CN102624232A - 一种用于dc-dc升压变换器的预充电电路及预充电方法 - Google Patents

一种用于dc-dc升压变换器的预充电电路及预充电方法 Download PDF

Info

Publication number
CN102624232A
CN102624232A CN2012101191350A CN201210119135A CN102624232A CN 102624232 A CN102624232 A CN 102624232A CN 2012101191350 A CN2012101191350 A CN 2012101191350A CN 201210119135 A CN201210119135 A CN 201210119135A CN 102624232 A CN102624232 A CN 102624232A
Authority
CN
China
Prior art keywords
transistor
voltage
current
circuit
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101191350A
Other languages
English (en)
Other versions
CN102624232B (zh
Inventor
董晋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Silergy Semiconductor Technology Ltd
Original Assignee
Hangzhou Silergy Semiconductor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silergy Semiconductor Technology Ltd filed Critical Hangzhou Silergy Semiconductor Technology Ltd
Priority to CN201210119135.0A priority Critical patent/CN102624232B/zh
Publication of CN102624232A publication Critical patent/CN102624232A/zh
Priority to US13/849,623 priority patent/US9214852B2/en
Application granted granted Critical
Publication of CN102624232B publication Critical patent/CN102624232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Abstract

本发明公开了一种用于DC-DC升压变换器的预充电电路及预充电方法,其通过调节流过所述参考晶体管的参考电流,以使所述参考电流保持不变;控制所述参考晶体管的漏极电压跟随所述功率晶体管的漏极电压变化,以使所述参考晶体管与所述功率晶体管在预充电过程中为电流镜电路,通过所述功率晶体管对所述参考晶体管的镜像,获得一恒定的镜像电流来作为预充电电流,这样即实现了所述预充电电路的预充电电流保持不变。本发明不但能够进行预充电以升高输出电压,而且能够保证在预充电过程中,预充电电流不变,满足快速启动负载的要求。此外,本发明所述的预充电控制技术方案的预充电电流的启动电流小,维持时间长,因而电路损耗更小,稳定性更高。

