CN102621925A - 飞机复杂结构件平面轮廓数控加工距线计算方法 - Google Patents

飞机复杂结构件平面轮廓数控加工距线计算方法 Download PDF

Info

Publication number
CN102621925A
CN102621925A CN2012100586663A CN201210058666A CN102621925A CN 102621925 A CN102621925 A CN 102621925A CN 2012100586663 A CN2012100586663 A CN 2012100586663A CN 201210058666 A CN201210058666 A CN 201210058666A CN 102621925 A CN102621925 A CN 102621925A
Authority
CN
China
Prior art keywords
line
apart
limit
arc
circular arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100586663A
Other languages
English (en)
Other versions
CN102621925B (zh
Inventor
杜宝瑞
郑国磊
初宏震
唐云龙
赵皇进
王德生
王碧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Aircraft Industry Group Co Ltd
Original Assignee
Shenyang Aircraft Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Aircraft Industry Group Co Ltd filed Critical Shenyang Aircraft Industry Group Co Ltd
Priority to CN201210058666.3A priority Critical patent/CN102621925B/zh
Publication of CN102621925A publication Critical patent/CN102621925A/zh
Application granted granted Critical
Publication of CN102621925B publication Critical patent/CN102621925B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Numerical Control (AREA)

Abstract

一种飞机复杂结构件平面轮廓数控加工距线计算方法,主要步骤包括:1)距线计算;2)距线链构造。其中距线计算包括:(1)触边距线计算;(2)凸基点距线计算;(3)跨弧距线计算。本发明可根据数控加工刀轨触线计算出加工时刀轨距线,有效地解决了数控自动编程中刀具端面中心轨迹的求解问题,显著提高了数控程序编制效率与加工效率,对于智能数控加工编程的实现具有重要意义。

