物将会溶解,以释放出可以保持平衡的溶质原子浓度,而稳定的化合物则继续产生,直至整个体系达到新的平衡,这种重组运动才会停止。最终的总体趋势,是每加入一种新元素或化合物,体系的各组成部分都产生相关的反应,要么减少(浓度降低),要么增多(浓度升高),要么保持不变,而给新元素或化合物留出存在的空间,达到平衡后每一种物质的化学势保持相等。当体系中一种元素受到氧化而失去电子后,体系中该元素浓度降低,根据化学势平衡和溶度积平衡原理,体系中含有该元素的物质将自动分解以释放出适量的该元素,弥补体系中该元素浓度,同时引起一系列连锁反应,最终仍然要达到新的化学势平衡和溶度积平衡。元素种类越多,连锁反应越复杂,但最终达到新的化学势平衡和溶度积平衡的结果是不变的。这就是体系抵抗腐蚀的“多元方程式”控制机制;这种机制,同样适用于热浸镀时铁-铝-锌合金化反应,从而实现在厚度方向内部各层面间均匀梯度的“多元方程式”控制机制。
另一方面,同类型的过渡元素,它们作为溶质元素,当溶剂元素Al、Zn与基体Fe发生反应时,它们也同时参与反应,起到缓冲基体与溶剂主反应激烈程度的作用,有效阻止Zn-Al-Fe“迸裂效应”的发生,并在近基体面也形成钝化亚层,加强对基体的保护能力。
当合金中存在少量电位适中而熔点很低的元素时,这些元素在合金中的性质基本上不受影响,而以近单质形态存在,在合金结晶时可以提供“间隙流体”或“液膜”的作用,对在合金中液数量较多而固态溶解度差别大的元素和化合物,这种“间隙流体”或“液膜”在退火再结晶和时效处理过程中的作用是极为重要的,它能为固溶体溶质的溶入和析出提供快速畅通渠道,从而显著缩短淬火和时效时间,提高热处理功效,同时又不会造成高温下的晶间腐蚀(因为含量极少);同时如果这些低熔点元素具有一定的扩散能力,则可以“填坑式”进入合金中结晶领先相长大时形成的坑洼中(高自由能区),从而抑制结晶长大,产生变质作用。
稀土元素和碱金属在与过渡族元素发生合金化时,有三个特点:①单质不溶解或溶解度很低,②容易与过渡元素反应形成多种不同含量的金属间化合物,其特点与溶质组分比例和合金体系的温度相对应,比如:Sc不溶于Zn,但Sc-Zn可形成ScZn、ScZn2、Sc3Zn17、ScZn 12等几种化合物;Pr不溶于Fe,但Pr-Fe在1150~680℃之间可形成Pr2Fe17、PrFe7、PrFe 2等化合物;Mg在Zn中的最高溶解度约为0.11%,Mg与Zn在325~580℃范围内可形成Mg2Zn11、MgZn2、Mg2Zn3、MgZn、Mg7Zn 3,③形成的金属间化合物在基体(Al)、(Zn)、(Fe)中都有一定的溶解度,金属间化合物的组分在合金中的溶度积相对稳定。这些特点,增加了合金结构的复杂程度,同时也增强了合金的抗性变能力,使合金体系的物理化学性质保持相对稳定。
Si是本合金体系中原子半径很小的元素,它们易溶解于(Al)、(Zn)而能与Fe生成多种化合物,由于这些特点,它们是体系中扩散能力很强的元素,也是能以“填隙”方式抑制Al-Fe反应并抵制Zn介入Al-Fe化合物中,在Galvalume和Galfan镀层合金中用Si作为Al-Fe激烈反应的主要抑制剂,而在本发明合金体系中,Si能与富集在反应面附近的多种溶剂钝化元素共同承担抑制剂的作用。 
实验表明,在保证较好的除气、除杂质效果时,可以采用的熔炼设备是多种多样的,包括加热炉、中频感应加热炉、电阻炉、燃气加热炉、燃油加热炉,其中以保护性熔炼的工频感应加热电炉效果最好,而不管采用哪一种熔炼设备,都应该使熔体搅拌均匀,并尽可能密封流程,减少金属烧损和对健康危害;本发明合金材料可以方便地与熔炼各种铝合金、锌合金、铜合金的工业熔炉进行分段调配生产,在调配时不需要经常洗炉,具有良好的兼容性,对于生产多种合金的企业可以充分利用设备、提高效率、降低成本。