Description

一种用于DC-DC升压变换器的预充电电路及预充电方法
技术领域
本发明涉及电力电子技术领域,更具体的说,涉及一种用于DC-DC升压变换器中的预充电电路及预充电方法。
背景技术
DC-DC升压变换器可应用于多种不同的电子设备中,在DC-DC升压变换器的启动过程中,为了避免在启动时强大的冲击电流损坏电子设备,一般在变换器正式启动工作前进行预充电,即预先充电使其输出电压达到与输入电压较接近。因此,在DC-DC升压变换器的电路设计中,预充电电路是不可缺少的一个环节。
参考图1A,所示为传统的一种预充电电路,其功率晶体管PFET和参考晶体管P1组成一电流镜电路,功率晶体管PFET的漏极电压作为输出电压,在正式启动工作前,所述预充电电路对输出电压进行预充电,使其升高到与输入电压较相近;其中,迟滞比较器Wr接收输出电压和输入电压,并产生一预充电控制信号,所述预充电控制信号用以控制系统预充电状态和正式启动工作状态的切换。功率晶体管NFET在预充电阶段处于关断状态。这种电路的缺点是随着输出电压的不断升高,其功率晶体管PFET的漏源电压差会逐渐减小,因此,其充电电流也会减小,如图1B所示,为图1A所示预充电电路的工作波形图,充电电流Icharge随着输出电压Vout的增加而减小,在输出电压Vout接近于输入电压Vin时,充电电流Icharge会降到很低,甚至接近于零,这样会导致后续一些较大的负载无法启动,限制了启动过程中负载的大小,而且会导致DC-DC升压变换器启动时间的延迟。
发明内容
有鉴于此,本发明提供一种用于DC-DC升压变换器的预充电电路及预充电方法,通过控制参考晶体管的漏源电压跟随功率晶体管的漏源电压变化,同时控制流过参考晶体管的参考电流保持不变,以此来控制功率晶体管的电流保持不变,实现DC-DC升压变换器的预充电过程中预充电电流不随输出电压变化,能维持在负载启动所需的电流值。并且,本发明的预充电电流起始电流小,稳定时间长,其损耗更小,可靠性更高。
依据本发明的一种用于DC-DC升压变换器的预充电方法,所述DC-DC升压变换器中的预充电电路包含一由参考晶体管和功率晶体管组成的电流镜电路,包括以下步骤:
S1:调节流过所述参考晶体管的参考电流,使所述参考电流维持不变;
S2:控制所述参考晶体管的漏源电压跟随所述功率晶体管的漏源电压变化,以使所述参考晶体管的漏源电压与所述功率晶体管的漏源电压保持相等;
S3:通过所述功率晶体管对所述参考晶体管的镜像,获得一恒定的镜像电流,来作为所述预充电电路的预充电电流。
进一步的,在步骤S1中,当所述参考电流减小时,控制所述参考晶体管的栅源电压增大以提高流过所述参考晶体管的参考电流;
当所述参考电流增大时,控制所述参考晶体管的栅源电压减小以降低流过所述参考晶体管的参考电流。
进一步的,在步骤S2中,控制所述参考晶体管的漏极电压跟随所述功率晶体管的漏极电压变化,以使所述参考晶体管的漏极电压与所述功率晶体管的漏极电压保持为相等。
依据本发明的一种用于DC-DC升压变换器的预充电电路,所述预充电电路包含由参考晶体管和功率晶体管组成的电流镜电路,其特征在于,所述预充电电路还包括一电压箝位电路和电流调节电路,其用以控制所述预充电电路的预充电电流保持不变,其中,
所述电流调节电路的一输入端与所述电压箝位电路连接,另一输入端接收一参考电压,其输出端接到所述参考晶体管和所述功率晶体管的栅极,所述电流调节电路将接收到的表征流过所述参考晶体管的参考电流的检测电压与所述参考电压进行比较,并根据比较的结果来调节流过参考晶体管的参考电流,以使所述参考电流保持不变;
所述电压箝位电路分别与所述参考晶体管和所述功率晶体管的漏极相连接,所述电压箝位电路用以控制所述参考晶体管的漏源电压与所述功率晶体管的漏源电压保持相等,以在预充电过程中所述参考晶体管和所述功率晶体管保持为电流镜电路。
优选的,所述电压箝位电路对所述参考晶体管的漏极电压进行箝位控制,以使所述参考晶体管的漏极电压与所述功率晶体管的漏极电压为相等。