Description

飞机复杂结构件平面轮廓数控加工距线计算方法
技术领域
本发明是一种飞机复杂结构件平面轮廓数控加工距线(刀轨)计算方法,用于飞机复杂构件数控加工中加工刀轨的计算,为专业化、智能CAD/CAPP/CAM集成系统“飞机复杂构件快速数控加工准备系统”提供刀轨计算中的距线计算,属于飞机数字化数控编程技术领域。
背景技术
计算机、编程以及高速切削加工等数控相关技术的快速发展与广泛应用推动了飞机结构件制造技术的发展,现代飞机普遍采用性能优越的整体薄壁结构件(范玉青.航空宇航制造工程[M].重庆:重庆出版社,2001)。刀具轨迹的生成是数控加工技术中最重要也是研究最为广泛的内容。因此,研究和开发飞机复杂结构件平面轮廓数控加工距线(刀轨)计算方法,对于提高数控编程智能化水平、实现飞机复杂结构件高效高质的制造具有重要意义。数控加工中刀具距线的计算是刀轨计算中非常重要的内容,通过距线的计算可以得到刀具端面中心的轨迹,实现数控加工走刀轨迹的仿真与优化,有效地提高数控编程的智能化水平。如何得到有效的刀轨距线是数控加工中一个急需解决的问题。
发明内容
本发明提供一种飞机复杂结构件平面轮廓数控加工距线(刀轨)计算方法,可根据数控加工时刀轨触线计算出加工时刀具端面中心轨迹,实现数控编程的智能化,从而提高数控加工效率。
本发明的目的是通过下述技术方案实现的:一种飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:该方法包括如下步骤:
1)距线计算,包括:
a触边距线计算:根据刀轨加工时的触边计算相应的距线段;
b凸基点距线计算:根据触线链上的凸顶点计算相应的距线圆弧;
c跨弧距线计算:根据触线链中的有效跨弧计算相应的距线;
2)距线链构造,根据首位关系,依次选择各段距离,构造相应的距线链。
所述的触边距线计算满足下列条件:
(1)若触边为直线段,则距线段亦为直线段,且与触边等长、平行,两线段之间距离等于滚圆的半径。距线与滚圆位于触边的同侧;
(2)若触边为圆弧,滚圆在触边圆弧外侧,则距线亦为圆弧,且触边圆弧和距线圆弧同心,距线圆弧半径等于触边圆弧半径与滚圆半径之和,距线圆弧与触边圆弧有相同的扇形角度;
(3)若触边为圆弧,滚圆在圆弧内侧且滚元直径小于圆弧直径,则距线亦为圆弧,且触边圆弧和距线圆弧同心,距线圆弧半径等于触边圆弧半径与滚圆半径之差,距线圆弧与触边圆弧有相同的扇形角度;
(4)若触边为圆弧,滚圆在圆弧内侧且滚元直径等于圆弧直径,则距线退化为一个点;
(5)若触边为圆弧,滚圆在圆弧内侧,触边圆弧的直径必定不小于滚元直径。
所述的凸基点距线计算满足下列条件:
触线链中的顶点分为:凸基点和平基点,对于触线链中的平顶点,其距线退化为一点;对于凸顶点,其距线为一段以凸顶点为圆心、以滚圆大小的二分之一为半径的一段圆弧;圆弧的角度确定如下:圆弧的起点与圆心的连线垂直于以凸顶点为终点的触线在终点处的切矢,圆弧的终点与圆心的连线垂直于以凸顶点为起点的触线在起点处的切矢。
所述的跨弧距线计算满足下列条件:
跨弧方向为正时表示跨弧从触点逆时针过渡到碍点;跨弧半径方向为负时表示跨弧从触点顺时针过渡到碍点;
若将每一段跨弧看做一段圆弧线段,其半径大小等于滚圆大小的二分之一,故跨弧相应的距线均退化为一点。的半径大小为滚圆大小的二分之一,跨弧半径方向有正负,跨弧半径
距线链构造满足下列条件:
(1):一条触线链有且仅有一条距线链与之对应;
(2):触线与距线为等距偏置线。即触线上点/弧到距线上相应的点/弧距离相等。
所述的距线链构造过程如下:
(1)依次提取触边距线和凸基点距线,存入缓存边表中;
(2)提取和删除当前缓存边表中的第一条边,以此边作为当前边和新构造距线链的首边;
(3)从缓存边表中搜索和删除当前边的后续边,插入到当前距线链的末尾位置中;
(4)以此后续边为当前边,重复(3),直到缓存边表结束。
本发明的有益效果:本发明提供的飞机复杂结构件平面轮廓数控加工距线(刀轨)计算方法,可根据数控加工刀轨触线计算出加工时刀轨距线,有效地解决了数控自动编程中刀具端面中心轨迹的求解问题,显著提高了数控程序编制效率与加工效率,对于智能数控加工编程的实现具有重要意义。
