CN102610665A - Silicon nanoporous array structured concentrator solar cell and preparation method thereof - Google Patents
Silicon nanoporous array structured concentrator solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN102610665A CN102610665A CN2011104359471A CN201110435947A CN102610665A CN 102610665 A CN102610665 A CN 102610665A CN 2011104359471 A CN2011104359471 A CN 2011104359471A CN 201110435947 A CN201110435947 A CN 201110435947A CN 102610665 A CN102610665 A CN 102610665A
- Authority
- CN
- China
- Prior art keywords
- hole array
- silicon nano
- nano hole
- contact layer
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 69
- 239000010703 silicon Substances 0.000 title claims abstract description 69
- 238000002360 preparation method Methods 0.000 title claims description 8
- 229910000676 Si alloy Inorganic materials 0.000 claims abstract description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 10
- 238000002161 passivation Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 16
- 239000002210 silicon-based material Substances 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 230000007797 corrosion Effects 0.000 claims description 5
- 238000005260 corrosion Methods 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910021389 graphene Inorganic materials 0.000 claims description 4
- 238000001459 lithography Methods 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000000609 electron-beam lithography Methods 0.000 claims description 2
- 238000005468 ion implantation Methods 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims 2
- 230000015572 biosynthetic process Effects 0.000 claims 2
- 238000005755 formation reaction Methods 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 2
- 238000004049 embossing Methods 0.000 claims 1
- 230000008020 evaporation Effects 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 230000001939 inductive effect Effects 0.000 claims 1
- 229910021419 crystalline silicon Inorganic materials 0.000 abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052681 coesite Inorganic materials 0.000 abstract description 6
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 6
- 239000000377 silicon dioxide Substances 0.000 abstract description 6
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- 229910052682 stishovite Inorganic materials 0.000 abstract description 6
- 229910052905 tridymite Inorganic materials 0.000 abstract description 6
- 239000002070 nanowire Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 239000002086 nanomaterial Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910021423 nanocrystalline silicon Inorganic materials 0.000 description 3
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001883 metal evaporation Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002120 nanofilm Substances 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种太阳能电池及其制备方法,特别是关于一种高性能聚光硅纳米孔阵列结构太阳能电池及其制备方法。The invention relates to a solar cell and a preparation method thereof, in particular to a solar cell with a high-performance light-gathering silicon nanohole array structure and a preparation method thereof.
背景技术 Background technique
太阳能电池中通过半导体pn结进行光伏能量转换有两个必要的步骤。首先,电池吸收光,产生电子-空穴对;然后,由器件结构将电子和空穴分开,电子流向负极而空穴流向正极,从而产生光伏电压和电流。为了增加光吸收,一种方法是绝大多数太阳能电池依靠抗反射膜减少自电池前表面的光反射;另一种方法是在电池上表面采用金字塔织构并结合有光学反射性能的背面,使进入电池的光线传输路线加长,形成陷光,提高开路电压。There are two necessary steps for photovoltaic energy conversion through semiconductor pn junctions in solar cells. First, the cell absorbs light, generating electron-hole pairs; then, the device structure separates the electrons and holes, and the electrons flow to the negative electrode while the holes flow to the positive electrode, thereby generating photovoltaic voltage and current. In order to increase light absorption, one method is that most solar cells rely on anti-reflection film to reduce light reflection from the front surface of the cell; another method is to use a pyramid texture on the upper surface of the cell combined with a back surface with optical reflection properties, so that The light transmission route into the battery is lengthened, forming light traps and increasing the open circuit voltage.
纳米科学技术的发展为高效硅太阳能电池的制作提供了新的机遇。硅纳米结构材料具有显著优异于晶硅材料的光伏性能。目前人们关注最多的是利用氢化纳米晶硅(nc-Si:H)薄膜制作的太阳能电池。硅晶粒的纳米结构具有显著的量子限制效应,有助于光吸收谱范围的增加。氢化纳米晶硅材料还具有较大的比表面积,因此具有更大的光吸收系数和良好的吸收特性。硅纳米线结构的太阳能电池的pn结生长在纳米线的径向,光生载流子的输运与光吸收方向分离,具有更长的少子寿命和传输长度。同时,硅纳米线中的硅原子具有定向的有序生长,可以提高其结晶质量,与硅纳米薄膜相比具有更大的比表面积,具有良好的光吸收性能。但是,硅纳米线机械稳定性能不够理想,很容易坍塌,同时较大的电阻和过量的表面复合损耗了大量光生载流子。尽管如此,纳米结构的太阳能电池仍然比晶硅本身有更高的电池效率。The development of nanoscience and technology provides new opportunities for the fabrication of high-efficiency silicon solar cells. Silicon nanostructure materials have significantly better photovoltaic properties than crystalline silicon materials. At present, people pay more attention to solar cells made of hydrogenated nanocrystalline silicon (nc-Si:H) thin films. The nanostructure of silicon grains has a significant quantum confinement effect, which contributes to the increase of the optical absorption spectral range. The hydrogenated nanocrystalline silicon material also has a larger specific surface area, so it has a larger light absorption coefficient and good absorption characteristics. The pn junction of solar cells with silicon nanowire structure grows in the radial direction of the nanowire, and the transport of photogenerated carriers is separated from the direction of light absorption, which has longer minority carrier lifetime and transmission length. At the same time, silicon atoms in silicon nanowires have directional and ordered growth, which can improve their crystal quality, and have a larger specific surface area than silicon nanofilms, and have good light absorption properties. However, the mechanical stability of silicon nanowires is not ideal, and it is easy to collapse, and at the same time, the large resistance and excessive surface recombination consume a large number of photogenerated carriers. Still, nanostructured solar cells have higher cell efficiencies than crystalline silicon itself.
硅纳米孔阵列结构电池具有替代硅纳米线结构电池的潜力。该结构兼顾晶硅的机械稳定性和硅纳米结构的陷光吸收特性,同时具有多边形对称排列的纳米孔阵列结构具有良好的聚光效应,因此将具有更加良好的电池效率和性能。Silicon nanohole array structure battery has the potential to replace silicon nanowire structure battery. The structure takes into account the mechanical stability of crystalline silicon and the light-trapping absorption characteristics of silicon nanostructures, and the nanohole array structure with polygonal symmetrical arrangement has a good light-gathering effect, so it will have better cell efficiency and performance.
发明内容 Contents of the invention
本发明的主要目的在于提供一种高性能聚光硅纳米孔阵列结构太阳能电池及其制备方法。在与已有的太阳能电池制备工艺兼容的前提下,提出创新的硅纳米孔阵列结构具有聚光结构,以其提高太阳能电池的转化效率。The main purpose of the present invention is to provide a solar cell with a high-performance light-gathering silicon nanohole array structure and a preparation method thereof. On the premise of being compatible with the existing solar cell preparation process, an innovative silicon nanohole array structure with light concentrating structure is proposed to improve the conversion efficiency of solar cells.
本发明提供一种聚光硅纳米孔阵列结构太阳能电池,包括:The invention provides a solar cell with a light-gathering silicon nanohole array structure, comprising:
一Al/Si合金背电极;An Al/Si alloy back electrode;
一p+背接触层,位于Al/Si合金背电极的上面;a p + back contact layer located on top of the Al/Si alloy back electrode;
一p型晶硅材料层,位于p+背接触层的上面;A p-type crystalline silicon material layer, located on the p + back contact layer;
一n+接触层,位于p型晶硅材料层的上面,该n+接触层的上面开有硅纳米孔阵列;An n + contact layer, located on the top of the p-type crystalline silicon material layer, and a silicon nanohole array is opened on the top of the n + contact layer;
一SiO2钝化层,位于开有硅纳米孔阵列的n+接触层的表面;a SiO2 passivation layer on the surface of the n + contact layer with the silicon nanohole array;
一前电极,横竖交叉形成于n+接触层上。A front electrode, crossed horizontally and vertically, is formed on the n + contact layer.
本发明还提供一种聚光硅纳米孔阵列结构太阳能电池的制备方法,包括如下步骤:The present invention also provides a method for preparing a light-gathering silicon nanohole array structure solar cell, comprising the following steps:
步骤1:在p型晶硅材料层上表面形成制备一层n+接触层,形成pn+结结构;Step 1: forming and preparing an n + contact layer on the upper surface of the p-type crystalline silicon material layer to form a pn + junction structure;
步骤2:在p型晶硅材料层下表面形成p+背接触层;Step 2: forming a p + back contact layer on the lower surface of the p-type crystalline silicon material layer;
步骤3:在n+接触层上表面上光刻出硅纳米孔阵列的光刻胶图形;Step 3: photoetching a photoresist pattern of the silicon nanohole array on the upper surface of the n + contact layer;
步骤4:将Ag金属填充于硅纳米孔阵列的光刻胶图形内,通过诱导腐蚀的方法,形成硅纳米孔阵列;Step 4: filling the Ag metal in the photoresist pattern of the silicon nanohole array, and forming the silicon nanohole array by the method of induced corrosion;
步骤5:在位于开有硅纳米孔阵列的n+接触层的表面,淀积SiO2钝化层;Step 5: on the surface of the n + contact layer with silicon nanohole arrays, deposit SiO2 passivation layer;
步骤6:在p+背接触层下表面制作Al/Si合金背电极;Step 6: making an Al/Si alloy back electrode on the lower surface of the p + back contact layer;
步骤7:通过光刻、腐蚀和金属蒸发剥离,在n+接触层上制作前电极。Step 7: Fabricate the front electrode on the n + contact layer by photolithography, etching and metal evaporation stripping.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明设计的纳米孔阵列结构太阳能电池兼顾晶硅的机械稳定性和硅纳米结构的陷光吸收特性,同时具有多边形对称排列的纳米孔阵列结构具有良好的聚光效应,因此将具有更加良好的电池效率和性能。1. The nanohole array structure solar cell designed by the present invention takes into account both the mechanical stability of crystalline silicon and the light trapping and absorption characteristics of silicon nanostructures, and at the same time, the nanohole array structure with polygonal symmetrical arrangement has a good light concentrating effect, so it will have more Good battery efficiency and performance.
2、本发明采用的金属催化诱导的湿法腐蚀工艺制备硅纳米孔阵列,步骤简单,易于大面积制备规则的纳米孔阵列,对硅材料损伤小,制作成本低,步骤简单,效率高。2. The metal catalysis-induced wet etching process used in the present invention to prepare silicon nanopore arrays has simple steps, is easy to prepare regular nanopore arrays in large areas, has little damage to silicon materials, low manufacturing cost, simple steps and high efficiency.
综上所述,本发明提供的这种制备硅基纳米柱阵列的方法,与传统制备方法相比,具有上述明显的有益效果。上述诸多的优点及实用价值,在技术上有较大的进步,并产生了好用及实用的效果,从而更加适于实用。In summary, the method for preparing silicon-based nanopillar arrays provided by the present invention has the above-mentioned obvious beneficial effects compared with the traditional preparation methods. The advantages and practical values mentioned above have made great progress in technology, and have produced easy-to-use and practical effects, so that they are more suitable for practical use.
附图说明 Description of drawings
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图详细说明如后,其中:In order to make the purpose, technical solutions and advantages of the present invention clearer, the following will be described in detail with reference to the accompanying drawings in conjunction with specific embodiments, wherein:
图1为聚光硅基纳米孔阵列结构太阳能电池的结构示意图;Fig. 1 is a structural schematic diagram of a light concentrating silicon-based nanohole array structure solar cell;
图2为本发明提供的制备聚光硅基纳米孔阵列结构太阳能电池的流程图;Fig. 2 is the flow chart of preparing light-gathering silicon-based nanohole array structure solar cell provided by the present invention;
图3为聚光硅基纳米孔阵列结构示意图;Figure 3 is a schematic diagram of the structure of the light-gathering silicon-based nanohole array;
具体实施方式 Detailed ways
请参阅图1所示,本发明提供一种聚光硅纳米孔阵列结构太阳能电池,包括:Please refer to Fig. 1, the present invention provides a solar cell with a light concentrating silicon nanohole array structure, including:
一Al/Si合金背电极101;An Al/Si alloy
一p+背接触层102,位于Al/Si合金背电极101的上面;A p +
一p型晶硅材料层103,位于p+背接触层102的上面;A p-type crystalline
一n+接触层104,位于p型晶硅材料层103的上面,该n+接触层104的上面开有硅纳米孔阵列105,该硅纳米孔阵列105的孔贯穿n+接触层104,该n+接触层104的厚度为100-1000nm,该硅纳米孔阵列105的孔按多边形对称点阵结构周期排列,硅纳米孔阵列105孔的孔径为100nm-800nm,周期数为3-5倍的孔径;An n + contact layer 104 is located on the p-type crystalline
一SiO2钝化层106,位于开有硅纳米孔阵列105的n+接触层104的表面;A SiO2
一前电极107,横竖交叉形成于n+接触层104上,该前电极107的材料为Ti/Pd/Ag多层金属指状电极、ITO透明电极或石墨烯透明电极。A
请参阅图2并结合参阅图1和图3,本发明还提供一种聚光硅纳米孔阵列结构太阳能电池的制备方法,包括如下步骤:Please refer to Fig. 2 and refer to Fig. 1 and Fig. 3 in combination, the present invention also provides a method for preparing a light-gathering silicon nanohole array structure solar cell, comprising the following steps:
步骤201:在p型晶硅材料层103上表面形成制备一层n+接触层104,形成pn+结结构,所述pn+结结构采用离子注入法或扩散法形成;Step 201: forming and preparing an n + contact layer 104 on the upper surface of the p-type crystalline
步骤202:在p型晶硅材料层103下表面形成p+背接触层102;Step 202: forming a p +
步骤203:在n+接触层104上表面上光刻出硅纳米孔阵列105的光刻胶图形,该硅纳米孔阵列105的孔按多边形对称点阵结构周期排列,如图3所示六边形301,八边形302或十边形303等,硅纳米孔阵列105孔的孔径为100nm-800nm,周期数为3-5倍的孔径,该硅纳米孔阵列105的周期孔阵图形采用纳米压印技术、DUV光刻、飞秒激光无掩膜光刻或电子束光刻制作形成;Step 203: On the upper surface of the n + contact layer 104, a photoresist pattern of the
步骤204:将Ag金属填充于硅纳米孔阵列105的光刻胶图形内,通过诱导腐蚀的方法形成硅纳米孔阵列105,该硅纳米孔阵列105的孔贯穿n+接触层104,该n+接触层104的厚度为100-1000nm,所述Ag金属点阵诱导腐蚀硅材料过程如下:(a)采用HF∶AgNO3混合液在聚光结构周期孔阵图形中沉积一层均匀的Ag颗粒;(b)再用HF∶H2O2混合液在Ag的诱导下各向异性刻蚀出孔洞,去离子水终止刻蚀;(c)然后用HNO3∶H2O去除Ag颗粒,去离子水冲洗;Step 204: Fill Ag metal in the photoresist pattern of the
步骤205:在位于开有硅纳米孔阵列105的n+接触层104的表面,淀积SiO2钝化层106;Step 205: Deposit a SiO2
步骤206:在p+背接触层102下表面制作Al/Si合金背电极101,合金温度为450℃;Step 206: Fabricate an Al/Si
步骤207:通过光刻、腐蚀和金属蒸发剥离,在n+接触层104上制作前电极107,该前电极107的材料为Ti/Pd/Ag多层金属指状电极、ITO透明电极或石墨烯透明电极,该电极通过退火与n+接触层104形成欧姆接触。Step 207: Through photolithography, corrosion and metal evaporation stripping, fabricate the
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110435947.1A CN102610665B (en) | 2011-12-22 | 2011-12-22 | Silicon nanoporous array structured concentrator solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110435947.1A CN102610665B (en) | 2011-12-22 | 2011-12-22 | Silicon nanoporous array structured concentrator solar cell and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102610665A true CN102610665A (en) | 2012-07-25 |
CN102610665B CN102610665B (en) | 2014-04-09 |
Family
ID=46527922
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110435947.1A Expired - Fee Related CN102610665B (en) | 2011-12-22 | 2011-12-22 | Silicon nanoporous array structured concentrator solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102610665B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219411A (en) * | 2013-04-09 | 2013-07-24 | 中国科学院半导体研究所 | Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method |
CN103390657A (en) * | 2013-07-22 | 2013-11-13 | 中国科学院高能物理研究所 | Selective grid of silicon nanometer column array photocell and preparation method of selective grid |
CN105206705A (en) * | 2015-08-18 | 2015-12-30 | 广东爱康太阳能科技有限公司 | Low reflectivity solar crystalline silicon cell and manufacturing method thereof |
CN106129185A (en) * | 2016-08-24 | 2016-11-16 | 常州天合光能有限公司 | Laser ablation electrically conducting transparent film preparation phasmon strengthens crystal silicon solar battery method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488532A (en) * | 2008-01-16 | 2009-07-22 | 财团法人工业技术研究院 | Back electrode module of solar cell |
CN101990713A (en) * | 2008-02-03 | 2011-03-23 | 尼坦能源公司 | Thin-film photovoltaic devices and related manufacturing methods |
CN102097497A (en) * | 2010-12-27 | 2011-06-15 | 重庆大学 | Solar cell with high conversion efficiency |
US20110146774A1 (en) * | 2008-08-11 | 2011-06-23 | Korea Research Institute Of Standards And Science | Solar Cell Having Quantum Dot Nanowire Array and the Fabrication Method Thereof |
-
2011
- 2011-12-22 CN CN201110435947.1A patent/CN102610665B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101488532A (en) * | 2008-01-16 | 2009-07-22 | 财团法人工业技术研究院 | Back electrode module of solar cell |
CN101990713A (en) * | 2008-02-03 | 2011-03-23 | 尼坦能源公司 | Thin-film photovoltaic devices and related manufacturing methods |
US20110146774A1 (en) * | 2008-08-11 | 2011-06-23 | Korea Research Institute Of Standards And Science | Solar Cell Having Quantum Dot Nanowire Array and the Fabrication Method Thereof |
CN102097497A (en) * | 2010-12-27 | 2011-06-15 | 重庆大学 | Solar cell with high conversion efficiency |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103219411A (en) * | 2013-04-09 | 2013-07-24 | 中国科学院半导体研究所 | Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method |
CN103390657A (en) * | 2013-07-22 | 2013-11-13 | 中国科学院高能物理研究所 | Selective grid of silicon nanometer column array photocell and preparation method of selective grid |
CN103390657B (en) * | 2013-07-22 | 2016-03-30 | 中国科学院高能物理研究所 | Photronic selectivity grid of a kind of silicon nano column array and preparation method thereof |
CN105206705A (en) * | 2015-08-18 | 2015-12-30 | 广东爱康太阳能科技有限公司 | Low reflectivity solar crystalline silicon cell and manufacturing method thereof |
CN106129185A (en) * | 2016-08-24 | 2016-11-16 | 常州天合光能有限公司 | Laser ablation electrically conducting transparent film preparation phasmon strengthens crystal silicon solar battery method |
Also Published As
Publication number | Publication date |
---|---|
CN102610665B (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Realizing high-efficiency omnidirectional n-type Si solar cells via the hierarchical architecture concept with radial junctions | |
TW201001729A (en) | Photovoltaic cell and methods for producing a photovoltaic cell | |
JP2010258456A (en) | Silicon substrate having periodic structure | |
CN102110724B (en) | Solar cell having double-sided micro/nano composite structure and preparation method thereof | |
TW201135949A (en) | Holey electrode grids for photovoltaic cells with subwavelength and superwavelength feature sizes | |
CN105826411A (en) | Mono-crystalline silicon double-sided solar cell and preparation method thereof | |
TW201214724A (en) | A solar cell apparatus having the transparent conducting layer with the periodic structure | |
CN104201227A (en) | Silicon solar cell and preparation method thereof | |
CN103258909B (en) | The preparation method of hull cell and hull cell | |
CN102097497A (en) | Solar cell with high conversion efficiency | |
JP2010219407A (en) | Solar cell equipped with electrode having mesh structure, and manufacturing method of the same | |
WO2012055302A1 (en) | Electrode and manufacturing method thereof | |
CN102184975A (en) | Thin film solar cell with improved photoelectric conversion efficiency and manufacturing method thereof | |
CN102254963A (en) | Graphene/silicon pillar array Schottky junction photovoltaic cell and manufacturing method thereof | |
CN102610665B (en) | Silicon nanoporous array structured concentrator solar cell and preparation method thereof | |
CN107104165A (en) | One kind is based on graphene silicon inverted pyramid array Schottky photovoltaic cell manufacture method | |
CN104051580A (en) | Silicon solar cell and its preparation method | |
CN102903775A (en) | Crystalline silicon solar cell structure and manufacturing method for light concentration and laser energy delivery | |
CN108321221B (en) | Graphene solar cell with microcavity structure and preparation method thereof | |
WO2015113317A1 (en) | Photovoltaic conversion structure, solar battery applying same and method for manufacturing same | |
CN104485367A (en) | Micro-nano structure capable of improving properties of HIT solar cells and preparation method of micro-nano structure | |
CN102368506A (en) | n-zinc oxide/p-silica nanowire three-dimensional heterojunction solar energy conversion equipment | |
CN103219411A (en) | Solar battery with composite light-trapping structure of nanopores and metal particles and preparation method | |
CN204315603U (en) | A kind of polished backside crystal silicon solar batteries | |
CN110416342A (en) | A kind of HJT battery based on metal nanoparticle and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140409 Termination date: 20141222 |
|
EXPY | Termination of patent right or utility model |