进一步的,所述电压箝位电路具体包括一第一晶体管和第二晶体管,
所述第一晶体管与所述参考晶体管串联连接后经一取样电路连接至地;
所述第二晶体管与所述功率晶体管串联连接后经一稳流电路连接至地,且所述第二晶体管的栅极与所述第一晶体管的栅极相连接,所述第二晶体管的栅极与其漏极相连接。
进一步的,所述电流调节电路包括一误差放大器,所述误差放大器的同相输入端接所述第一晶体管和所述取样电路的公共连接点,反相输入端接收所述参考电压,其输出端连接至所述参考晶体管和所述功率晶体管的栅极,所述第一晶体管和所述取样电路的公共连接点的电压作为表征流过所述参考晶体管的参考电流的检测电压,
当所述检测电压小于所述参考电压时,所述误差放大器输出一负电平的误差电压信号以提高流过所述参考晶体管的参考电流;
当所述检测电压大于所述参考电压时,所述误差放大器输出一正电平的误差电压信号以降低流过所述参考晶体管的参考电流。
优选的,所述参考电压的电压值为根据所述DC-DC升压变换器的负载大小来调节。
本发明的一种DC-DC升压变换器中的预充电电路通过电压箝位电路对所述参考晶体管的漏极电压进行箝位控制,以使参考晶体管的漏极电压跟随功率晶体管的漏极电压的变化,从而保证所述参考晶体管和所述功率晶体管的漏源电压为相等,这样,在输出电压预充电的过程中,根据电流镜原理,当所述参考晶体管流过的参考电流不变时,所述功率晶体管流过的电流也不变,这样即实现了所述预充电电路的预充电电流不随输出电压的变化,能维持在一固定值。本发明解决了现有技术在预充电过程中预充电电流下降的问题,使预充电电流能稳定在一固定值,可靠性好,启动快。
附图说明
图1A所示为传统的一种预充电电路;
图1B所示为图1A所示预充电电路的工作波形图;
图2A所示为依据本发明的一种用于DC-DC升压变换器的预充电电路;
图2B所示为图2A所示预充电电路的工作波形图;
图3所示为依据本发明的一种用于DC-DC升压变换器的预充电方法的流程图;
具体实施方式
以下结合附图对本发明的几个优选实施例进行详细描述,但本发明并不仅仅限于这些实施例。本发明涵盖任何在本发明的精髓和范围上做的替代、修改、等效方法以及方案。为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。
参考图2A,所示为依据本发明的一种用于DC-DC升压变换器的预充电电路,所述预充电电路包含有一参考晶体管Qr,所述参考晶体管Qr与所述DC-DC升压变换器中的功率晶体管QM构成一电流镜电路,其中,所述参考晶体管Qr和所述功率晶体管QM为同一类型的晶体管,其面积比为1∶N,所述功率晶体管QM的漏极电压作为输出电压,在预充电过程中,进行预充电的输出电压可根据需要控制,一般为充电到输入电压的90%左右。本发明的所述预充电电路还包括电压箝位电路201和电流调节电路202,其用以控制所述预充电电路的预充电电流保持不变。其中,所述电压箝位电路201具体包含有第一晶体管Q1、第二晶体管Q2,所述第一晶体管Q1与所述参考晶体管Qr串联连接后经一取样电路连接至地,所述第一晶体管Q1和所述参考晶体管Qr的公共连接点设为N1点;所述第二晶体管Q2与所述功率晶体管QM串联连接后经一稳流电路连接至地,所述第二晶体管Q2和所述功率晶体管QM的公共连接点设为N2点,则N2点的电压为所述输出电压Vout,且所述第二晶体管的栅极与所述第一晶体管的栅极相连接,其共栅连接点设为N5,此外,所述第二晶体管Q2的栅极与其漏极相连接。本实施例中,所述取样电路具体为一取样电阻R,所述稳流电路具体为一电流源Is,但是,上述电路不限于此,本领域技术人员可知,所述取样电路和稳流电路可以由其他具有相同功能电路或元器件替代。
所述电流调节电路202具体包括一误差放大器W1,所述误差放大器W1的同相输入端接所述第一晶体管Q1和所述参考电阻R的公共连接点N3,反相输入端接收一参考电压Vref,其输出端连接至所述参考晶体管Qr和所述功率晶体管QM的栅极,所述参考晶体管Qr和所述功率晶体管QM的共栅连接点设为N4。
