CN102594118A - 一种升压型pfc控制器 - Google Patents

一种升压型pfc控制器 Download PDF

Info

Publication number
CN102594118A
CN102594118A CN2012100484265A CN201210048426A CN102594118A CN 102594118 A CN102594118 A CN 102594118A CN 2012100484265 A CN2012100484265 A CN 2012100484265A CN 201210048426 A CN201210048426 A CN 201210048426A CN 102594118 A CN102594118 A CN 102594118A
Authority
CN
China
Prior art keywords
control signal
signal
power switch
circuit
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100484265A
Other languages
English (en)
Other versions
CN102594118B (zh
Inventor
赵晨
姚杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Silergy Semiconductor Technology Ltd
Silergy Corp
Original Assignee
Hangzhou Silergy Semiconductor Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Silergy Semiconductor Technology Ltd filed Critical Hangzhou Silergy Semiconductor Technology Ltd
Priority to CN201210048426.5A priority Critical patent/CN102594118B/zh
Publication of CN102594118A publication Critical patent/CN102594118A/zh
Priority to TW101145989A priority patent/TWI573376B/zh
Priority to US13/760,246 priority patent/US9054597B2/en
Application granted granted Critical
Publication of CN102594118B publication Critical patent/CN102594118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

依据本发明的一种升压型PFC控制器,通过导通信号发生电路和关断信号发生电路来控制功率开关管的导通和关断,从而控制功率开关管以恒频或变频方式工作。通过内部的控制电路而无需内置时钟信号即可实现功率开关管定频工作或抖频工作,降低了EMI滤波器的设计难度。另外,本发明通过输入电压前馈电路实现输出电压反馈变量与输入功率相关而与输入电压无关,有利于全球电网电压输入设计要求。