试验证明,如果选择配料的铝合金、锌合金、铜合金等废杂料中含有满足配方要求的其它元素,可以只使用铝合金、锌合金、铜合金等的废杂料加微量变质剂作为原材料配料。
具体实施方式
本发明的实施例及配方组合表:
配方组合表
Figure 2011100434596100002DEST_PATH_IMAGE003
实施例1:Mg-Cu-Cr-Bi-C-Pr-Si组合
 (1)按配方组合表选定一组元素,按照重量百分比例为:极化变质剂Mg:15,合金强化剂Cu:6.0,溶剂钝化剂Cr:0.8,沉淀硬化剂Bi:0.1,晶粒细化剂C:0.001,稀土添加剂Pr:0.01,基体界面反应缓冲元素Si:2.0,第二溶剂元素Zn:28,余量为Al;配制的合金总量为1000kg,则推算出所需的每种物质的重量为:Mg:150kg,Cu:60kg,Cr:8kg,Bi:1kg,C:0.01kg,Pr:0.1kg,Si:20kg,Zn:280kg,Al:480.89kg。
(2)先往熔炼炉中加入铝锭或熔融铝液,加热使之完全融化并在700~800℃下保温;
(3)再按配方比例加入基体界面反应缓冲剂、Mg、溶剂钝化剂、晶粒细化剂、合金强化剂、稀土添加剂和沉淀硬化剂,最后再加入锌,搅拌均匀;现场取样分析,根据分析结果和配方范围,调整添加量;然后继续熔炼和搅拌,再次取样分析,直至各元素比例完全符合配方要求。
(4)然后对上述合金熔体进行炉内精炼;往合金熔体中加入精炼剂,并搅拌均匀,熔体精炼在封闭环境中完成。
(5)精炼后除渣、除气、静置、调温至660~720℃,合金液倾倒出炉,同时过滤;滤液平缓倾入铸造锭模中,通过顺序式结晶方式,使熔体在锭模中自下而上凝结,形成银白色锭型。
(6)热浸镀工艺条件确定及合金镀层板性能和质量的检测分析。
实施例2:Mg-Cu-Co-Mn-In-B-Sc-Fe组合
(1)按配方组合表选定一组元素,按照重量百分比例为: 极化变质剂Mg: 10-4,合金强化剂Cu: 10-4,溶剂钝化剂Co: 0.003、Mn: 0.2,沉淀硬化剂In: 0.03,晶粒细化剂B: 0.0002,稀土添加剂 Sc :0.11,基体界面反应缓冲元素Si : 1.2,第二溶剂元素Zn:28,余量为Al;配制的合金总量为1000kg,则推算出所需的每种物质的重量为:Mg:0.001kg,Cu:0.001kg,Co: 0.03kg,Mn:2kg,In:0.3kg,B:0.002kg,Sc:1.1kg,Si:12kg,Zn:280kg,Al:704.566kg。
以下步骤同实施例1。
实施例3:Mg-Cu-Co-Cr-Mn-Bi-In-Tl-B-C-Zr-Pr-Sc-Fe-Si组合
(1)按配方组合表选定一组元素,按照重量百分比例为:极化变质剂Mg:0.7,合金强化剂Cu:1.5,溶剂钝化剂Co:0.005、Cr: 0.05、Mn: 0.07,沉淀硬化剂Bi:0.07、In:0.01、Tl:0.015,晶粒细化剂B:0.001、C:0.001、Zr:0.28,稀土添加剂Pr:0.01、Sc:0.06,基体界面反应缓冲元素Fe:0.5、Si:1.0,第二溶剂元素Zn:28,余量为Al;配制的合金总量为1000kg,则推算出所需的每种物质的重量为Mg:7kg,Cu:15kg,Co:0.05kg,Cr: 0.5 kg,Mn:0.7 kg,Bi:0.7kg,In:0.1kg,Tl:0.15kg,B:0.01kg,C:0.01kg,Zr:2.8kg,Pr:0.1kg,Sc:0.6kg,Fe:5kg,Si:10kg,Zn:280kg,Al:677.28kg。
以下步骤同实施例1。