在所述DC-DC升压变换器的预充电过程中,当输出电压Vout逐渐上升时,所述功率晶体管QM的漏源电压会逐渐减小,相应地,所述预充电电流也会减小,因此,需要对预充电电流进行控制,以免其在预充电阶段下降过大以致于无法启动负载。而在传统的预充电电路中,由于参考晶体管的漏源电压与功率晶体管的漏源电压不相等,无法通过镜像关系获得恒定的镜像电流,因此,本发明在此基础上,通过控制使参考晶体管的漏源电压与功率晶体管的漏源电压保持为相等,然后通过镜像获得一恒定的预充电电流。
本发明对预充电电流控制的过程具体如下:首先,所述电流调节电路对流过参考晶体管Qr的参考电流Iref进行调节控制,以使所述参考电流Iref保持不变,具体为:当参考电流Iref下降时,第一晶体管Q1的漏极电压即表征流过所述参考晶体管的参考电流的检测电压(N3点电压)随之下降,当检测电压下降到低于所述参考电压Vref时,所述误差放大器输出一负电平的误差电压信号Verr,所述误差电压信号Verr传输至所述参考晶体管Qr的栅极,这样,所述参考晶体管Qr的栅源电压就会增大,根据晶体管的电流-电压特性,流过所述参考晶体管Qr的电流即参考电流Iref就会升高。反之,当参考电流Iref升高时,误差放大器W1输出一正电平误差电压信号Verr以减小所述参考晶体管的栅源电压,从而降低所述参考电流。这里,所述参考电流Iref保持为:Iref=Vref/R。由此,通过误差放大器的反馈控制可保证流过参考晶体管Qr的参考电流Iref基本稳定不变。然后,通过所述电压调节电路调节使所述参考晶体管Qr的漏源电压跟随功率晶体管QM的漏源电压变化,具体为:对于第二晶体管Q2,由于其栅极和漏极相连接,当其源极电压(即输出电压Vout)上升后,其栅极电压相应也会上升,即N5点电压上升,对于第一晶体管Q1,N5点对应的电压即对应为其栅极电压,当栅极电压上升后,而由于流过的参考电流Iref保持不变,所以所述第一晶体管Q1和所述参考晶体管Qr的公共连接点N1点的电压会随之上升,也即是所述参考晶体管Qr的漏极电压上升,这样,所述参考晶体管Qr的漏极电压就跟随所述功率晶体管QM的漏极电压变化,优选地,所述N1点的电压与N2点电压为相等,而又因为所述参考晶体管Qr与所述功率晶体管QM的源极电压近似相等(电感L的电压降较小,可忽略),因此可得到所述参考晶体管Qr的漏源电压与所述功率晶体管QM的漏源电压也相等,而根据电流镜原理,所述功率晶体管QM的电流(即预充电电流Icharge)与所述参考晶体管流过的电流Iref的关系为:Icharge=N×Iref,当所述参考晶体管流过的参考电流Iref不变时,所述功率晶体管流过的电流也不变,这样即实现了所述预充电电路的预充电电流不随输出电压的变化,能维持在一预期固定值。
参考图2B,所示为根据图2A所示预充电电路的工作波形图,系统在刚起动阶段,由于Vout=0,此时N5点的电压为零,由于参考晶体管Qr和功率晶体管QM间存在沟道长度调制效应,因此,此时的预充电电流Icharge略大于N×Iref,之后,输出电压Vout慢慢上升,当Uout>|VGS|时(VGS为第一晶体管Q1的栅源电压),由于电压箝位电路的箝位控制,N1点的电压会跟随N2点电压的变化,例如当N2点的输出电压升高时,相应地,N1点的电压也会升高,优选地,N1点电压与N2点输出电压为相等,这时候,根据电流镜原理,所述预充电电流Icharge保持为N×Iref。最后,当输出电压Vout充电到所述功率晶体管QM的漏源电压小于其饱和电压VDSSat时,功率晶体管QM进入线性区,预充电电流Icharge显著减小。从图2B中可以看出,在对输出电压进行预充电过程中,只需在功率晶体管QM的漏源电压小于其饱和电压VDSSat之前,关断预充电模式,可保持预充电电流在设置的预期值,本发明实施例优先设置在输出电压Vout充电达到输入电压的90%左右时,进入到启动工作状态,这样可保持预充电电流维持在预期设置的电流值,快速启动负载。本发明中实施例通过开关S1的开通/关断来控制系统进行预充电模式和正式启动工作模式的切换,开关S1由一预充电控制信号Vc控制其开关状态,所述预充电控制信号的产生与背景技术中相同,在此不重复描述。
