CN102636184B - 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法 - Google Patents

无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法 Download PDF

Info

Publication number
CN102636184B
CN102636184B CN201210093438.XA CN201210093438A CN102636184B CN 102636184 B CN102636184 B CN 102636184B CN 201210093438 A CN201210093438 A CN 201210093438A CN 102636184 B CN102636184 B CN 102636184B
Authority
CN
China
Prior art keywords
flexible gyroscope
axis
hydro
extractor
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210093438.XA
Other languages
English (en)
Other versions
CN102636184A (zh
Inventor
李保国
张春熹
芦佳振
高爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201210093438.XA priority Critical patent/CN102636184B/zh
Publication of CN102636184A publication Critical patent/CN102636184A/zh
Application granted granted Critical
Publication of CN102636184B publication Critical patent/CN102636184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种无角运动环境下的挠性陀螺比力敏感项标定方法,属于惯性技术领域。本发明将随动反转台安装在离心机的台面上,采集初始静态下和过载条件下挠性陀螺敏感轴的输出脉冲数据;依据事先选取的过载加速度,设定离心机转速,获得不同环境过载加速度下的挠性陀螺输出数据;计算过载项系数。本发明可以标定挠性陀螺静态漂移模型中包含的比力敏感误差项与环境过载加速度之间的关系,通过查表法精确补偿挠性陀螺的比力敏感漂移误差,从而减小挠性陀螺比力敏感误差对挠性捷联惯性系统导航精度的影响。