Description

一种升压型PFC控制器
技术领域
本发明涉及功率因数校正领域,更具体的说,涉及一种升压型PFC控制器。
背景技术
为了减少电力电子装置对电网造成的谐波污染,通常在其输入侧加入功率因数校正(PFC)电路。目前常采用有源功率因数校正电路来将电力电子装置的输入电流变换为与输入电压同相位的正弦波,以提高电力电子装置的功率因数,从而减少谐波污染,目前有源PFC电路常采用升压型PFC电路拓扑结构。在大功率应用场合,连续导电模式(CCM)的升压型PFC电路更具有吸引力,下面参考图1对典型的CCM升压型PFC电路的进行阐述。
参考图1,所示为典型的CCM升压型PFC电路图,其包括一功率级电路和控制电路。所述功率级电路包括电感L、功率开关管SM、二极管D、输入电容Cin和输出电容Cout,其构成一升压型电路拓扑结构。所述控制电路采用电流环和电压环的平均电流控制模式。电感电流采样电路检测到电感电流,并进以平均化处理,得到表征电感电流平均值的采样电压信号Vsen,该采样电压信号Vsen被传输到误差放大器W1的反相输入端,误差放大器W1的同相输入端接收乘法器输出的参考信号Vr,乘法器的两个输入端分别接收输出电压反馈变量Vc和经整流后的输入电压Vg。误差放大器W1对接收到的采样电压信号Vsen和参考信号Vr进行比较和放大处理后,产生一误差信号Ve。PWM控制电路将所述误差信号Ve与一锯齿波信号进行比较,产生控制功率开关管SM的导通和关断的信号,以调整输入电流的波形跟随输入电压波形变化,进而达到功率因数校正的目的。
在这种传统的CCM升压型PFC电路的PWM控制电路中,需内置一振荡器,以产生固定时钟频率的锯齿波信号,因此功率开关管SM恒定的开关频率由内置的时钟信号决定的;为了方便EMI测试,一般时钟信号发生电路需要采用抖频设计以隔离更宽频率范围内的噪声。
发明内容
有鉴于此,本发明的目的在于提供一种新型的升压型PFC控制器,所述PFC控制器无需内部时钟信号即可控制所述功率开关管的开关频率,可根据实际需要实现恒频工作或变频工作。
依据本发明一实施例的一种升压型PFC控制器,应用于一交/直流变换器,包括:关断信号发生电路、导通信号发生电路和逻辑控制电路;其中,
所述关断信号发生电路接收一表征电感电流的第一采样信号,并将所述第一采样信号与一第一控制信号进行比较,所述第一控制信号由所述交/直流变换器经整流后的直流输入电压以及输出电压反馈变量控制;在所述交/直流变换器中功率开关管的导通时间内,所述第一采样信号持续上升,当所述第一采样信号上升到所述第一控制信号时,产生关断信号;
所述导通信号发生电路将一第二控制信号和一第三控制信号进行比较,所述第二控制信号与所述功率开关管的关断时间呈正比例关系,其比例系数为第一比例系数;所述第三控制信号与所述功率开关管的关断时间和开关周期的比值呈正比例关系,比例系数为第二比例系数;所述第二控制信号在所述功率开关管的关断时间内持续上升,当上升到所述第三控制信号时,产生导通信号;
所述逻辑控制电路分别与所述导通信号发生电路和所述关断信号发生电路连接,当所述导通信号有效时,控制所述功率开关管导通;当所述关断信号有效时,控制所述功率开关管关断。
优选的,所述第二比例系数与所述第一比例系数的比值恒定,以保证所述功率开关管的开关周期恒定。
优选的,所述第二比例系数与所述第一比例系数的比值是可调节的,以使所述功率开关管的开关周期是变化的。
进一步的,包括输出电压反馈回路,其接收所述交/直流变换器的输出电压,以获得所述输出电压反馈变量,所述输出电压反馈变量控制所述第一控制信号,从而保证所述输出电压维持恒定。
进一步的,包括功率前馈电路,其接收经整流后的直流输入电压,并进行峰值检测,以产生峰值电压信号;所述直流输入电压与所述输出电压反馈变量相乘后,其与所述峰值电压信号平方的比值作为所述第一控制信号,以保证所述输出电压反馈变量与所述交/直流变换器的输入功率呈正比例关系。
优选的,所述关断信号发生电路包括电感电流采样电路、乘法器和第一比较电路,其中,
所述电感电流采样电路用以采样流过所述交/直流变换器中电感的电流,并产生所述第一采样信号;
所述乘法器接收所述直流输入电压以及输出电压反馈变量进行乘积运算后,其输出信号作为所述第一控制信号;
所述第一比较电路分别接收所述第一控制信号和所述第一采样信号;
当所述功率开关管处于导通状态时,所述第一采样信号持续上升,当所述第一采样信号上升到所述第一控制信号时,所述第一比较电路输出所述关断信号。
优选的,所述导通信号发生电路包括第二控制信号发生电路、第三控制信号发生电路和第二比较电路;其中,
所述第二控制信号发生电路包括第一电流源,第一充电电容和第一开关;其中,所述第一开关的第一端、所述第一充电电容的第一端连接至所述第一电流源的第一端;所述第一开关的第二端、所述第一充电电容的第二端和所述第一电流源的第二端连接至地;所述第一开关的开关状态与所述功率开关管的开关状态相同;所述第一充电电容的第一端处的电压信号作为所述第二控制信号;所述第一比例系数为所述第一电流源的电流值和所述第一充电电容的电容值之间的比值;