另外,从图2B中可以看出,本发明实施例所示的电路在对预充电电流控制的过程中,由于所述参考晶体管Qr的漏极电压是可控的,因此可得到所述参考晶体管Qr的漏源电压与所述功率晶体管QM的漏源电压几乎为相等,根据沟道长度调制效应,当所述参考晶体管和所述功率晶体管QM的漏源电压差越小,其电流差也会越小,因此,在参考晶体管电流一定的情况下,本发明中的功率晶体管QM的电流也会较小,所以本发明中的预充电电流在起始阶段电流较小,因此电路损耗更小;同时本发明中的参考晶体管的漏极电压能实时低跟随输出电压的变化,能够控制预充电电流快速达到预期的固定值,且维持时间长,能满足在不同场合对输出电压和预充电电流不同的要求,用户可根据负载需要灵活控制输出电压和预充电电流,本发明预充电电路可靠性好,灵活性高。
进一步的,在所述DC-DC升压变换器的负载不同的情况下,本发明实施例的预充电电路可根据负载的大小对所述预充电电流的大小进行调节,根据预充电电流Icharge和参考电流Iref的关系:Icharge=N×Iref,其中,Iref=Vref/R,所以有Icharge=N×(Vref/R)。例如,当所启动的负载较小,需要的启动电流也小,这时可将参考电压Vref设置的较小以减小Iref值,即可得到较小的预充电电流,满足小负载启动要求。当负载较大时,则进行相反的操作即可。根据上述公式本发明实施中也可以改变参考电阻的阻值来调节参考电流的大小。
以下对依据本发明的一种用于DC-DC升压变换器的预充电方法进行详细说明。参考图3,所示为依据本发明的一种用于DC-DC升压变换器的预充电方法的流程图。其包括以下步骤:
S301:调节流过所述参考晶体管的参考电流,使所述参考电流维持不变;
S302:控制所述参考晶体管的漏源电压跟随所述功率晶体管的漏源电压变化,以使所述参考晶体管的漏源电压与所述功率晶体管的漏源电压保持相等;
S303:通过所述功率晶体管对所述参考晶体管的镜像,获得一恒定的镜像电流,来作为所述预充电电路的预充电电流。
其中,在步骤S301中,当所述参考电流减小时,控制所述参考晶体管的栅源电压增大以提高流过所述参考晶体管的参考电流;当所述参考电流增大时,控制所述参考晶体管的栅源电压减小以降低流过所述参考晶体管的参考电流。
进一步的,在步骤S302中,控制所述参考晶体管的漏极电压跟随所述功率晶体管的漏极电压变化,以使所述参考晶体管的漏极电压与所述功率晶体管的漏极电压保持为相等。
综上所述,依照本发明所公开的用于DC-DC升压变换器中的预充电电路及其预充电方法,通过电流调节电路的反馈控制稳定参考电流,并利用电压箝位电路对参考晶体管的漏极电压进行箝位控制,以使得参考晶体管的漏源电压与功率晶体管的漏源电压为相等,从而保证预充电电流不随输出电压变化。采用本发明的技术方案,不但能够实现预充电提高输出电压,而且能够保证在预充电过程中,预充电电流不变,满足快速启动负载的要求。此外,本发明所述的预充电控制技术方案预充电电流的启动电流小,并能根据负载控制预充电电流的大小,电路损耗更小;预充电电流能快速达到固定值,维持时间长,稳定性更好。
以上对依据本发明的优选实施例的预充电电路进行了详尽描述,本发明实施例所述的预充电电路为预充电控制方法的其中一种,本领域技术人员也可以推知其他技术或电路结构均可应用于所述实施例,只要其控制方案与本发明技术方案一致或等同均落于本发明权利要求的保护范围之内。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (8)