Description

无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法
技术领域
本发明属于惯性技术领域,涉及一种挠性陀螺比力敏感项的标定方法,具体地说,是指无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法。
背景技术
挠性陀螺是一种机械式双自由度陀螺仪,它的驱动电机的电机转轴通过挠性接头带动转子作高速转动,挠性接头包含2对相互正交的挠性连接轴和1个平衡环,如图1所示。自问世以来,挠性陀螺已广泛应用在各种导航、制导与控制系统中。
在实际应用中,挠性陀螺仪的角速度测量值中存在着由于各种内部及外部因素产生的漂移误差,一般由静态漂移误差、动态漂移误差和随机漂移误差等组成,其中由线运动引起的静态漂移误差是挠性陀螺漂移误差的主要部分,也是挠性捷联惯导系统误差的主要因素。挠性陀螺静态漂移误差数学模型中包含了对比力不敏感的漂移误差项和对比力敏感的漂移误差项。
在实际应用中,挠性陀螺仪的误差模型可表示为:
ω(X)d=K(X)d
+K(X)xax+K(X)yay
ω(Y)d=K(Y)d
+K(Y)xax+K(Y)yay
其中,ω(X)d,ω(Y)d——陀螺仪的漂移速率误差,单位:°/h;
K(X)d,K(Y)d——常值漂移系数,与比力无关,单位:°/h;
K(X)x,,K(X)y,K(Y)x,,K(Y)y——比力敏感项系数,单位:(°/h)/g;
ax,ay——沿陀螺仪相应轴的比力大小,单位:g;
现有的挠性陀螺或挠性惯组标定采用的是静态多位置标定方法,利用位置台使挠性陀螺朝向一定的方向,将地球转动角速度ωe和当地的标准重力加速度g0作为参考,通过多个方程联合求解的方法计算出挠性陀螺的误差项系数。静态多位置标定方法能够得到0~1g环境下挠性陀螺的常值漂移系数和比力敏感项系数,并认为在高过载环境下该系数仍保持线性不变。实际应用时,当挠性陀螺或挠性惯组应用于大过载环境时,使用地面多位置静态标定结果进行补偿,其实际使用精度常常与理论计算值差异甚远。这很可能是由于挠性陀螺比力敏感项系数在大过载环境下发生了变化所致。
如果能够通过地面的大过载测试准确得到挠性陀螺的比力敏感项系数与环境过载的关系,就能在实际使用时准确补偿挠性陀螺的比力敏感误差,从而提高挠性捷联惯导系统的实际导航性能,具有非常重要的实用价值。
申请号为200810101156.3的中国发明专利,公开了一种挠性陀螺仪最优八位置标定方法,是将挠性陀螺仪安装在二轴位置速率转台上,在特定的方位采集数据并计算得到挠性陀螺静态误差补偿模型。通过陀螺测量值剩余平方和的比较,利用挠性陀螺仪最优八位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~8倍。缺点:实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,得到的结果只能对应1g环境下的性能参数,得不到大过载环境下标定系数的准确值。
授权公告号CN101377422B的中国发明专利,公开了一种挠性陀螺仪静态漂移误差模型最优二十四位置标定方法,是将挠性陀螺仪安装在三轴位置速率转台上,采用离散D-最优设计构造方法进行设计,从整个试验空间中选取二十四个空间位置取向作为陀螺坐标系取向并进行试验。相对于最优八位置法,最优二十四位置试验测试除了能够标定加速度无关项、加速度一次方有关项外,还可以得到加速度二次有关项漂移系数。缺点:实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,虽然效果好于八位置,但是得到的结果只能对应1g环境下的性能参数,得不到大过载环境下标定系数的准确值。不超过1g的环境下,加速度二次有关项为小量,与环境干扰难以有效区分,因而结果的可信度不高。
申请公布号CN101738203A中国发明专利,公开了一种挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法,是采用D-最优试验设计方法获得最优的测试位置。在最优空间正交十二位置下对获得的最优空间正交十二位置漂移系数与挠性陀螺静态误差补偿模型Go进行的测量值补偿有效地提高了挠性陀螺仪的输出。利用挠性陀螺仪最优空间正交十二位置试验设计方法求解的漂移系数进行补偿后的结果较传统八位置方法提高了4~5倍,较全空间正交二十四位置试验方法精度有所提高并且测试时间缩短了一半。缺点:虽然效果好于优化的八位置和优化的二十四位置,但实质上与传统静态多位置测试方法相同,只能利用重力场作为环境过载激励,得到的结果只能表示在1g环境下,得不到超过1g的大过载环境下标定系数的准确值。
发明内容
本发明的目的在于通过地面高过载环境下的标定测试,真实地获得挠性陀螺比力敏感误差项系数与环境过载加速度的关系,实现挠性陀螺比力敏感误差的精确补偿,减小挠性陀螺比力敏感误差对挠性捷联惯性系统精度的影响。
本发明提供的无角运动环境下挠性陀螺比力敏感项标定方法,具体包括如下步骤:
第一步:随动反转台(简称反转台)安装在离心机的台面上,在台面上还设有配重,所述的配重与反转台对称分布在离心机台面的同一直径上。反转台的台面上安装挠性陀螺,反转台的转动轴与离心机的转动轴平行,当离心机以一定的转速旋转时,反转台可相对离心机作相反方向旋转。挠性陀螺的供电及输出数据信号通过反转台和离心机的滑环连接到供电电源和数据采集计算机。
第二步:通过离心机的控制界面将离心机和反转台分别控制在其零位位置并保持静止,此时挠性陀螺敏感轴X指向当地的地理北向。然后,挠性陀螺加电,预热稳定10min。
第三步:打开数据采集计算机中的采集软件开始采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出,采集时间不小于3min,得到初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第四步:使离心机以角速度ωt=ω0(单位:°/s)旋转,反转台以角速度-ωt(单位:°/s)旋转,二者的角加速度均为ωa,单位:°/s2。挠性陀螺敏感轴感受到的环境过载加速度幅值为:
a 0 = ( ω 0 · π 180 ) 2 · R / g 0
其中,R是反转台转动轴到离心机转动轴的距离,单位m;g0是当地标准重力加速度,单位m/s2
第五步:离心机和反转台转速稳定后,采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据15min,得到过载条件下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第六步:依据事先选取的过载加速度ai,i=1,2,3,…n,设定离心机转速重复第四步和第五步,获得不同环境过载加速度下的挠性陀螺输出数据;
第七步:测试完成后,离心机与反转台关机,停止数据采集,挠性陀螺断电;
第八步:计算过载项系数:
本发明可以标定挠性陀螺静态漂移模型中包含的比力敏感误差项与环境过载加速度之间的关系,通过查表法精确补偿挠性陀螺的比力敏感漂移误差,从而减小挠性陀螺比力敏感误差对挠性捷联惯性系统导航精度的影响。
附图说明
图1为现有技术中的挠性陀螺机械转子与挠性接头结构示意图;
图2为本发明中采用的带随动反转台的离心机的结构示意图。
图中:
1.离心机;2.离心机台面;3.反转台;4.配重;5.反转台的台面;6.挠性陀螺。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供了一种无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法,利用带随动反转台的离心机为挠性陀螺提供高过载输入,高过载输入在被测试的挠性陀螺轴向上的投影呈现正弦或余弦变化;采用傅里叶级数分解的方法得到挠性陀螺的一次比力敏感误差系数。该标定方法的具体步骤如下:
第一步:本发明采用的主要设备是带随动反转台3(简称反转台)的离心机1,如图2所示,所述的反转台3安装在离心机1的台面2上,并且在离心机1的台面2上,还设置有配重4,所述的配重4与反转台3对称分布在离心机台面2上的同一直径上。反转台3的台面5上安装挠性陀螺6,反转台3的转动轴与离心机1的转动轴平行,当离心机1以一定的转速旋转时,反转台3可相对离心机1作相反方向旋转。测试试验前,采用水平校准仪器调整反转台3的台面5和离心机1的台面2与水平面平行,然后将挠性陀螺6通过工装安装在反转台3的台面5上,使挠性陀螺6的敏感轴X与敏感轴Y均与水平面平行,挠性陀螺6的自转轴与反转台3的转动轴重合。挠性陀螺6的供电及输出数据信号通过反转台3和离心机1的滑环连接到供电电源和数据采集计算机。
第二步:通过离心机1的控制界面将离心机1和反转台3分别控制在其零位位置并保持静止,此时挠性陀螺敏感轴X指向当地的地理北向。然后,挠性陀螺加电,预热稳定10min。
第三步:打开数据采集计算机中的采集软件开始采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出,采集时间不小于3min,得到初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第四步:使离心机1以角速度ωt=ω0(单位:°/s)旋转,反转台3以角速度-ωt(单位:°/s)旋转,二者的角加速度均为ωa,单位:°/s2。挠性陀螺敏感轴感受到的环境过载加速度幅值为:
a 0 = ( ω 0 · π 180 ) 2 · R / g 0
其中,R是反转台转动轴到离心机转动轴的距离,单位m;g0是当地标准重力加速度,单位m/s2
第五步:离心机1和反转台3转速稳定后,采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据15min,得到过载条件下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第六步:依据事先选取的过载加速度ai,设定离心机转速
Figure GDA0000457882320000042
Figure GDA0000457882320000043
重复第四步和第五步,获得不同过载加速度下的挠性陀螺输出脉冲数据。
第七步:测试完成后,离心机与反转台关机,停止数据采集,挠性陀螺断电。
第八步:计算过载项系数:
用事先标定得到的挠性陀螺标度因数将第三步至第六步采集到的挠性陀螺脉冲量输出数据转换成角速度数据;
对第三步初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据求取平均值。
对第五步、第六步过载环境下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据分别减去相对应的该轴初始静态转换后的输出数据平均值。
对减去初始静态平均值的不同过载加速度ai的挠性陀螺X轴数据Dij(X)和Y轴数据Dij(Y),分别截取整周期数据,周期
Figure GDA0000457882320000051
截取的数据个数Ni满足
Figure GDA0000457882320000052
其中t为采样周期,m为大于500的正整数,
Figure GDA0000457882320000053
为过载加速度ai处的数据采集时间;ωi为反转台的转速,即角速度值,i=1,2,3,…n;j=1,2,3,…Ni
对截取的各过载加速度下的挠性陀螺X轴和Y轴数据进行傅里叶级数分解计算:
A 0 xi = ( Σ j = 1 N i D ij ( X ) ) / N i , A 0 yi = ( Σ j = 1 N i D ij ( Y ) ) / N i
A 1 xi = 2 ( Σ j = 1 N i D ij ( X ) cos ( jπ ω i t / 180 ) ) / N i , B 1 xi = 2 ( Σ j = 1 N i D ij ( X ) sin ( jπ ω i t / 180 ) ) / N i A 1 yi = 2 ( Σ j = 1 N i D ij ( Y ) cos ( jπ ω i t / 180 ) ) / N i , B 1 yi = 2 ( Σ j = 1 N i D ij ( Y ) sin ( jπ ω i t / 180 ) ) / N i
分别得到傅里叶级数零次项A0xi和A0yi、一次余弦谐波项系数A1xi和A1yi以及一次正弦谐波项系数B1xi和B1yi;其中,,i=1,2,3,…n;j=1,2,3,…Ni
求取不同过载加速度ai下挠性陀螺的常值漂移K(X)di,K(Y)di和比力敏感项K(X)xi,K(X)yi,K(Y)yi,K(Y)xi
对于X轴: K ( X ) di = A 0 xi - ω ie cos φ K ( X ) xi = A 1 xi / a i K ( X ) yi = - B 1 xi / a i 对于Y轴: K ( Y ) di = A 0 yi K ( Y ) yi = A 1 yi / a i K ( Y ) xi = - B 1 yi / a i
其中,ωie为地球转速,φ为当地的地理纬度,对K(X)di,K(Y)di,K(X)xi,K(X)yi,K(Y)yi,K(Y)xi与相应的过载加速度ai进行列表,在应用时,通过查表即可得到挠性陀螺比力敏感系数在不同环境过载加速度下的补偿数值。
通过上述的方法可知,本发明提供的无角运动环境下的挠性陀螺比力敏感项标定方法,反转台相对于离心机同速反向旋转使挠性陀螺相对地球保持无角运动状态,通过离心机和反转台转速的改变,对挠性陀螺施加过载加速度,并对挠性陀螺的输出数据进行傅里叶级数分解计算和处理,最后得到不同过载下挠性陀螺的常值漂移系数和比力敏感项系数。本发明可以达到任意过载加速度下挠性陀螺的常值漂移系数和比力敏感项系数标定的目的,在实际应用时根据标定结果对挠性陀螺的输出进行补偿,提高挠性陀螺在高过载环境下的实际使用精度。