所述第三控制信号发生电路包括一平均值电路,其分别接收第一电压源、所述功率开关管的导通信号和关断信号,以产生所述第三控制信号;所述第二比例系数为所述第一电压源的电压值;
第二比较电路两端分别接收所述第二控制信号和第三控制信号,当所述第一开关处于关断状态时,所述第二控制信号持续上升,当所述第二控制信号上升到所述第三控制信号时,所述第二比较电路输出所述导通信号。
优选的,所述第一电压源为恒压源,所述第一电流源为恒流源,以保证所述功率开关管的开关周期恒定。
优选的,所述第一电压源是可调节的或者所述第一电流源是可调节的,以使得所述功率开关管的开关周期是变化的。
优选的,所述逻辑控制电路包括一RS触发器,所述RS触发器的复位端与所述导通信号发生电路连接,置位端与所述关断信号发生电路连接,输出端输出的开关控制信号用以控制所述功率开关管的开关动作。
依照本发明的一种升压型PFC控制器,通过内部的控制电路而无需内置时钟信号即可实现功率开关管定频工作或是抖频工作,降低了EMI滤波器的设计难度。另外,本发明通过输入电压前馈电路实现输出电压反馈变量与输入功率相关而与输入电压无关,有利于全球电网电压输入设计要求。
附图说明
图1所示为现有的CCM升压型PFC电路图;
图2所示为依据本发明的一种升压型PFC控制器的第一实施例的原理框图;
图3所示为依据本发明的一种升压型PFC控制器的第二实施例的原理框图;
图4所示为图3所示PFC控制器的关断信号发生电路的工作波形图。
图5所示为依据本发明的一种升压型PFC控制器的第三实施例的原理框图。
具体实施方式
以下结合附图对本发明的优选实施例进行详细描述,但本发明并不仅仅限于这些实施例。本发明涵盖任何在本发明的精髓和范围上做的替代、修改、等效方法以及方案。为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。
本发明中所述的一种升压型PFC控制器应用于交/直流变换器中,所述交/直流变换器还包括一功率级电路,其在背景技术中已作介绍,下述各个实施例中的功率级电路中的各元件与背景技术中均相同。
参考图2,所示为依据本发明的一种升压型PFC控制器的第一实施例的原理框图,所述升压型PFC控制器包括关断信号发生电路201、导通信号发生电路202和逻辑控制电路203;所述功率开关管的一个开关周期包括导通时间TON和关断时间TOFF;其中,
所述关断信号发生电路201接收一表征电感电流IL的第一采样信号,并将所述第一采样信号与一第一控制信号进行比较,所述第一控制信号由所述交/直流变换器经整流后的直流输入电压Vg以及输出电压反馈变量Vc控制;在所述交/直流变换器中功率开关管SM的导通时间内,所述第一采样信号持续上升,当其上升到所述第一控制信号时,产生关断信号OFF;
所述导通信号发生电路202将一第二控制信号和一第三控制信号进行比较,所述第二控制信号与所述功率开关管SM的关断时间TOFF呈正比例关系,其比例系数为第一比例系数;所述第三控制信号与所述功率开关管SM的关断时间TOFF和开关周期Ts的比值呈正比例关系,比例系数为第二比例系数;所述第二控制信号在所述功率开关管SM的关断时间内持续上升,当上升到所述第三控制信号时,产生导通信号ON;
所述逻辑控制电路203分别与所述导通信号发生电路202和所述关断信号发生电路201连接,当所述导通信号ON有效时,控制所述功率开关管SM导通;当所述关断信号OFF有效时,控制所述功率开关管SM关断。
从上述可以看出,所述导通信号发生电路主要用于控制功率开关管的关断持续时间,所述关断信号发生电路主要用于控制功率开关管的导通持续时间,并且,在此过程中,若所述第二比例系数与所述第一比例系数的比值恒定,则所述功率开关管的开关周期维持恒定;若所述第二比例系数与所述第一比例系数的比值是可调节的,则所述功率开关管的开关周期是变化的。
从图2所示的实施例可以看出,采用依据本发明的升压型PFC控制器,通过内部的控制电路而无需内置时钟信号即可实现功率开关管定频工作或抖频工作,降低了EMI滤波器的设计难度。
参考图3,所示为依据本发明的一种升压型PFC控制器的第二实施例的原理框图。在图2所示实施例的基础上,本实施例具体描述了关断信号发生电路201、导通信号发生电路202和逻辑控制电路203的一种实现方法,并进一步包括输出电压反馈回路301。
所述输出电压反馈回路301接收所述交/直流变换器的输出电压Vout,以获得所述输出电压反馈变量Vc,所述输出电压反馈变量Vc控制所述第一控制信号Vctr1,从而保证所述输出电压Vout维持恒定。
所述关断信号发生电路包括电感电流采样电路302、乘法器303和第一比较电路,其中,所述电感电流采样电路302用以采样流过所述交/直流变换器中电感的电流IL,并产生所述第一采样信号Vsen;具体应用中,所述电感电流采样电路302可以通过采样电阻对采样的电流信号进行平均化处理,以形成表征电感电流平均值的第一采样信号Vsen