Claims (3)

1.一种含Mg多组合变质的低锌热浸镀铝合金镀层材料,其特征在于:按元素重量百分比计,该合金成分为Zn:28,Mg:10-4~15,合金强化剂:10-4~6.0,溶剂钝化剂:10-4~1.0,沉淀硬化剂:10-4~0.5,晶粒细化剂:10-4~1.0,稀土添加剂:10-4~1.0,基体界面反应缓冲剂:0.001~2.0,其余为Al和不可避免的微量杂质;合金强化剂包括Cu;溶剂钝化剂包括Co、Cr或Mn,3种元素单独使用或混合使用;沉淀硬化剂包括Bi、Pb或Tl,3种元素单独使用或混合使用;晶粒细化剂包括B、C或Zr;稀土添加剂包括Pr或Sc,2种元素单独使用或混合使用;基体界面反应缓冲剂包括Fe或Si。
2.根据权利要求1所述的一种含Mg多组合变质的低锌热浸镀铝合金镀层材料的制备方法,其特征在于:包括如下步骤:
(1)在上述元素比例范围内,选定一组元素比例,再根据需要配制的合金总量,推算出所需的每种单质金属的质量,或者合金的质量,或者混合金属添加剂的质量,编制合金生产配料表,并按配料表选足备料;
(2)先往熔炼炉中加入适量的铝锭或熔融铝液,加热使之完全融化并在700~800℃下保温;
(3)再按配方比例加入基体界面反应缓冲剂、Mg、溶剂钝化剂、晶粒细化剂、合金强化剂、稀土添加剂和沉淀硬化剂,最后再加入锌,搅拌均匀;现场取样分析,根据分析结果和配方范围,调整添加量;然后继续熔炼和搅拌,再次取样分析,直至各元素比例完全符合配方要求;
(4)然后对上述合金熔体进行炉内精炼;往合金熔体中加入精炼剂,并搅拌均匀,熔体精炼在封闭环境中完成;
(5)精炼后除渣、除气、静置、调温至660~720℃,合金液倾倒出炉,同时过滤;滤液平缓倾入铸造锭模中,通过顺序式结晶方式,使熔体在锭模中自下而上凝结,形成银白色锭型。
3.根据权利要求2所述的一种含Mg多组合变质的低锌热浸镀铝合金镀层材料的制备方法,其特征在于:在步骤(2)中,熔炼炉是指熔炼各种铝合金、锌合金或铜合金的工业熔炉。
CN201110043459.6A 2011-02-23 2011-02-23 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法 Expired - Fee Related CN102650025B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110043459.6A CN102650025B (zh) 2011-02-23 2011-02-23 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法
PCT/CN2011/081726 WO2012113241A1 (zh) 2011-02-23 2011-11-03 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110043459.6A CN102650025B (zh) 2011-02-23 2011-02-23 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法

Publications (2)

Publication Number Publication Date
CN102650025A CN102650025A (zh) 2012-08-29
CN102650025B true CN102650025B (zh) 2014-06-25

Family

ID=46692150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110043459.6A Expired - Fee Related CN102650025B (zh) 2011-02-23 2011-02-23 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法

Country Status (2)

Country Link
CN (1) CN102650025B (zh)
WO (1) WO2012113241A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107955895A (zh) * 2017-11-21 2018-04-24 广西吉宽太阳能设备有限公司 一种含Co的平板太阳能铝合金镀层及其制备方法
CN107974576A (zh) * 2017-11-21 2018-05-01 广西吉宽太阳能设备有限公司 一种含稀土元素的平板太阳能铝合金镀层
CN109402547B (zh) * 2018-11-29 2021-05-14 宝山钢铁股份有限公司 一种抗腐蚀性能优良的热浸镀层钢板及其制造方法
JP7044998B2 (ja) * 2019-03-22 2022-03-31 Jfeスチール株式会社 溶融Zn-Al系めっき鋼板、およびその製造方法
CN109913715A (zh) * 2019-04-16 2019-06-21 吴江市新申铝业科技发展有限公司 一种用于生产太阳能边框的铝合金型材的制备方法
CN115198215B (zh) * 2022-07-05 2024-05-03 中国机械总院集团宁波智能机床研究院有限公司 一种精密铜磷钎料的热浸镀装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387961A (en) * 1972-07-12 1975-03-19 Vaw Ver Aluminium Werke Ag Age-hardenable aluminium alloy
CN101805857A (zh) * 2009-09-23 2010-08-18 贵州华科铝材料工程技术研究有限公司 Be-RE高强耐热铝合金材料及其制备方法
CN101935789A (zh) * 2009-11-19 2011-01-05 无锡麟龙铝业有限公司 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161383A (zh) * 1996-12-10 1997-10-08 马鞍山市鼎泰金属制品公司 新型稀土锌铝合金镀层材料及其热浸镀工艺
JPH10249580A (ja) * 1997-03-10 1998-09-22 Furukawa Electric Co Ltd:The Al合金ろう材およびAl合金製熱交換器の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1387961A (en) * 1972-07-12 1975-03-19 Vaw Ver Aluminium Werke Ag Age-hardenable aluminium alloy
CN101805857A (zh) * 2009-09-23 2010-08-18 贵州华科铝材料工程技术研究有限公司 Be-RE高强耐热铝合金材料及其制备方法
CN101935789A (zh) * 2009-11-19 2011-01-05 无锡麟龙铝业有限公司 含Al-Zn-Si-Mg-RE-Ti-Ni的热浸镀铸铝合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开平10-249580A 1998.09.22

Also Published As

Publication number Publication date
CN102650025A (zh) 2012-08-29
WO2012113241A1 (zh) 2012-08-30

Similar Documents

Publication Publication Date Title
CN102560312B (zh) 七组合变质的低锌热浸镀铝合金镀层材料及其制备方法
CN102650025B (zh) 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料及其制备方法
KR102516012B1 (ko) 도금 강판
CN102345034B (zh) 一种多元素耐蚀热浸合金镀层及原料的制取方法
CN103834890B (zh) 输电铁塔及紧固件用防腐合金镀层及制备工艺
CN104004945B (zh) 含钪高强度的Al-Zn-Mg-Zr合金及其制备方法
CN101818316B (zh) 一种热浸镀用锌基多元合金及制备方法
WO2023098126A1 (zh) 含V、Ce、La、Mn的锌铝镁合金镀层钢材及其制备方法
CN103147029A (zh) 一种多组分含金配合物变质的低锌热浸镀铝合金镀层材料
CN105648273A (zh) 一种添加稀土的锌铝镁镀层钢板
CN103131990A (zh) Sr与多组合变质的低锌热浸镀铝合金镀层材料
CN113528875A (zh) 一种钢铁热镀锌用合金元素添加方法
CN103131982B (zh) 一种多组合变质的低锌热浸镀铝合金镀层材料
CN102650026B (zh) Be与多组合变质的低锌热浸镀铝合金镀层材料及其制备方法
JPH04247860A (ja) 溶融Zn−Mg−Al−Snめっき鋼板
CN103131993A (zh) 低成本高性能浸镀铝合金镀层材料
CN103131911A (zh) 一种高强度耐腐蚀镀层材料
CN114686727A (zh) 一种高性能热镀锌合金材料及其制备方法
CN103131983B (zh) 一种含Mg多组合变质的低锌热浸镀铝合金镀层材料
CN103131989A (zh) Sr-Be与多组合变质的低锌热浸镀铝合金镀层材料
CN103131997A (zh) 一种Cr配合物变质的低锌热浸镀铝合金镀层材料
CN103131987A (zh) 一种铝合金镀层材料
CN108707841A (zh) 锌铝合金热浸镀用耐腐蚀不锈钢锅材料及其工艺
CN103131986B (zh) 含Ca多组合变质的低锌热浸镀铝合金镀层材料
CN103131988A (zh) 一种含Cu多组合变质的低锌热浸镀铝合金镀层材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

Termination date: 20170223

CF01 Termination of patent right due to non-payment of annual fee