Claims (3)

1.无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法,其特征在于:
第一步:反转台安装在离心机的离心机台面上,反转台的台面上安装挠性陀螺,反转台的转动轴与离心机的转动轴平行,当离心机以一定的转速旋转时,反转台可相对离心机作相反方向旋转;挠性陀螺的供电及输出数据信号通过反转台和离心机的滑环连接到供电电源和数据采集计算机;
第二步:通过离心机的控制界面将离心机和反转台分别控制在其零位位置并保持静止,此时挠性陀螺敏感轴X指向当地的地理北向;然后,挠性陀螺加电,预热稳定10min;
第三步:打开数据采集计算机中的采集软件开始采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出,采集时间不小于3min,得到初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第四步:使离心机以角速度ωt=ω0旋转,反转台以角速度-ωt旋转,挠性陀螺敏感轴感受到的环境过载加速度幅值为:
a 0 = ( ω 0 · π 180 ) 2 · R / g 0
其中,R是反转台转动轴到离心机转动轴的距离,单位m;g0是当地标准重力加速度,单位m/s2
第五步:离心机和反转台转速稳定后,采集挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据15min,得到过载条件下挠性陀螺敏感轴X轴和敏感轴Y轴的输出脉冲数据;
第六步:依据事先选取的过载加速度ai,设定离心机转速
Figure FDA0000457882310000012
重复第四步和第五步,获得不同环境过载加速度下的挠性陀螺输出数据;
第七步:测试完成后,离心机与反转台关机,停止数据采集,挠性陀螺断电;
第八步:计算过载项系数。
2.如权利要求1所述的无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法,其特征在于:所述的离心机台面上还设置有配重,所述的配重与反转台对称分布在离心机台面上的同一个直径上。
3.如权利要求1所述的无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法,其特征在于:所述的计算过载项系数,具体为:
用事先标定得到的挠性陀螺标度因数将第三步至第六步采集到的挠性陀螺脉冲量数据转换成角速度数据;
对第三步初始静态下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据求取平均值;
对第五步、第六步过载环境下挠性陀螺敏感轴X轴和敏感轴Y轴转换后的输出数据分别减去相对应的该轴初始静态转换后的输出数据平均值;
对减去初始静态平均值的不同过载加速度ai的挠性陀螺X轴数据Dij(X)和Y轴数据Dij(Y),分别截取整周期数据,周期
Figure FDA0000457882310000021
截取的数据个数Ni满足
Figure FDA0000457882310000027
其中t为采样周期,m为大于500的正整数,
Figure FDA0000457882310000028
为过载加速度ai处的数据采集时间;ωi为反转台的转速,即角速度值,i=1,2,3,…n;
对截取的各过载加速度下的挠性陀螺X轴和Y轴数据进行傅里叶级数分解计算:
A 0 xi = ( Σ j = 1 N i D ij ( X ) ) / N i , A 0 yi = ( Σ j = 1 N i D ij ( Y ) ) / N i
A 1 xi = 2 ( Σ j = 1 N i D ij ( X ) cos ( jπ ω i t / 180 ) ) / N i , B 1 xi = 2 ( Σ j = 1 N i D ij ( X ) sin ( jπ ω i t / 180 ) ) / N i A 1 yi = 2 ( Σ j = 1 N i D ij ( Y ) sin ( jπ ω i t / 180 ) ) / N i , B 1 yi = 2 ( Σ j = 1 N i D ij ( Y ) cos ( jπ ω i t / 180 ) ) / N i
分别得到傅里叶级数零次项A0xi和A0yi、一次余弦谐波项系数A1xi和A1yi以及一次正弦谐波项系数B1xi和B1yi;其中,i=1,2,3,…n;j=1,2,3,…Ni
求取不同过载加速度下挠性陀螺的常值漂移和比力敏感项:
对于X轴: K ( X ) di = A 0 xi - ω ie cos φ K ( X ) xi = A 1 xi / a i K ( X ) yi = - B 1 xi / a i 对于Y轴: K ( Y ) di = A 0 yi K ( Y ) yi = A 1 yi / a i K ( Y ) xi = - B 1 yi / a i
其中,ωie为地球转速,φ为当地的地理纬度。
CN201210093438.XA 2012-03-31 2012-03-31 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法 Active CN102636184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210093438.XA CN102636184B (zh) 2012-03-31 2012-03-31 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210093438.XA CN102636184B (zh) 2012-03-31 2012-03-31 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法