所述乘法器303接收所述直流输入电压Vg和输出电压反馈变量Vc进行乘积运算,其输出信号作为所述第一控制信号Vctr1,即Vctr1=VgVc
所述第一比较电路包括比较器304,其同相输入端接收所述第一采样信号Vsen,其反相输入端接收所述第一控制信号Vctr1,以输出所述关断信号OFF。
所述导通信号发生电路包括第二控制信号发生电路305、第三控制信号发生电路306和第二比较电路;其中,
所述第二控制信号发生电路305包括第一电流源Iref1,第一充电电容C1和第一开关S1;其中,所述第一开关S1的第一端、所述第一充电电容C1的第一端连接至所述第一电流源Iref1的第一端;所述第一开关S1的第二端、所述第一充电电容C1的第二端和所述第一电流源Iref1的第二端连接至地;所述第一开关的开关状态S1与所述功率开关管SM的开关状态相同;所述第一充电电容C1的第一端处的电压信号作为所述第二控制信号Vctr2
所述第三控制信号发生电路306包括一平均值电路,其分别接收第一电压源Vref1、所述功率开关管的导通信号和关断信号,以产生所述第三控制信号Vctr3。在本实施例中,所述平均值电路包括串联连接的第二开关S2和第三开关S3,以及由第一电阻R1和第二电容C2组成的RC滤波电路;其中,
所述第二开关S2的第一端接收所述第一电压源Vref1,所述第三开关S3的第二端接地;所述第一电阻R1的一端连接至所述第二开关S2和第三开关S3的公共连接点,另一端与所述第二电容C2串联后接地。其中,所述第二开关S2的开关状态与所述功率开关管SM的开关状态相反,所述第三开关S3的开关状态与所述功率开关管SM的开关状态相同。所述第二电容C2上的电压作为所述第三控制信号Vctr3
所述第二比较电路包括比较器307,其同相输入端接收所述第二控制信号Vctr2,其反相输入端接收所述第三控制信号Vctr3,输出端输出所述导通信号ON。
所述逻辑控制电路包括RS触发器308,其复位端R端与所述导通信号发生电路连接,接收所述导通信号ON,其置位端S端与所述关断信号发生电路连接,接收所述关断信号OFF,其反相输出端即
Figure BDA0000139301660000071
端与所述功率开关管SM的控制端连接,其输出信号用以控制所述功率开关管SM的开关动作。
下面结合该实施例中各电路的功能以详细说明所述PFC控制器的工作过程和工作原理,其具体工作过程为:
当所述功率开关管SM处于关断状态时,由于所述第一开关S1、第三开关S3的开关状态与所述功率开关管SM的开关状态相同;所述第二开关S2的开关状态与所述功率开关管SM的开关状态相反,所述第一开关S1和第三开关S3同时保持关断状态,所述第二开关S2保持导通状态。
此时,所述第一电压源Iref1开始对所述第一充电电容C1的进行充电,所述第二控制信号Vctr2持续上升,其数值由下式决定:
V ctr 2 = T OFF I ref 1 C 1 - - - ( 1 )
由式(1)可知,所述第二控制信号Vctr2与所述功率开关管SM的关断时间TOFF呈正比例关系,其比例系数为第一比例系数K1;所述第一比例系数K1为所述第一电流源Iref1的电流值和所述第一充电电容C1的电容值之间的比值,即 K 1 = I ref 1 C 1 .
所述第一电压源Vref1经所述第二开关S2和第三开关S3斩波后再经RC滤波电路进行平均化处理,得到所述第三控制信号Vctr3,则所述第三控制信号Vctr3由下式决定:
V ctr 3 = V ref 1 T OFF T s - - - ( 2 )
由式(2)可知,所述第三控制信号Vctr3与所述功率开关管SM的关断时间TOFF和开关周期Ts的比值呈正比例关系,比例系数为第二比例系数K2;所述第二比例系数K2为所述第一电压源的电压值Vref1
当所述第二控制信号Vctr2上升至所述第三控制信号Vctr3时,所述比较器307输出所述导通信号ON,所述RS触发器308接收所述导通信号ON进行复位动作,其端输出高电平控制控制所述功率开关管SM导通,此时,有下式成立:
V ref 1 = T OFF T s = T OFF I ref 1 C 1 - - - ( 3 )
由此推导出所述功率开关管SM的开关周期Ts为:
T s = V ref 1 C 1 I ref 1 - - - ( 4 )
由式(4)可以得到这样的推论,所述功率开关管SM的开关周期Ts为所述第二比例系数与所述第一比例系数的比值,可通过调节所述第二比例系数与所述第一比例系数的比值为恒定或变化,以保证所述功率开关管的开关周期恒定或变化。在实际应用中,需要所述功率开关管SM的开关周期Ts恒定时,可选择所述第一电压源为恒压源,所述第一电流源为恒流源;当需要所述功率开关管SM的开关周期Ts是变化的时,可选择所述第一电压源为可调节电压源或者所述第一电流源为可调节电流源。