附图说明
图1为距线计算总流程图;
图2为应用本发明提供的算法计算距线的一个实例。
具体实施方式
本发明中涉及的概念如下:给定一组线段ei(i=1,2,...,n),若同时满足:1)ei与ei+1(i=1,2,...,n-1)间当且仅当有一个端点重合;2)e1中未与e2重合的端点或仅与en中未与en-1重合的端点重合,或不与其它任何线段的端点重合;3)en中未与en-1重合的端点或仅与e1中未与e2重合的端点重合,或不与其它任何线段的端点重合,则称这组线段为一条线链,表示为c(e1,e2,...,en)。其中ei也可称为c的第i条边。c正向:沿边的连接次序所定义的方向;c负向:与c正向相反的方向。正边:ei和c的正向一致,则称ei为c的正边;反之,则称ei为c的负边。
在空间运动的几何单元,称为动元mg。常见的动元类型有圆和直线段,前者称为滚圆
Figure BSA00000680695700051
后者称为滑线
Figure BSA00000680695700052
将滚圆直径和滑线长度统称为动元的大小。将滚圆圆心和滑线中点统称为动元的中心。滚圆的参数化表示为
Figure BSA00000680695700053
其中:r为半径(静态参数),pc为圆心,nc为圆平面法矢(动态参数),v为圆心移动方向。滑线的参数化表示为
Figure BSA00000680695700054
其中:d为长度(静态参数),p1位置点,n1为滑线指向,v为滑线滑动方向(动态参数)。
给定一个点和一个动元,若动元绕这个点转动,则称这个点为该动元的基点。给定一条线段和一个动元,若动元沿这条线段运动,则称这条线段为该动元的基边。给定一条线链和一个动元,若动元沿这条线链运动,则称这条线链为该动元的基线链。沿基线段正向,若动元运动过程中始终位于基线段e左侧,则称动元位于基线段左侧或左位,称该基线段为动元的左基线段,表示为e+。若动元运动过程中始终位于基线段e右侧,则称动元位于基线段右侧或右位,称该基线段为动元的右基线段,表示为e-。无论动元位于基线段e左侧或右侧,若其运动方向与基线段正向一致,则称动元沿该基线段正向运动,或动元沿该基线段的运动方向为正向,表示为+e;反之,为负向运动或运动方向是负向,表示为-e。
滚圆滚动过程中与e+/e-或顶点的接触点,称为当前时刻滚圆的左/右触点,表示为
Figure BSA00000680695700055
(左触点)和(右触点)。
Figure BSA00000680695700057
统称为触点。前者,滚动过程中触点一直前移;而后者,触点位置不变,一直重合于顶点。在某时刻,基线在触点位置的切矢方向定义了下一时刻滚圆滚动的方向,简称滚圆的滚向。当前滚圆与基线/顶点的接触位置是触点的充要条件是所有基线段不与滚圆相交(但可相切)。
由连续左/右触点形成的线段称为滚圆在左/右基线段上的左/右触线段,表示为t+(左触线段)和t-(右触线段)。t+和t-统称为触线段(简称触线)。t+和t-线也可认为是对曲线进行左/右光顺的结果。t+/t-的始末点或是端触点或是内触点,并依次称为t+/t-的始触点和终触点。触线的定义始点、终点,分别称为绝对始点和绝对终点,简称始点和终点。触线相对动向的始点和终点,分别称为相对始点和相对终点。由依次连接的触线段和跨弧(统称触线边)组成的一条组合曲线,称为这条组合曲线为触线链。表示为Ct(t1,t2,…,tn),其中ti也可称为Ct的第i条边。Ct正向:沿边的连接次序所定义的方向;Ct负向:与Ct正向相反的方向。正边:ti和Ct的正向一致,则称ti为Ct的正边;反之,则称ti为Ct的负边。触线边类型包括触线段和跨元等两类。
在滚圆沿e+/e-滚动或绕一个顶点转动过程中,阻碍滚圆继续沿当前滚向滚动或转动、且离此时的触点最远的点,称为此刻滚圆的左/右碍点,表示为
Figure BSA00000680695700061
(左碍点)和
Figure BSA00000680695700062
(右碍点)。
Figure BSA00000680695700063
Figure BSA00000680695700064
统称为碍点。在滚圆沿基线滚动或绕一个顶点转动过程中,滚圆受到阻碍无法继续沿当前滚向滚动,此时滚圆的触点和碍点称为触碍点对,简称点对。从点对中的触点沿滚向方向过渡到碍点的圆弧,称为此点对的跨弧,跨弧的结构表示为:跨弧(触点,碍点,弧心,半径),其中半径含正负号,并规定:若r为正号,则跨弧从触点逆时针过渡到碍点;反之,则跨弧从触点顺时针过渡到碍点。
滚圆沿e+/e-滚动过程中圆心形成的连续轨迹称为距线。沿e+和e-滚动形成的距线分别称为左距线和右距线,表示为i+(左距线)和i-(右距线)。i+和i-统称为距线。若滚圆滚动过程中某时刻存在遇到碍点,则此时也是距线的拐点。
依据上述概念,本发明飞机复杂结构件平面轮廓数控加工距线计算方法的总流程图如图1所示,主要步骤包括:1)距线计算;2)距线链构造。其中距线计算包括:(1)触边距线计算;(2)凸基点距线计算;(3)跨弧距线计算。具体实施步骤如下:
步骤1):距线计算需满足如下法则
法则(1):若某线段e为直线段,则
Figure BSA00000680695700071
滚圆d:t+=e+、t-=e-且i+与i-均存在。
法则(2):若某线段e为圆,且规定圆方向为逆时针方向,则
Figure BSA00000680695700072
滚圆d:t-=e-且i-一定存在。
法则(3):若某线段e为圆,且规定圆方向为逆时针方向,则
Figure BSA00000680695700073
滚圆d:若滚圆直径不大于圆线段e的直径,则存在t+,t+=e+且i+一定存在。
法则(4):若某线段e为圆,且规定圆方向为逆时针方向,则
Figure BSA00000680695700074
滚圆d:若滚圆直径大于圆线段e的直径,则不存在t+,i+也存在。
触线距线满足如下法则:给定一个滚圆d和一条线段e,若t+/t-存在,则一定有唯一一段i+/i-与之对应。
距线计算的具体内容如下:
(1)触边距线计算
触边距线计算的主要内容有:根据刀轨加工时的触边计算距线。
<1>若触边为直线段,则距线段亦为直线段,且与触边等长;
<2>若触边为圆弧,滚元在圆弧外侧,则距线亦为圆弧,且触边圆弧和距线圆弧同心;
<3>若触边为圆弧,滚元在圆弧内侧且滚元直径小于圆弧直径,则距线亦为圆弧,且触边圆弧和距线圆弧同心;
<4>若触边为圆弧,滚元在圆弧内侧且滚元直径等于圆弧直径,则距线退化为一个点;
<5>若触边为圆弧,滚元在圆弧内侧,触边圆弧的直径必定不小于滚元直径。
(2)凸基点距线计算
凸基点距线计算具体为根据触线链上的凸顶点计算相应的距线圆弧。
法则(1):触线链中所有顶点一定是凸或平的。
根据法则(1),触线链中的顶点只有两类:凸基点和平基点。对于触线链中的平顶点,其距线退化为一点。对于凸顶点,其距线为一段以凸顶点为圆心、以滚圆大小的二分之一为半径的一段圆弧;圆弧的角度确定如下:圆弧的起点与圆心的连线垂直于以凸顶点为终点的触线在终点处的切矢,圆弧的终点与圆心的连线垂直于以凸顶点为起点的触线在起点处的切矢。
(3)跨弧距线计算
法则(1):跨弧的半径大小为滚圆大小的二分之一。跨弧半径方向有正负,跨弧半径方向为正时表示跨弧从触点逆时针过渡到碍点;跨弧半径方向为负时表示跨弧从触点顺时针过渡到碍点。
每一段跨弧可以看做一段圆弧线段,其半径大小等于滚圆大小的二分之一,故跨弧相应的距线均退化为一点。
步骤2):距线链构造
距线链构造的主要内容有:根据首尾关系,依次选择各段距线,构造距线链。
法则(1):一条触线链有且仅有一条距线链与之对应。
法则(2):触线与距线为等距偏置线。即触线上点/弧到距线上相应的点/弧距离相等。
距线链计算过程如下:
(1)依次提取触边距线和凸基点距线,存入缓存边表中;
(2)提取和删除当前缓存边表中的第一条边,以此边作为当前边和新构造距线链的首边;
(3)从缓存边表中搜索和删除当前边的后续边,插入到当前距线链的末尾位置中;
(4)以此后续边为当前边,重复(3),直到缓存边表结束。

Claims (6)

1.一种飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:该方法包括如下步骤:
1)距线计算,包括:
a触边距线计算:根据刀轨加工时的触边计算相应的距线段;
b凸基点距线计算:根据触线链上的凸顶点计算相应的距线圆弧;
c跨弧距线计算:根据触线链中的有效跨弧计算相应的距线;
2)距线链构造,根据首位关系,依次选择各段距离,构造相应的距线链。
2.根据权利要求1所述的飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:
所述的触边距线计算满足下列条件:
(1)若触边为直线段,则距线段亦为直线段,且与触边等长、平行,两线段之间距离等于滚圆的半径。距线与滚圆位于触边的同侧;
(2)若触边为圆弧,滚圆在触边圆弧外侧,则距线亦为圆弧,且触边圆弧和距线圆弧同心,距线圆弧半径等于触边圆弧半径与滚圆半径之和,距线圆弧与触边圆弧有相同的扇形角度;
(3)若触边为圆弧,滚圆在圆弧内侧且滚元直径小于圆弧直径,则距线亦为圆弧,且触边圆弧和距线圆弧同心,距线圆弧半径等于触边圆弧半径与滚圆半径之差,距线圆弧与触边圆弧有相同的扇形角度;
(4)若触边为圆弧,滚圆在圆弧内侧且滚元直径等于圆弧直径,则距线退化为一个点;
(5)若触边为圆弧,滚圆在圆弧内侧,触边圆弧的直径必定不小于滚元直径。 
3.根据权利要求1所述的飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:所述的凸基点距线计算满足下列条件:
触线链中的顶点分为:凸基点和平基点,对于触线链中的平顶点,其距线退化为一点;对于凸顶点,其距线为一段以凸顶点为圆心、以滚圆大小的二分之一为半径的一段圆弧;圆弧的角度确定如下:圆弧的起点与圆心的连线垂直于以凸顶点为终点的触线在终点处的切矢,圆弧的终点与圆心的连线垂直于以凸顶点为起点的触线在起点处的切矢。
4.根据权利要求1所述的飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:所述的跨弧距线计算满足下列条件:
跨弧方向为正时表示跨弧从触点逆时针过渡到碍点;跨弧半径方向为负时表示跨弧从触点顺时针过渡到碍点;
若将每一段跨弧看做一段圆弧线段,其半径大小等于滚圆大小的二分之一,故跨弧相应的距线均退化为一点。的半径大小为滚圆大小的二分之一,跨弧半径方向有正负,跨弧半径。
5.根据权利要求1所述的飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:距线链构造满足下列条件:
(1):一条触线链有且仅有一条距线链与之对应;
(2):触线与距线为等距偏置线。即触线上点/弧到距线上相应的点/弧距离相等。
6.根据权利要求5所述的飞机复杂结构件平面轮廓数控加工距线计算方法,其特征在于:所述的距线链构造过程如下:
(1)依次提取触边距线和凸基点距线,存入缓存边表中;
(2)提取和删除当前缓存边表中的第一条边,以此边作为当前边和新构造距线链的首边;
(3)从缓存边表中搜索和删除当前边的后续边,插入到当前距线链的末尾位置中;
(4)以此后续边为当前边,重复(3),直到缓存边表结束。 
CN201210058666.3A 2012-03-08 2012-03-08 飞机复杂结构件平面轮廓数控加工距线计算方法 Expired - Fee Related CN102621925B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210058666.3A CN102621925B (zh) 2012-03-08 2012-03-08 飞机复杂结构件平面轮廓数控加工距线计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210058666.3A CN102621925B (zh) 2012-03-08 2012-03-08 飞机复杂结构件平面轮廓数控加工距线计算方法

Publications (2)

Publication Number Publication Date
CN102621925A true CN102621925A (zh) 2012-08-01
CN102621925B CN102621925B (zh) 2014-04-09

Family

ID=46561893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210058666.3A Expired - Fee Related CN102621925B (zh) 2012-03-08 2012-03-08 飞机复杂结构件平面轮廓数控加工距线计算方法

Country Status (1)

Country Link
CN (1) CN102621925B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869756A (zh) * 2014-03-19 2014-06-18 沈阳飞机工业(集团)有限公司 复杂平面型腔刀具可加工区域计算方法
CN104802030A (zh) * 2015-04-29 2015-07-29 成都爱乐达航空设备制造有限公司 自动化毛坯平面加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436304A (en) * 1987-07-31 1989-02-07 Toyota Central Res & Dev Information processor for processing curved surface
KR20090006445A (ko) * 2007-07-11 2009-01-15 (주) 엔씨비 공구경로 수정 방법
CN101738982A (zh) * 2009-12-10 2010-06-16 沈阳飞机工业(集团)有限公司 飞机复杂构件粗加工单元自动构建方法
CN102306010A (zh) * 2011-09-01 2012-01-04 西北工业大学 一种用于数控抛光叶片型面的抛光轨迹确定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436304A (en) * 1987-07-31 1989-02-07 Toyota Central Res & Dev Information processor for processing curved surface
KR20090006445A (ko) * 2007-07-11 2009-01-15 (주) 엔씨비 공구경로 수정 방법
CN101738982A (zh) * 2009-12-10 2010-06-16 沈阳飞机工业(集团)有限公司 飞机复杂构件粗加工单元自动构建方法
CN102306010A (zh) * 2011-09-01 2012-01-04 西北工业大学 一种用于数控抛光叶片型面的抛光轨迹确定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜宝瑞等: "基于设计特征模型的加工特征映射技术", 《北京航空航天大学学报》, vol. 33, no. 7, 15 July 2007 (2007-07-15), pages 842 - 845 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869756A (zh) * 2014-03-19 2014-06-18 沈阳飞机工业(集团)有限公司 复杂平面型腔刀具可加工区域计算方法
CN103869756B (zh) * 2014-03-19 2017-02-08 沈阳飞机工业(集团)有限公司 复杂平面型腔刀具可加工区域计算方法
CN104802030A (zh) * 2015-04-29 2015-07-29 成都爱乐达航空设备制造有限公司 自动化毛坯平面加工方法

Also Published As

Publication number Publication date
CN102621925B (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103336855B (zh) 一种基于多子群粒子群算法的二维不规则排样方法
CN102141794B (zh) 一种用于数控系统的连续轨迹段间衔接速度处理方法
CN108829045B (zh) 连续微直线段的衔接速度的优化方法及系统
CN105676786B (zh) 一种五轴数控加工中考虑各旋转轴角速度平滑特性的刀轴矢量插值方法
CN102023616B (zh) 三角Bézier曲面数控精加工刀轨快速生成方法
TWI453078B (zh) 一種五軸曲面側銑加工系統及其路徑規劃方法
CN109597357B (zh) 一种面向叶片旋铣工艺的数控编程方法及装置
CN101870073B (zh) 基于工艺系统刚度特性的多轴数控加工刀具运动规划方法
CN102621925B (zh) 飞机复杂结构件平面轮廓数控加工距线计算方法
CN102222138B (zh) 一种基于曲面截型线分划的最短距离线对获取方法
CN113858205A (zh) 一种基于改进rrt*的七轴冗余机械臂避障算法
CN113467384A (zh) 一种应用于五轴数控机床的拐角过渡方法
CN110032140A (zh) 一种五轴加工中球形刀刀轴矢量规划方法
CN101866162B (zh) 点到曲面距离计算的邻近三角形方法
JP2007279937A (ja) 数値制御単一刃具による輪郭面及び立体の加工方法
CN109597355B (zh) 曲面微织构数控加工刀轴矢量的设计方法
CN113377066A (zh) 一种针对nurbs曲面五轴加工刀具路径快速干涉检测方法
CN104865898A (zh) 数控机床中处理微小路径段的方法及设备
CN111610751B (zh) 过点集nurbs插值曲线的插值误差多次细分迭代计算方法
CN112883505A (zh) 考虑刀具工件相对振动的超精密端面车削表面建模方法
CN102063546B (zh) 产品三角Bézier曲面模型数控加工刀轨快速生成方法
CN102566508B (zh) 飞机复杂结构件平面轮廓数控加工刀轨触线计算方法
CN109491321A (zh) 一种基于h型精密运动平台的轮廓误差估计方法
Lee et al. Cross-directional feed rate optimization using tool-path surface
CN106933189A (zh) 基于ac型五轴数控机床环形刀加工刀轴矢量光顺方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20200308

CF01 Termination of patent right due to non-payment of annual fee