Publications (2)

Publication Number Publication Date
CN102636184A CN102636184A (zh) 2012-08-15
CN102636184B true CN102636184B (zh) 2014-07-02

Family

ID=46620671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210093438.XA Active CN102636184B (zh) 2012-03-31 2012-03-31 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法

Country Status (1)

Country Link
CN (1) CN102636184B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655876B (zh) * 2015-01-29 2017-08-08 北京航空航天大学 一种恒加速度和振动复合输入情况下的线加速度计校准方法
CN106197414B (zh) * 2015-04-30 2019-04-26 Tcl集团股份有限公司 角度误差检测方法、装置和设备
CN106443072B (zh) * 2016-09-21 2018-11-20 中国航空工业集团公司北京长城计量测试技术研究所 一种线加速度计的离心加速度场翻滚校准方法
CN111879335A (zh) * 2019-09-20 2020-11-03 天津科技大学 一种基于离心机的多位置陀螺仪漂移系数的标定方法
CN111337053B (zh) * 2020-03-27 2021-09-14 中国科学院西安光学精密机械研究所 一种光纤陀螺动态误差特性测量标定方法及标定系统
CN113865621B (zh) * 2021-10-28 2023-08-22 北京天兵科技有限公司 任意六位置MEMS陀螺仪及其g值敏感系数标定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221372B (zh) * 2011-03-25 2012-10-10 北京航空航天大学 使用离心机和转台对惯性测量单元进行误差标定的方法

Also Published As

Publication number Publication date
CN102636184A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
CN102636183B (zh) 基于光纤监测和双轴转台离心机的挠性陀螺二次过载项测试方法
CN102636184B (zh) 无角运动环境下基于离心机的挠性陀螺比力敏感项标定方法
CN102289306B (zh) 姿态感知设备及其定位、鼠标指针的控制方法和装置
CN1330935C (zh) 安装误差角与标度因数解耦的微惯性测量单元精确标定方法
CN103808331B (zh) 一种mems三轴陀螺仪误差标定方法
CN103323625B (zh) 一种mems-imu中加速度计动态环境下的误差标定补偿方法
CN101290326B (zh) 石英挠性加速度计测量组件的参数辨识标定方法
CN100547352C (zh) 适合于光纤陀螺捷联惯性导航系统的地速检测方法
CN101975872B (zh) 石英挠性加速度计组件零位偏置的标定方法
CN103245358B (zh) 一种光纤陀螺标度因数非对称性误差的系统级标定方法
CN100554884C (zh) 挠性陀螺仪最优八位置标定方法
CN102841218A (zh) 一种基于双轴离心机的陀螺加速度计测试方法
CN101246023A (zh) 微机械陀螺惯性测量组件的闭环标定方法
CN102607595B (zh) 应用激光多普勒测速仪测试捷联挠性陀螺动态随机漂移的方法
CN107121707A (zh) 一种三轴磁传感器测量基准与结构基准的误差校正方法
CN102750020A (zh) 获取空中鼠标位移的方法、空中鼠标及空中鼠标控制系统
CN105628025A (zh) 一种恒速偏频/机抖激光陀螺惯导系统导航方法
CN102636185B (zh) 基于带单轴反转台离心机的挠性陀螺比力敏感项非线性测试方法
CN103411623A (zh) 速率陀螺校准方法
CN101738203A (zh) 挠性陀螺仪静态漂移零次和一次加速度相关项误差模型最优位置标定方法
CN105043414A (zh) 一种三轴惯性稳定平台系统的台体控制参数计算方法
CN103292810B (zh) 一种旋转式惯导系统信号同步补偿方法
CN103591960A (zh) 一种基于旋转调制的静基座惯性导航系统粗对准方法
Shun-qing et al. Impacts of installation errors on the calibration accuracy of gyro accelerometer tested on centrifuge
CN102589568B (zh) 车辆捷联惯性导航系统的三轴陀螺常值漂移快速测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant