CN102610665A - Silicon nanoporous array structured concentrator solar cell and preparation method thereof - Google Patents

Silicon nanoporous array structured concentrator solar cell and preparation method thereof Download PDF

Info

Publication number
CN102610665A
CN102610665A CN2011104359471A CN201110435947A CN102610665A CN 102610665 A CN102610665 A CN 102610665A CN 2011104359471 A CN2011104359471 A CN 2011104359471A CN 201110435947 A CN201110435947 A CN 201110435947A CN 102610665 A CN102610665 A CN 102610665A
Authority
CN
China
Prior art keywords
hole array
silicon nano
nano hole
contact layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104359471A
Other languages
Chinese (zh)
Other versions
CN102610665B (en
Inventor
韩伟华
陈艳坤
李小明
杨富华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201110435947.1A priority Critical patent/CN102610665B/en
Publication of CN102610665A publication Critical patent/CN102610665A/en
Application granted granted Critical
Publication of CN102610665B publication Critical patent/CN102610665B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a silicon nanoporous array structured concentrator solar cell which comprises an Al/Si alloy back electrode, a p + back contact layer, a p-type crystalline silicon layer, an n + contact layer, a SiO2 passivation layer and a front electrode, wherein the p + back contact layer is arranged on the Al/Si alloy back electrode; the p-type crystalline silicon layer is arranged on the p + back contact layer; the n + contact layer is arranged on the p-type crystalline silicon layer, and is provided with a silicon nanoporous array; the SiO2 passivation layer is arranged on the surface of the n + contact layer provided with the silicon nanoporous array; and the front electrode is formed on the n + contact layer in a horizontal-vertical cross mode.

Description

聚光硅纳米孔阵列结构太阳能电池及其制备方法Concentrating silicon nanohole array structure solar cell and preparation method thereof

技术领域 technical field

本发明涉及一种太阳能电池及其制备方法,特别是关于一种高性能聚光硅纳米孔阵列结构太阳能电池及其制备方法。The invention relates to a solar cell and a preparation method thereof, in particular to a solar cell with a high-performance light-gathering silicon nanohole array structure and a preparation method thereof.

背景技术 Background technique

太阳能电池中通过半导体pn结进行光伏能量转换有两个必要的步骤。首先,电池吸收光,产生电子-空穴对;然后,由器件结构将电子和空穴分开,电子流向负极而空穴流向正极,从而产生光伏电压和电流。为了增加光吸收,一种方法是绝大多数太阳能电池依靠抗反射膜减少自电池前表面的光反射;另一种方法是在电池上表面采用金字塔织构并结合有光学反射性能的背面,使进入电池的光线传输路线加长,形成陷光,提高开路电压。There are two necessary steps for photovoltaic energy conversion through semiconductor pn junctions in solar cells. First, the cell absorbs light, generating electron-hole pairs; then, the device structure separates the electrons and holes, and the electrons flow to the negative electrode while the holes flow to the positive electrode, thereby generating photovoltaic voltage and current. In order to increase light absorption, one method is that most solar cells rely on anti-reflection film to reduce light reflection from the front surface of the cell; another method is to use a pyramid texture on the upper surface of the cell combined with a back surface with optical reflection properties, so that The light transmission route into the battery is lengthened, forming light traps and increasing the open circuit voltage.

纳米科学技术的发展为高效硅太阳能电池的制作提供了新的机遇。硅纳米结构材料具有显著优异于晶硅材料的光伏性能。目前人们关注最多的是利用氢化纳米晶硅(nc-Si:H)薄膜制作的太阳能电池。硅晶粒的纳米结构具有显著的量子限制效应,有助于光吸收谱范围的增加。氢化纳米晶硅材料还具有较大的比表面积,因此具有更大的光吸收系数和良好的吸收特性。硅纳米线结构的太阳能电池的pn结生长在纳米线的径向,光生载流子的输运与光吸收方向分离,具有更长的少子寿命和传输长度。同时,硅纳米线中的硅原子具有定向的有序生长,可以提高其结晶质量,与硅纳米薄膜相比具有更大的比表面积,具有良好的光吸收性能。但是,硅纳米线机械稳定性能不够理想,很容易坍塌,同时较大的电阻和过量的表面复合损耗了大量光生载流子。尽管如此,纳米结构的太阳能电池仍然比晶硅本身有更高的电池效率。The development of nanoscience and technology provides new opportunities for the fabrication of high-efficiency silicon solar cells. Silicon nanostructure materials have significantly better photovoltaic properties than crystalline silicon materials. At present, people pay more attention to solar cells made of hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The nanostructure of silicon grains has a significant quantum confinement effect, which contributes to the increase of the optical absorption spectral range. The hydrogenated nanocrystalline silicon material also has a larger specific surface area, so it has a larger light absorption coefficient and good absorption characteristics. The pn junction of solar cells with silicon nanowire structure grows in the radial direction of the nanowire, and the transport of photogenerated carriers is separated from the direction of light absorption, which has longer minority carrier lifetime and transmission length. At the same time, silicon atoms in silicon nanowires have directional and ordered growth, which can improve their crystal quality, and have a larger specific surface area than silicon nanofilms, and have good light absorption properties. However, the mechanical stability of silicon nanowires is not ideal, and it is easy to collapse, and at the same time, the large resistance and excessive surface recombination consume a large number of photogenerated carriers. Still, nanostructured solar cells have higher cell efficiencies than crystalline silicon itself.

硅纳米孔阵列结构电池具有替代硅纳米线结构电池的潜力。该结构兼顾晶硅的机械稳定性和硅纳米结构的陷光吸收特性,同时具有多边形对称排列的纳米孔阵列结构具有良好的聚光效应,因此将具有更加良好的电池效率和性能。Silicon nanohole array structure battery has the potential to replace silicon nanowire structure battery. The structure takes into account the mechanical stability of crystalline silicon and the light-trapping absorption characteristics of silicon nanostructures, and the nanohole array structure with polygonal symmetrical arrangement has a good light-gathering effect, so it will have better cell efficiency and performance.

发明内容 Contents of the invention

本发明的主要目的在于提供一种高性能聚光硅纳米孔阵列结构太阳能电池及其制备方法。在与已有的太阳能电池制备工艺兼容的前提下,提出创新的硅纳米孔阵列结构具有聚光结构,以其提高太阳能电池的转化效率。The main purpose of the present invention is to provide a solar cell with a high-performance light-gathering silicon nanohole array structure and a preparation method thereof. On the premise of being compatible with the existing solar cell preparation process, an innovative silicon nanohole array structure with light concentrating structure is proposed to improve the conversion efficiency of solar cells.

本发明提供一种聚光硅纳米孔阵列结构太阳能电池,包括:The invention provides a solar cell with a light-gathering silicon nanohole array structure, comprising:

一Al/Si合金背电极;An Al/Si alloy back electrode;

一p+背接触层,位于Al/Si合金背电极的上面;a p + back contact layer located on top of the Al/Si alloy back electrode;

一p型晶硅材料层,位于p+背接触层的上面;A p-type crystalline silicon material layer, located on the p + back contact layer;

一n+接触层,位于p型晶硅材料层的上面,该n+接触层的上面开有硅纳米孔阵列;An n + contact layer, located on the top of the p-type crystalline silicon material layer, and a silicon nanohole array is opened on the top of the n + contact layer;

一SiO2钝化层,位于开有硅纳米孔阵列的n+接触层的表面;a SiO2 passivation layer on the surface of the n + contact layer with the silicon nanohole array;

一前电极,横竖交叉形成于n+接触层上。A front electrode, crossed horizontally and vertically, is formed on the n + contact layer.

本发明还提供一种聚光硅纳米孔阵列结构太阳能电池的制备方法,包括如下步骤:The present invention also provides a method for preparing a light-gathering silicon nanohole array structure solar cell, comprising the following steps:

步骤1:在p型晶硅材料层上表面形成制备一层n+接触层,形成pn+结结构;Step 1: forming and preparing an n + contact layer on the upper surface of the p-type crystalline silicon material layer to form a pn + junction structure;

步骤2:在p型晶硅材料层下表面形成p+背接触层;Step 2: forming a p + back contact layer on the lower surface of the p-type crystalline silicon material layer;

步骤3:在n+接触层上表面上光刻出硅纳米孔阵列的光刻胶图形;Step 3: photoetching a photoresist pattern of the silicon nanohole array on the upper surface of the n + contact layer;

步骤4:将Ag金属填充于硅纳米孔阵列的光刻胶图形内,通过诱导腐蚀的方法,形成硅纳米孔阵列;Step 4: filling the Ag metal in the photoresist pattern of the silicon nanohole array, and forming the silicon nanohole array by the method of induced corrosion;

步骤5:在位于开有硅纳米孔阵列的n+接触层的表面,淀积SiO2钝化层;Step 5: on the surface of the n + contact layer with silicon nanohole arrays, deposit SiO2 passivation layer;

步骤6:在p+背接触层下表面制作Al/Si合金背电极;Step 6: making an Al/Si alloy back electrode on the lower surface of the p + back contact layer;

步骤7:通过光刻、腐蚀和金属蒸发剥离,在n+接触层上制作前电极。Step 7: Fabricate the front electrode on the n + contact layer by photolithography, etching and metal evaporation stripping.

本发明的有益效果是:The beneficial effects of the present invention are:

1、本发明设计的纳米孔阵列结构太阳能电池兼顾晶硅的机械稳定性和硅纳米结构的陷光吸收特性,同时具有多边形对称排列的纳米孔阵列结构具有良好的聚光效应,因此将具有更加良好的电池效率和性能。1. The nanohole array structure solar cell designed by the present invention takes into account both the mechanical stability of crystalline silicon and the light trapping and absorption characteristics of silicon nanostructures, and at the same time, the nanohole array structure with polygonal symmetrical arrangement has a good light concentrating effect, so it will have more Good battery efficiency and performance.

2、本发明采用的金属催化诱导的湿法腐蚀工艺制备硅纳米孔阵列,步骤简单,易于大面积制备规则的纳米孔阵列,对硅材料损伤小,制作成本低,步骤简单,效率高。2. The metal catalysis-induced wet etching process used in the present invention to prepare silicon nanopore arrays has simple steps, is easy to prepare regular nanopore arrays in large areas, has little damage to silicon materials, low manufacturing cost, simple steps and high efficiency.

综上所述,本发明提供的这种制备硅基纳米柱阵列的方法,与传统制备方法相比,具有上述明显的有益效果。上述诸多的优点及实用价值,在技术上有较大的进步,并产生了好用及实用的效果,从而更加适于实用。In summary, the method for preparing silicon-based nanopillar arrays provided by the present invention has the above-mentioned obvious beneficial effects compared with the traditional preparation methods. The advantages and practical values mentioned above have made great progress in technology, and have produced easy-to-use and practical effects, so that they are more suitable for practical use.

附图说明 Description of drawings

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图详细说明如后,其中:In order to make the purpose, technical solutions and advantages of the present invention clearer, the following will be described in detail with reference to the accompanying drawings in conjunction with specific embodiments, wherein:

图1为聚光硅基纳米孔阵列结构太阳能电池的结构示意图;Fig. 1 is a structural schematic diagram of a light concentrating silicon-based nanohole array structure solar cell;

图2为本发明提供的制备聚光硅基纳米孔阵列结构太阳能电池的流程图;Fig. 2 is the flow chart of preparing light-gathering silicon-based nanohole array structure solar cell provided by the present invention;

图3为聚光硅基纳米孔阵列结构示意图;Figure 3 is a schematic diagram of the structure of the light-gathering silicon-based nanohole array;

具体实施方式 Detailed ways

请参阅图1所示,本发明提供一种聚光硅纳米孔阵列结构太阳能电池,包括:Please refer to Fig. 1, the present invention provides a solar cell with a light concentrating silicon nanohole array structure, including:

一Al/Si合金背电极101;An Al/Si alloy back electrode 101;

一p+背接触层102,位于Al/Si合金背电极101的上面;A p + back contact layer 102, located on the Al/Si alloy back electrode 101;

一p型晶硅材料层103,位于p+背接触层102的上面;A p-type crystalline silicon material layer 103, located on the p + back contact layer 102;

一n+接触层104,位于p型晶硅材料层103的上面,该n+接触层104的上面开有硅纳米孔阵列105,该硅纳米孔阵列105的孔贯穿n+接触层104,该n+接触层104的厚度为100-1000nm,该硅纳米孔阵列105的孔按多边形对称点阵结构周期排列,硅纳米孔阵列105孔的孔径为100nm-800nm,周期数为3-5倍的孔径;An n + contact layer 104 is located on the p-type crystalline silicon material layer 103, a silicon nanohole array 105 is opened on the n + contact layer 104, the holes of the silicon nanohole array 105 penetrate the n + contact layer 104, the The thickness of the n + contact layer 104 is 100-1000nm, the holes of the silicon nanohole array 105 are periodically arranged in a polygonal symmetrical lattice structure, the aperture of the silicon nanohole array 105 is 100nm-800nm, and the number of periods is 3-5 times Aperture;

一SiO2钝化层106,位于开有硅纳米孔阵列105的n+接触层104的表面;A SiO2 passivation layer 106, located on the surface of the n + contact layer 104 with the silicon nanohole array 105;

一前电极107,横竖交叉形成于n+接触层104上,该前电极107的材料为Ti/Pd/Ag多层金属指状电极、ITO透明电极或石墨烯透明电极。A front electrode 107 is formed horizontally and vertically on the n + contact layer 104, and the material of the front electrode 107 is Ti/Pd/Ag multilayer metal finger electrode, ITO transparent electrode or graphene transparent electrode.

请参阅图2并结合参阅图1和图3,本发明还提供一种聚光硅纳米孔阵列结构太阳能电池的制备方法,包括如下步骤:Please refer to Fig. 2 and refer to Fig. 1 and Fig. 3 in combination, the present invention also provides a method for preparing a light-gathering silicon nanohole array structure solar cell, comprising the following steps:

步骤201:在p型晶硅材料层103上表面形成制备一层n+接触层104,形成pn+结结构,所述pn+结结构采用离子注入法或扩散法形成;Step 201: forming and preparing an n + contact layer 104 on the upper surface of the p-type crystalline silicon material layer 103 to form a pn + junction structure, and the pn + junction structure is formed by ion implantation or diffusion;

步骤202:在p型晶硅材料层103下表面形成p+背接触层102;Step 202: forming a p + back contact layer 102 on the lower surface of the p-type crystalline silicon material layer 103;

步骤203:在n+接触层104上表面上光刻出硅纳米孔阵列105的光刻胶图形,该硅纳米孔阵列105的孔按多边形对称点阵结构周期排列,如图3所示六边形301,八边形302或十边形303等,硅纳米孔阵列105孔的孔径为100nm-800nm,周期数为3-5倍的孔径,该硅纳米孔阵列105的周期孔阵图形采用纳米压印技术、DUV光刻、飞秒激光无掩膜光刻或电子束光刻制作形成;Step 203: On the upper surface of the n + contact layer 104, a photoresist pattern of the silicon nanohole array 105 is photoetched. The holes of the silicon nanohole array 105 are periodically arranged in a polygonal symmetrical lattice structure, as shown in FIG. 3 . Shape 301, octagon 302 or decagon 303, etc., the aperture of silicon nanohole array 105 is 100nm-800nm, the number of cycles is 3-5 times the aperture, the periodic hole array pattern of this silicon nanohole array 105 adopts nanometer Imprint technology, DUV lithography, femtosecond laser maskless lithography or electron beam lithography;

步骤204:将Ag金属填充于硅纳米孔阵列105的光刻胶图形内,通过诱导腐蚀的方法形成硅纳米孔阵列105,该硅纳米孔阵列105的孔贯穿n+接触层104,该n+接触层104的厚度为100-1000nm,所述Ag金属点阵诱导腐蚀硅材料过程如下:(a)采用HF∶AgNO3混合液在聚光结构周期孔阵图形中沉积一层均匀的Ag颗粒;(b)再用HF∶H2O2混合液在Ag的诱导下各向异性刻蚀出孔洞,去离子水终止刻蚀;(c)然后用HNO3∶H2O去除Ag颗粒,去离子水冲洗;Step 204: Fill Ag metal in the photoresist pattern of the silicon nanohole array 105, and form the silicon nanohole array 105 by an induced corrosion method, the holes of the silicon nanohole array 105 penetrate the n + contact layer 104, the n + The thickness of the contact layer 104 is 100-1000nm, and the process of the Ag metal lattice-induced corrosion of the silicon material is as follows: (a) using HF: AgNO3 mixed solution to deposit a layer of uniform Ag particles in the periodic hole pattern of the light-gathering structure; (b) Use HF:H 2 O 2 mixed solution to anisotropically etch holes under the induction of Ag, and deionized water to stop etching; (c) Then use HNO 3 :H 2 O to remove Ag particles, deionized water flushing;

步骤205:在位于开有硅纳米孔阵列105的n+接触层104的表面,淀积SiO2钝化层106;Step 205: Deposit a SiO2 passivation layer 106 on the surface of the n + contact layer 104 where the silicon nanohole array 105 is opened;

步骤206:在p+背接触层102下表面制作Al/Si合金背电极101,合金温度为450℃;Step 206: Fabricate an Al/Si alloy back electrode 101 on the lower surface of the p + back contact layer 102, and the alloy temperature is 450°C;

步骤207:通过光刻、腐蚀和金属蒸发剥离,在n+接触层104上制作前电极107,该前电极107的材料为Ti/Pd/Ag多层金属指状电极、ITO透明电极或石墨烯透明电极,该电极通过退火与n+接触层104形成欧姆接触。Step 207: Through photolithography, corrosion and metal evaporation stripping, fabricate the front electrode 107 on the n + contact layer 104, the material of the front electrode 107 is Ti/Pd/Ag multilayer metal finger electrode, ITO transparent electrode or graphene A transparent electrode, which forms an ohmic contact with the n + contact layer 104 through annealing.

以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (10)

1. optically focused silicon nano hole array structure solar battery comprises:
One Al/Si alloy back electrode;
One p +Back contact, be positioned at Al/Si alloy back electrode above;
One p type crystal silicon material layer is positioned at p +Above the back contact;
One n +Contact layer, be positioned at p type crystal silicon material layer above, this n +Have the silicon nano hole array above the contact layer;
One SiO 2Passivation layer is positioned at the n that has the silicon nano hole array +The surface of contact layer;
Electrode before one intersects to form in n anyhow +On the contact layer.
2. optically focused silicon nano hole array structure solar battery according to claim 1, wherein n is run through in the hole of silicon nano hole array +Contact layer, this n +The thickness of contact layer is 100-1000nm.
3. optically focused silicon nano hole array solar cells structure according to claim 2, wherein the hole of silicon nano hole array is pressed polygon symmetry dot matrix structural cycle and is arranged, and the aperture of silicon nano hole array hole is 100nm-800nm, and periodicity is 3-5 aperture doubly.
4. optically focused silicon nano hole array solar cells structure according to claim 1, wherein the material of preceding electrode is Ti/Pd/Ag multiple layer metal finger electrode, ito transparent electrode or Graphene transparency electrode.
5. the preparation method of an optically focused silicon nano hole array structure solar battery comprises the steps:
Step 1: form preparation one deck n at p type crystal silicon material layer upper surface +Contact layer forms pn +Junction structure;
Step 2: form p at p type crystal silicon material layer lower surface +Back contact;
Step 3: at n +Make the photoresist figure of silicon nano hole array on the contact layer upper surface by lithography;
Step 4: Ag is metal filled in the photoresist figure of silicon nano hole array, through inducing corroding method, form the silicon nano hole array;
Step 5: be positioned at the n that has the silicon nano hole array +The surface of contact layer, deposit SiO 2Passivation layer;
Step 6: at p +The back contact lower surface is made Al/Si alloy back electrode;
Step 7: peel off through photoetching, corrosion and evaporation of metal, at n +Electrode before making on the contact layer.
6. the method for preparing optically focused silicon nano hole array structure solar battery according to claim 5, wherein pn +Junction structure adopts ion implantation or diffusion method to form.
7. the method for preparing optically focused silicon nano hole array structure solar battery according to claim 5, wherein n is run through in the hole of silicon nano hole array +Contact layer, this n +The thickness of contact layer is 100-1000nm.
8. the method for preparing optically focused silicon nano hole array structure solar battery according to claim 5; The hole of silicon nano hole array wherein; Press polygon symmetry dot matrix structural cycle and arrange, the aperture of silicon nano hole array hole is 100nm-800nm, and periodicity is 3-5 aperture doubly.
9. the method for preparing optically focused silicon nano hole array structure solar battery according to claim 8, wherein the cycle hole system of battle formations shape of silicon nano hole array adopts nanometer embossing, DUV photoetching, femtosecond laser mask-free photolithography or electron beam lithography to make formation.
10. the method for preparing optically focused silicon nano hole array structure solar battery according to claim 5, wherein the material of preceding electrode is Ti/Pd/Ag multiple layer metal finger electrode, ito transparent electrode or Graphene transparency electrode.
CN201110435947.1A 2011-12-22 2011-12-22 Silicon nanoporous array structured concentrator solar cell and preparation method thereof Expired - Fee Related CN102610665B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110435947.1A CN102610665B (en) 2011-12-22 2011-12-22 Silicon nanoporous array structured concentrator solar cell and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110435947.1A CN102610665B (en) 2011-12-22 2011-12-22 Silicon nanoporous array structured concentrator solar cell and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102610665A true CN102610665A (en) 2012-07-25
CN102610665B CN102610665B (en) 2014-04-09

Family

ID=46527922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110435947.1A Expired - Fee Related CN102610665B (en) 2011-12-22 2011-12-22 Silicon nanoporous array structured concentrator solar cell and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102610665B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219411A (en) * 2013-04-09 2013-07-24 中国科学院半导体研究所 Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method
CN103390657A (en) * 2013-07-22 2013-11-13 中国科学院高能物理研究所 Selective grid of silicon nanometer column array photocell and preparation method of selective grid
CN105206705A (en) * 2015-08-18 2015-12-30 广东爱康太阳能科技有限公司 Low reflectivity solar crystalline silicon cell and manufacturing method thereof
CN106129185A (en) * 2016-08-24 2016-11-16 常州天合光能有限公司 Laser ablation electrically conducting transparent film preparation phasmon strengthens crystal silicon solar battery method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488532A (en) * 2008-01-16 2009-07-22 财团法人工业技术研究院 Back electrode module of solar cell
CN101990713A (en) * 2008-02-03 2011-03-23 尼坦能源公司 Thin-film photovoltaic devices and related manufacturing methods
CN102097497A (en) * 2010-12-27 2011-06-15 重庆大学 Solar cell with high conversion efficiency
US20110146774A1 (en) * 2008-08-11 2011-06-23 Korea Research Institute Of Standards And Science Solar Cell Having Quantum Dot Nanowire Array and the Fabrication Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488532A (en) * 2008-01-16 2009-07-22 财团法人工业技术研究院 Back electrode module of solar cell
CN101990713A (en) * 2008-02-03 2011-03-23 尼坦能源公司 Thin-film photovoltaic devices and related manufacturing methods
US20110146774A1 (en) * 2008-08-11 2011-06-23 Korea Research Institute Of Standards And Science Solar Cell Having Quantum Dot Nanowire Array and the Fabrication Method Thereof
CN102097497A (en) * 2010-12-27 2011-06-15 重庆大学 Solar cell with high conversion efficiency

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219411A (en) * 2013-04-09 2013-07-24 中国科学院半导体研究所 Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method
CN103390657A (en) * 2013-07-22 2013-11-13 中国科学院高能物理研究所 Selective grid of silicon nanometer column array photocell and preparation method of selective grid
CN103390657B (en) * 2013-07-22 2016-03-30 中国科学院高能物理研究所 Photronic selectivity grid of a kind of silicon nano column array and preparation method thereof
CN105206705A (en) * 2015-08-18 2015-12-30 广东爱康太阳能科技有限公司 Low reflectivity solar crystalline silicon cell and manufacturing method thereof
CN106129185A (en) * 2016-08-24 2016-11-16 常州天合光能有限公司 Laser ablation electrically conducting transparent film preparation phasmon strengthens crystal silicon solar battery method

Also Published As

Publication number Publication date
CN102610665B (en) 2014-04-09

Similar Documents

Publication Publication Date Title
Wang et al. Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions
TW201001729A (en) Photovoltaic cell and methods for producing a photovoltaic cell
JP2010258456A (en) Silicon substrate having periodic structure
CN102110724B (en) Solar cell having double-sided micro/nano composite structure and preparation method thereof
TW201135949A (en) Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes
CN105826411A (en) Mono-crystalline silicon double-sided solar cell and preparation method thereof
TW201214724A (en) A solar cell apparatus having the transparent conducting layer with the periodic structure
CN104201227A (en) Silicon solar cell and preparation method thereof
CN103258909B (en) The preparation method of hull cell and hull cell
CN102097497A (en) Solar cell with high conversion efficiency
JP2010219407A (en) Solar cell equipped with electrode having mesh structure, and manufacturing method of the same
WO2012055302A1 (en) Electrode and manufacturing method thereof
CN102184975A (en) Thin film solar cell with improved photoelectric conversion efficiency and manufacturing method thereof
CN102254963A (en) Graphene/silicon pillar array Schottky junction photovoltaic cell and manufacturing method thereof
CN102610665B (en) Silicon nanoporous array structured concentrator solar cell and preparation method thereof
CN107104165A (en) One kind is based on graphene silicon inverted pyramid array Schottky photovoltaic cell manufacture method
CN104051580A (en) Silicon solar cell and its preparation method
CN102903775A (en) Crystalline silicon solar cell structure and manufacturing method for light concentration and laser energy delivery
CN108321221B (en) Graphene solar cell with microcavity structure and preparation method thereof
WO2015113317A1 (en) Photovoltaic conversion structure, solar battery applying same and method for manufacturing same
CN104485367A (en) Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure
CN102368506A (en) n-zinc oxide/p-silica nanowire three-dimensional heterojunction solar energy conversion equipment
CN103219411A (en) Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method
CN204315603U (en) A kind of polished backside crystal silicon solar batteries
CN110416342A (en) A kind of HJT battery based on metal nanoparticle and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140409

Termination date: 20141222

EXPY Termination of patent right or utility model