1.一种用于DC-DC升压变换器的预充电方法,所述DC-DC升压变换器中的预充电电路包含一由参考晶体管和功率晶体管组成的电流镜电路,其特征在于,包括以下步骤:
S1:调节流过所述参考晶体管的参考电流,使所述参考电流维持不变;
S2:控制所述参考晶体管的漏源电压跟随所述功率晶体管的漏源电压变化,以使所述参考晶体管的漏源电压与所述功率晶体管的漏源电压保持相等;
S3:通过所述功率晶体管对所述参考晶体管的镜像,获得一恒定的镜像电流,来作为所述预充电电路的预充电电流。
2.根据权利要求1所述的预充电方法,其特征在于,在步骤S1中,当所述参考电流减小时,控制所述参考晶体管的栅源电压增大以提高流过所述参考晶体管的参考电流;
当所述参考电流增大时,控制所述参考晶体管的栅源电压减小以降低流过所述参考晶体管的参考电流。
3.根据权利要求1所述的预充电方法,其特征在于,在步骤S2中,控制所述参考晶体管的漏极电压跟随所述功率晶体管的漏极电压变化,以使所述参考晶体管的漏极电压与所述功率晶体管的漏极电压保持为相等。
4.一种用于DC-DC升压变换器的预充电电路,所述预充电电路包含由参考晶体管和功率晶体管组成的电流镜电路,其特征在于,所述预充电电路还包括一电压箝位电路和电流调节电路,其用以控制所述预充电电路的预充电电流保持不变,其中,
所述电流调节电路的一输入端与所述电压箝位电路连接,另一输入端接收一参考电压,其输出端接到所述参考晶体管和所述功率晶体管的栅极,所述电流调节电路将接收到的表征流过所述参考晶体管的参考电流的检测电压与所述参考电压进行比较,并根据比较的结果来调节流过参考晶体管的参考电流,以使所述参考电流保持不变;
所述电压箝位电路分别与所述参考晶体管和所述功率晶体管的漏极相连接,所述电压箝位电路用以控制所述参考晶体管的漏源电压与所述功率晶体管的漏源电压保持相等,以在预充电过程中所述参考晶体管和所述功率晶体管保持为电流镜电路。
5.根据权利要求4所述的预充电电路,其特征在于,所述电压箝位电路对所述参考晶体管的漏极电压进行箝位控制,以使所述参考晶体管的漏极电压与所述功率晶体管的漏极电压为相等。
6.根据权利要求4所述的预充电电路,其特征在于,所述电压箝位电路具体包括一第一晶体管和第二晶体管,
所述第一晶体管与所述参考晶体管串联连接后经一取样电路连接至地;
所述第二晶体管与所述功率晶体管串联连接后经一稳流电路连接至地,且所述第二晶体管的栅极与所述第一晶体管的栅极相连接,所述第二晶体管的栅极与其漏极相连接。
7.根据权利要求4所述的预充电电路,其特征在于,所述电流调节电路包括一误差放大器,所述误差放大器的同相输入端接所述第一晶体管和所述取样电路的公共连接点,反相输入端接收所述参考电压,其输出端连接至所述参考晶体管和所述功率晶体管的栅极,所述第一晶体管和所述取样电路的公共连接点的电压作为表征流过所述参考晶体管的参考电流的检测电压,
当所述检测电压小于所述参考电压时,所述误差放大器输出一负电平的误差电压信号以提高流过所述参考晶体管的参考电流;
当所述检测电压大于所述参考电压时,所述误差放大器输出一正电平的误差电压信号以降低流过所述参考晶体管的参考电流。
8.根据权利要求4所述的预充电电路,其特征在于,所述参考电压的电压值为根据所述DC-DC升压变换器的负载大小来调节。
CN201210119135.0A 2012-04-20 2012-04-20 一种用于dc-dc升压变换器的预充电电路及预充电方法 Active CN102624232B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201210119135.0A CN102624232B (zh) 2012-04-20 2012-04-20 一种用于dc-dc升压变换器的预充电电路及预充电方法
US13/849,623 US9214852B2 (en) 2012-04-20 2013-03-25 Precharge circuits and methods for DC-DC boost converters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210119135.0A CN102624232B (zh) 2012-04-20 2012-04-20 一种用于dc-dc升压变换器的预充电电路及预充电方法

Publications (2)

Publication Number Publication Date
CN102624232A true CN102624232A (zh) 2012-08-01
CN102624232B CN102624232B (zh) 2014-06-25

Family

ID=46563953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210119135.0A Active CN102624232B (zh) 2012-04-20 2012-04-20 一种用于dc-dc升压变换器的预充电电路及预充电方法

Country Status (2)

Country Link
US (1) US9214852B2 (zh)
CN (1) CN102624232B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103970172A (zh) * 2013-02-05 2014-08-06 精工电子有限公司 恒压电路以及模拟电子钟表
CN105099159A (zh) * 2015-08-21 2015-11-25 电子科技大学 一种用于dc-dc变换器的快速启动电路
CN107294369A (zh) * 2017-07-12 2017-10-24 电子科技大学 一种应用于升压变换器的恒流启动电路
CN107634553A (zh) * 2016-07-18 2018-01-26 深圳市英威腾电动汽车充电技术有限公司 非隔离双向dc-dc变换器预充电电路及其方法
CN111446848A (zh) * 2020-04-28 2020-07-24 上海爻火微电子有限公司 通道开关阻抗可调节的电源电路与电子设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105892540B (zh) * 2014-11-04 2018-11-13 恩智浦美国有限公司 电压钳位电路
ITUB20153326A1 (it) * 2015-09-01 2017-03-01 St Microelectronics Srl Circuito regolatore ad avviamento soft-start e procedimento, sistema di alimentazione corrispondente
US10355590B2 (en) 2017-06-26 2019-07-16 Qualcomm Incorporated Boost converter with pre-charge current
US10103633B1 (en) * 2017-08-31 2018-10-16 Dialog Semiconductor (Uk) Limited Switching converter with power level selection
CN109116901B (zh) * 2018-10-31 2023-09-15 上海艾为电子技术股份有限公司 一种线性稳压电路和集成电路
US11789481B2 (en) * 2021-08-10 2023-10-17 Psemi Corporation Current mirror pre-bias for increased transition speed
US11616505B1 (en) * 2022-02-17 2023-03-28 Qualcomm Incorporated Temperature-compensated low-pass filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810720A2 (en) * 1996-05-28 1997-12-03 Oki Electric Industry Co., Ltd. Booster circuit and method of driving the same
US20050180236A1 (en) * 2004-02-17 2005-08-18 Gerhard Thiele Precharge circuit for DC/DC boost converter startup
CN201805353U (zh) * 2010-08-30 2011-04-20 天津市松正电动科技有限公司 预充电控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7042207B1 (en) * 2003-11-07 2006-05-09 National Semiconductor Corporation Inductive measurement system and method
US7026802B2 (en) * 2003-12-23 2006-04-11 Cypress Semiconductor Corporation Replica biased voltage regulator
US7262586B1 (en) * 2005-03-31 2007-08-28 Cypress Semiconductor Corporation Shunt type voltage regulator
US7378824B2 (en) * 2006-05-26 2008-05-27 Leadtrend Technology Corp. Voltage converter capable of avoiding voltage drop occurring in input signal
JP2008079360A (ja) * 2006-09-19 2008-04-03 Renesas Technology Corp 昇圧コンバータ及び半導体集積回路
TW200931778A (en) * 2008-01-08 2009-07-16 Richtek Technology Corp Asynchronous boost converter
KR100967028B1 (ko) * 2008-06-03 2010-06-30 삼성전기주식회사 전류원을 이용한 소프트 스타트를 갖는 레귤레이터
US8476878B2 (en) * 2010-11-15 2013-07-02 National Semiconductor Corporation Startup circuit for DC-DC converter
JP5823717B2 (ja) * 2011-03-30 2015-11-25 セイコーインスツル株式会社 ボルテージレギュレータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0810720A2 (en) * 1996-05-28 1997-12-03 Oki Electric Industry Co., Ltd. Booster circuit and method of driving the same
US20050180236A1 (en) * 2004-02-17 2005-08-18 Gerhard Thiele Precharge circuit for DC/DC boost converter startup
CN201805353U (zh) * 2010-08-30 2011-04-20 天津市松正电动科技有限公司 预充电控制电路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103970172A (zh) * 2013-02-05 2014-08-06 精工电子有限公司 恒压电路以及模拟电子钟表
CN103970172B (zh) * 2013-02-05 2017-01-11 精工半导体有限公司 恒压电路以及模拟电子钟表
CN105099159A (zh) * 2015-08-21 2015-11-25 电子科技大学 一种用于dc-dc变换器的快速启动电路
CN105099159B (zh) * 2015-08-21 2017-08-29 电子科技大学 一种用于dc‑dc变换器的快速启动电路
CN107634553A (zh) * 2016-07-18 2018-01-26 深圳市英威腾电动汽车充电技术有限公司 非隔离双向dc-dc变换器预充电电路及其方法
CN107634553B (zh) * 2016-07-18 2023-07-25 深圳市英威腾电动汽车驱动技术有限公司 非隔离双向dc-dc变换器预充电电路及其方法
CN107294369A (zh) * 2017-07-12 2017-10-24 电子科技大学 一种应用于升压变换器的恒流启动电路
CN111446848A (zh) * 2020-04-28 2020-07-24 上海爻火微电子有限公司 通道开关阻抗可调节的电源电路与电子设备

Also Published As

Publication number Publication date
US9214852B2 (en) 2015-12-15
CN102624232B (zh) 2014-06-25
US20130278239A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
CN102624232B (zh) 一种用于dc-dc升压变换器的预充电电路及预充电方法
CN102315773B (zh) 一种开关变换器的装置和方法
US9831780B2 (en) Buck-boost converter and method for controlling buck-boost converter
US8120338B2 (en) Dropper-type regulator
EP2779452B1 (en) Switchable current source circuit and method
US9496781B2 (en) Soft start circuit for switching converter and associated soft start method
CN102455728B (zh) 电流控制电路
CN105827101A (zh) 电压转换集成电路、自举电路以及开关驱动方法
US8350541B2 (en) Control circuit and method for a soft-start scheme of a switch mode power supply for a power amplifier
CN108365742B (zh) 偏压产生电路及其同步双模式升压直流-直流转换器
CN107735932A (zh) 具有自适应死区时间的升压调节器
CN108258895B (zh) 软启动电路以及电源系统
US9081398B2 (en) Adaptive startup control for boost converter
CN107425718B (zh) 一种直流降压调节电路结构
US20190028095A1 (en) Low Resistive Load Switch with Output Current Control
CN103729007A (zh) 具有软启动控制电路的线性稳压源
US10468989B2 (en) Switching regulator including a clamp circuit
US10686377B1 (en) Start-up method and apparatus for boost converters
US9559668B2 (en) Drive circuit and semiconductor apparatus
CN103631298B (zh) 线性稳压源
TWI458244B (zh) 軟式切換驅動電路
KR20190076097A (ko) 대기전력 소모의 제로화를 위한 고전압 스타트업 회로와 이를 포함하는 스위칭 모드 파워 서플라이
CN108258896B (zh) 软启动电路以及电源系统
CN115833542A (zh) 开关变换器的驱动控制电路及驱动方法
CN108063544B (zh) 一种dc-dc升压转换器启动浪涌电流保护电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 310051 No. 6 Lianhui Street, Xixing Street, Binjiang District, Hangzhou City, Zhejiang Province

Patentee after: Silergy Semiconductor Technology (Hangzhou ) Co., Ltd.

Address before: 310012 Wensanlu Road, Hangzhou Province, No. 90 East Software Park, science and technology building A1501

Patentee before: Silergy Semiconductor Technology (Hangzhou ) Co., Ltd.