当所述功率开关管SM处于导通状态时,所述第一开关S1和第三开关S3同时保持导通状态,所述第二开关S2保持关断状态。此时,所述第二电容C2通过第三开关S3放电;由于第一开关S1导通,所述第一电流源Iref1无法对第一充电电容C1充电,因此,所述导通信号发生电路处于无效工作状态,而所述关断信号发生电路的工作波形图如图4所示。
如图4所示,在所述功率开关管SM处于导通状态时,所述第一采样信号Vsen持续上升,当所述第一采样信号Vsen上升到所述第一控制信号Vctr1时,所述比较器304输出所述关断信号OFF,所述RS触发器307接收所述关断信号OFF进行置位动作,其
Figure BDA0000139301660000091
端输出低电平控制控制所述功率开关管SM关断。
下面讨论依据本发明的实施例中实现功率因数校正的过程:所述第一采样信号Vsen可以表示为ILRs,IL电感电流,Rs为电感电流采样电路302中采样电阻的等效阻值,而所述第一控制信号Vctr1可以表示为Vctr1=VgVc,当所述第一采样信号Vsen上升到所述第一控制信号Vctr1时,即Vsen=Vctr1,可以推导出下列关系:
I L = V g V c R s - - - ( 5 )
当升压型PFC电路工作为CCM模式时,其输入阻抗Zin
Figure BDA0000139301660000093
其中
Vg和IL分别为所述直流输入电压和电感电流,将式(5)带入此式,可以推出:
Z in = R s V c - - - ( 6 )
由于输出电压反馈电路瞬态响应较慢,因此,可认为输出电压反馈变量Vc在一个电网周期内保持不变,由此可得到输入阻抗Zin为一恒定常数,因此可得出输入电流与输入电压同波形、同相位,从而完成了功率因数校正的过程。
需要说明的是,依据本发明的实施例中导通信号发生电路和关断信号发生制电路的实现形式并不限于图3所示的电路结构图,能够实现对所述功率开关管相应的控制功能的电路结构均落在本发明的保护范围内。
从式(6)可得到图3所述实施例中交/直流变换器的平均输入功率Pin为:
P in = V g 2 Z in = V g 2 V c R s - - - ( 7 )
从式(7)可以看出,此时,虽然整个PFC控制电路实现了功率因数校正功能,但所述输出电压反馈变量Vc与所述交/直流变换器的输入功率Pin以及所述直流输入电压Vg均相关。为使所述输出电压反馈变量Vc只和输入功率Pin变化有关,而与电路输入电压无关,可在图3所示实施例的基础上加入一功率前馈电路,其原理框图如图5所示。
所述升压型PFC控制器进一步包括功率前馈电路,其接收经整流后的直流输入电压Vg,并进行峰值检测,以产生峰值电压信号Vgpk;所述直流输入电压Vg与所述输出电压反馈变量Vc相乘后,其与所述峰值电压信号Vgpk平方的比值作为所述第一控制信号Vctr1,即
Figure BDA0000139301660000101
当所述第一采样信号Vsen上升到所述第一控制信号Vctr1时,可以推导出下列关系:
I L = V g V c V gpk 2 R s - - - ( 8 )
此时所述升压型PFC电路工作的输入阻抗Zin为:
Z in = V g I L = V gpk 2 R s V c - - - ( 9 )
式(9)中所述峰值电压信号Vgpk在给定电网电压条件下为一恒值,所述输出电压反馈变量Vc在一个电网周期内保持不变,由此可得到输入阻抗Zin为一恒定常数,因此可得出输入电流与输入电压同波形、同相位,从而完成了功率因数校正的过程。
由式(9)可得到电路的平均输入功率为:
P in = V g 2 Z in = V g 2 V c V gpk 2 R s - - - ( 10 )
式(10)中(Vg)2和(Vpk)2的比值在给定电网电压条件下为定值,因此,所述交/直流变换器的输入功率与所述输出电压反馈变量Vc呈正比例关系,并且,从式(10)中还可以看出,所述输出电压反馈变量Vc只和输入功率Pin变化有关,与输入电压无关。
综上,依据本发明的PFC控制器无需内置振荡器产生时钟信号,通过内部的控制电路即可控制功率开关管的开关频率,同时也达到了功率因数校正的目的。在需要对交/直流变换器进行电磁干扰测试的场合,希望功率开关管的开关频率在一小范围内漂移从而使谐波干扰能量比较分散,即实现抖频。相比于现有的开关频率抖动控制技术,依据本发明的方案能根据具体情况调节第一电压源和第一电流源的数值,从而非常方便地实现抖频,从而降低输入EMI滤波器的设计难度,满足变换器对电磁干扰测试的要求。另外,本发明通过输入电压前馈电路实现输出电压反馈变量与输入功率相关而与输入电压无关,有利于全球电网电压输入设计要求。
依照本发明的实施例如上文所述,这些实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施例。显然,根据以上描述,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明以及在本发明基础上的修改使用。本发明仅受权利要求书及其全部范围和等效物的限制。

Claims (10)

1.一种升压型PFC控制器,应用于一交/直流变换器,包括:关断信号发生电路、导通信号发生电路和逻辑控制电路;其中,
所述关断信号发生电路接收一表征电感电流的第一采样信号,并将所述第一采样信号与一第一控制信号进行比较,所述第一控制信号由所述交/直流变换器经整流后的直流输入电压以及输出电压反馈变量控制;在所述交/直流变换器中功率开关管的导通时间内,所述第一采样信号持续上升,当所述第一采样信号上升到所述第一控制信号时,产生关断信号;
所述导通信号发生电路将一第二控制信号和一第三控制信号进行比较,所述第二控制信号与所述功率开关管的关断时间呈正比例关系,其比例系数为第一比例系数;所述第三控制信号与所述功率开关管的关断时间和开关周期的比值呈正比例关系,比例系数为第二比例系数;所述第二控制信号在所述功率开关管的关断时间内持续上升,当上升到所述第三控制信号时,产生导通信号;
所述逻辑控制电路分别与所述导通信号发生电路和所述关断信号发生电路连接,当所述导通信号有效时,控制所述功率开关管导通;当所述关断信号有效时,控制所述功率开关管关断。
2.根据权利要求1所述的升压型PFC控制器,其特征在于,所述第二比例系数与所述第一比例系数的比值恒定,以保证所述功率开关管的开关周期恒定。
3.根据权利要求1所述的升压型PFC控制器,其特征在于,所述第二比例系数与所述第一比例系数的比值是可调节的,以使所述功率开关管的开关周期是变化的。
4.根据权利要求1所述的升压型PFC控制器,其特征在于,进一步包括输出电压反馈回路,其接收所述交/直流变换器的输出电压,以获得所述输出电压反馈变量,所述输出电压反馈变量控制所述第一控制信号,从而保证所述输出电压维持恒定。
5.根据权利要求1所述的升压型PFC控制器,其特征在于,进一步包括功率前馈电路,其接收经整流后的直流输入电压,并进行峰值检测,以产生峰值电压信号;所述直流输入电压与所述输出电压反馈变量相乘后,其与所述峰值电压信号平方的比值作为所述第一控制信号,以保证所述输出电压反馈变量与所述交/直流变换器的输入功率呈正比例关系。
6.根据权利要求1所述的升压型PFC控制器,其特征在于,所述关断信号发生电路包括电感电流采样电路、乘法器和第一比较电路,其中,
所述电感电流采样电路用以采样流过所述交/直流变换器中电感的电流,并产生所述第一采样信号;
所述乘法器接收所述直流输入电压以及输出电压反馈变量进行乘积运算后,其输出信号作为所述第一控制信号;
所述第一比较电路分别接收所述第一控制信号和所述第一采样信号;
当所述功率开关管处于导通状态时,所述第一采样信号持续上升,当所述第一采样信号上升到所述第一控制信号时,所述第一比较电路输出所述关断信号。
7.根据权利要求1所述的升压型PFC控制器,其特征在于,所述导通信号发生电路包括第二控制信号发生电路、第三控制信号发生电路和第二比较电路;其中,
所述第二控制信号发生电路包括第一电流源,第一充电电容和第一开关;其中,所述第一开关的第一端、所述第一充电电容的第一端连接至所述第一电流源的第一端;所述第一开关的第二端、所述第一充电电容的第二端和所述第一电流源的第二端连接至地;所述第一开关的开关状态与所述功率开关管的开关状态相同;所述第一充电电容的第一端处的电压信号作为所述第二控制信号;所述第一比例系数为所述第一电流源的电流值和所述第一充电电容的电容值之间的比值;
所述第三控制信号发生电路包括一平均值电路,其分别接收第一电压源、所述功率开关管的导通信号和关断信号,以产生所述第三控制信号;所述第二比例系数为所述第一电压源的电压值;
第二比较电路两端分别接收所述第二控制信号和第三控制信号,当所述第一开关处于关断状态时,所述第二控制信号持续上升,当所述第二控制信号上升到所述第三控制信号时,所述第二比较电路输出所述导通信号。
8.根据权利要求7所述的升压型PFC控制器,其特征在于,所述第一电压源为恒压源,所述第一电流源为恒流源,以保证所述功率开关管的开关周期恒定。
9.根据权利要求7所述的升压型PFC控制器,其特征在于,所述第一电压源是可调节的或者所述第一电流源是可调节的,以使得所述功率开关管的开关周期是变化的。
10.根据权利要求1所述的升压型PFC控制器,其特征在于,所述逻辑控制电路包括一RS触发器,所述RS触发器的复位端与所述导通信号发生电路连接,置位端与所述关断信号发生电路连接,输出端输出的开关控制信号用以控制所述功率开关管的开关动作。
CN201210048426.5A 2012-02-29 2012-02-29 一种升压型pfc控制器 Active CN102594118B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201210048426.5A CN102594118B (zh) 2012-02-29 2012-02-29 一种升压型pfc控制器
TW101145989A TWI573376B (zh) 2012-02-29 2012-12-06 Boost PFC controller
US13/760,246 US9054597B2 (en) 2012-02-29 2013-02-06 Boost PFC controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210048426.5A CN102594118B (zh) 2012-02-29 2012-02-29 一种升压型pfc控制器

Publications (2)

Publication Number Publication Date
CN102594118A true CN102594118A (zh) 2012-07-18
CN102594118B CN102594118B (zh) 2014-06-25

Family

ID=46482416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210048426.5A Active CN102594118B (zh) 2012-02-29 2012-02-29 一种升压型pfc控制器

Country Status (3)

Country Link
US (1) US9054597B2 (zh)
CN (1) CN102594118B (zh)
TW (1) TWI573376B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051170A (zh) * 2012-12-28 2013-04-17 上海贝岭股份有限公司 音频噪声消除电路
CN103066827A (zh) * 2012-12-28 2013-04-24 杭州士兰微电子股份有限公司 功率因数校正电路及其输入前馈补偿电路
CN103595239A (zh) * 2012-08-15 2014-02-19 珠海格力电器股份有限公司 功率因数校正电路及其控制方法
CN103731022A (zh) * 2012-10-15 2014-04-16 英飞凌科技股份有限公司 有源功率因数校正器电路
CN104426350A (zh) * 2013-08-30 2015-03-18 美格纳半导体有限公司 参考信号产生电路、方法和具有其的功率因数补偿设备
WO2016119658A1 (zh) * 2015-01-27 2016-08-04 意瑞半导体(上海)有限公司 功率因数校正电路、乘法器及电压前馈电路
CN106160521A (zh) * 2015-04-21 2016-11-23 沛旸科技有限公司 电源供应器
CN106899202A (zh) * 2015-12-18 2017-06-27 亚荣源科技(深圳)有限公司 交流-直流转换器及其功因校正电路
CN107359788A (zh) * 2017-09-07 2017-11-17 西华大学 信号调理电路及反激、SEPIC和Buck‑Boost功率因数校正变换器
CN107465341A (zh) * 2017-09-08 2017-12-12 西南交通大学 一种DCMBoost功率因数校正变换器的控制方法及控制电路
WO2017215189A1 (zh) * 2016-06-12 2017-12-21 海信科龙电器股份有限公司 Pfc变换器控制方法、装置和变频电器
US9966831B2 (en) 2014-11-28 2018-05-08 Silergy Semiconductor Technology (Hangzhou) Ltd. Controller and controlling method of switching power supply
US10171035B2 (en) 2015-01-27 2019-01-01 Cosemitech (Shanghai) Co., Ltd. Power factor correction circuit and multiplier
TWI675533B (zh) * 2016-08-05 2019-10-21 大陸商矽力杰半導體技術(杭州)有限公司 控制電路、控制方法及應用其的功率變換器
CN111106745A (zh) * 2018-10-25 2020-05-05 中车株洲电力机车研究所有限公司 用于功率变换电路的变频控制电路和磁浮列车的发电系统
CN112953219A (zh) * 2021-01-22 2021-06-11 昂宝电子(上海)有限公司 升压控制电路
CN117134681A (zh) * 2023-06-20 2023-11-28 合肥盎牛智能装备有限公司 带母线电压稳压功能的电机驱动装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437727B (zh) * 2011-12-26 2013-10-23 矽力杰半导体技术(杭州)有限公司 一种升压型pfc控制器
KR102175887B1 (ko) * 2013-10-16 2020-11-09 서울시립대학교 산학협력단 Pfc 제어회로, 액티브 pfc 회로 및 pfc 제어 방법
CN103648202B (zh) 2013-12-18 2017-02-08 矽力杰半导体技术(杭州)有限公司 有源功率因数校正控制电路、芯片及led驱动电路
US9632120B2 (en) * 2014-12-24 2017-04-25 Infineon Technologies Austria Ag System and method for measuring power in a power factor converter
KR101822280B1 (ko) * 2016-05-04 2018-01-26 현대자동차주식회사 저전압 직류 변환기의 출력전압 센싱 오차 보정 방법
US20180069471A1 (en) * 2016-09-06 2018-03-08 Texas Instruments Incorporated Optimizing the efficiency of a boost pre-converter while maintaining input power factor
WO2018185813A1 (ja) * 2017-04-03 2018-10-11 東芝三菱電機産業システム株式会社 電力変換装置
US10461654B2 (en) 2017-05-04 2019-10-29 Dell Products, Lp Power supply light load efficiency control circuit
CN107132404B (zh) 2017-05-15 2019-11-05 矽力杰半导体技术(杭州)有限公司 检测方法、检测电路、控制器及开关电源
CN107026568B (zh) 2017-05-19 2020-04-10 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法及开关电源
US10170985B1 (en) * 2017-12-06 2019-01-01 National Chung Shan Institute Of Science And Technology Apparatus for current estimation of DC/DC converter and DC/DC converter assembly
TWI685183B (zh) * 2018-07-04 2020-02-11 群光電能科技股份有限公司 混模式升壓型功因校正轉換器
US10608552B1 (en) * 2018-11-13 2020-03-31 Infineon Technologies Austria Ag Transistor protection in a boost circuit using surge detection
CN110138209B (zh) 2019-05-13 2021-08-06 矽力杰半导体技术(杭州)有限公司 开关电源的模式切换电路和模式切换方法
CN110768510B (zh) 2019-09-30 2022-09-20 上海矽力杰微电子技术有限公司 控制电路和方法以及功率变换器
CN112003485B (zh) * 2020-09-07 2024-04-26 国网福建省电力有限公司电力科学研究院 基于无桥sepic-pfc电路的电流连续控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480135A (en) * 1987-09-21 1989-03-27 Nec Corp Transmission right control system
JPH1080135A (ja) * 1996-09-03 1998-03-24 Nippon Motorola Ltd 交流−直流変換装置
CN1753290A (zh) * 2004-09-21 2006-03-29 快捷韩国半导体有限公司 功率因子校正电路
CN101506753A (zh) * 2006-08-07 2009-08-12 意法半导体股份有限公司 在受迫开关电源中用于功率因数校正的装置的控制装置
CN101741234A (zh) * 2008-11-06 2010-06-16 富士电机系统株式会社 功率因数改善电路的控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940929A (en) * 1989-06-23 1990-07-10 Apollo Computer, Inc. AC to DC converter with unity power factor
US6469917B1 (en) * 2001-08-16 2002-10-22 Green Power Technologies Ltd. PFC apparatus for a converter operating in the borderline conduction mode
JP3988724B2 (ja) * 2002-01-08 2007-10-10 サンケン電気株式会社 力率改善コンバータ及びその制御方法
US7683595B2 (en) * 2007-04-10 2010-03-23 Infineon Technologies Austria Ag Method for actuation, and actuating circuit for a switch in a power factor correction circuit
TWI374605B (en) * 2008-08-21 2012-10-11 Leadtrend Tech Corp Apparatus and method for zero-voltage region detection, and control apparatus and control method for a power factor correction power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480135A (en) * 1987-09-21 1989-03-27 Nec Corp Transmission right control system
JPH1080135A (ja) * 1996-09-03 1998-03-24 Nippon Motorola Ltd 交流−直流変換装置
CN1753290A (zh) * 2004-09-21 2006-03-29 快捷韩国半导体有限公司 功率因子校正电路
CN101506753A (zh) * 2006-08-07 2009-08-12 意法半导体股份有限公司 在受迫开关电源中用于功率因数校正的装置的控制装置
CN101741234A (zh) * 2008-11-06 2010-06-16 富士电机系统株式会社 功率因数改善电路的控制系统

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595239A (zh) * 2012-08-15 2014-02-19 珠海格力电器股份有限公司 功率因数校正电路及其控制方法
CN103595239B (zh) * 2012-08-15 2015-12-16 珠海格力电器股份有限公司 功率因数校正电路及其控制方法
US9190900B2 (en) 2012-10-15 2015-11-17 Infineon Technologies Ag Active power factor corrector circuit
US9450436B2 (en) 2012-10-15 2016-09-20 Infineon Technologies Ag Active power factor corrector circuit
CN103731022A (zh) * 2012-10-15 2014-04-16 英飞凌科技股份有限公司 有源功率因数校正器电路
CN103731022B (zh) * 2012-10-15 2016-08-10 英飞凌科技股份有限公司 有源功率因数校正器电路
CN103051170B (zh) * 2012-12-28 2015-06-03 上海贝岭股份有限公司 音频噪声消除电路
CN103051170A (zh) * 2012-12-28 2013-04-17 上海贝岭股份有限公司 音频噪声消除电路
CN103066827B (zh) * 2012-12-28 2014-12-24 杭州士兰微电子股份有限公司 功率因数校正电路及其输入前馈补偿电路
CN103066827A (zh) * 2012-12-28 2013-04-24 杭州士兰微电子股份有限公司 功率因数校正电路及其输入前馈补偿电路
CN104426350A (zh) * 2013-08-30 2015-03-18 美格纳半导体有限公司 参考信号产生电路、方法和具有其的功率因数补偿设备
CN104426350B (zh) * 2013-08-30 2018-09-28 美格纳半导体有限公司 参考信号产生电路、方法和具有其的功率因数补偿设备
US9966831B2 (en) 2014-11-28 2018-05-08 Silergy Semiconductor Technology (Hangzhou) Ltd. Controller and controlling method of switching power supply
US10171035B2 (en) 2015-01-27 2019-01-01 Cosemitech (Shanghai) Co., Ltd. Power factor correction circuit and multiplier
CN105991018B (zh) * 2015-01-27 2018-08-21 意瑞半导体(上海)有限公司 功率因数校正电路、乘法器及电压前馈电路
US10256716B2 (en) 2015-01-27 2019-04-09 Cosemitech (Shanghai) Co., Ltd. Power factor correction circuit, multiplier and voltage feed-forward circuit
WO2016119658A1 (zh) * 2015-01-27 2016-08-04 意瑞半导体(上海)有限公司 功率因数校正电路、乘法器及电压前馈电路
CN105991018A (zh) * 2015-01-27 2016-10-05 意瑞半导体(上海)有限公司 功率因数校正电路、乘法器及电压前馈电路
CN106160521A (zh) * 2015-04-21 2016-11-23 沛旸科技有限公司 电源供应器
CN106899202A (zh) * 2015-12-18 2017-06-27 亚荣源科技(深圳)有限公司 交流-直流转换器及其功因校正电路
WO2017215189A1 (zh) * 2016-06-12 2017-12-21 海信科龙电器股份有限公司 Pfc变换器控制方法、装置和变频电器
US10693366B2 (en) 2016-06-12 2020-06-23 Hisense Home Appliances Group Co., Ltd. PFC Converter control method, inverter household appliance, and PFC converter control method for an inverter household appliance
TWI675533B (zh) * 2016-08-05 2019-10-21 大陸商矽力杰半導體技術(杭州)有限公司 控制電路、控制方法及應用其的功率變換器
CN107359788A (zh) * 2017-09-07 2017-11-17 西华大学 信号调理电路及反激、SEPIC和Buck‑Boost功率因数校正变换器
CN107465341A (zh) * 2017-09-08 2017-12-12 西南交通大学 一种DCMBoost功率因数校正变换器的控制方法及控制电路
CN107465341B (zh) * 2017-09-08 2023-04-11 西南交通大学 一种DCMBoost功率因数校正变换器的控制方法及控制电路
CN111106745A (zh) * 2018-10-25 2020-05-05 中车株洲电力机车研究所有限公司 用于功率变换电路的变频控制电路和磁浮列车的发电系统
CN111106745B (zh) * 2018-10-25 2022-03-04 中车株洲电力机车研究所有限公司 用于功率变换电路的变频控制电路和磁浮列车的发电系统
CN112953219A (zh) * 2021-01-22 2021-06-11 昂宝电子(上海)有限公司 升压控制电路
CN117134681A (zh) * 2023-06-20 2023-11-28 合肥盎牛智能装备有限公司 带母线电压稳压功能的电机驱动装置

Also Published As

Publication number Publication date
US20130223119A1 (en) 2013-08-29
TW201340558A (zh) 2013-10-01
US9054597B2 (en) 2015-06-09
CN102594118B (zh) 2014-06-25
TWI573376B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
CN102594118B (zh) 一种升压型pfc控制器
CN102437727B (zh) 一种升压型pfc控制器
Jiang et al. Adaptive step size with adaptive-perturbation-frequency digital MPPT controller for a single-sensor photovoltaic solar system
CN103227566B (zh) 一种dc-dc变换器
CN202737746U (zh) 改进型单周期控制全桥变换器
CN203933384U (zh) 一种高功率因数校正控制电路及装置
CN104333216A (zh) 开关电源控制器及其控制方法
CN104022627A (zh) 控制电路以及电源变换器
CN109120153B (zh) 一种buck电路以及开关电源
CN104184149A (zh) 一种基于滑模控制和超级电容的平抑电压波动方法
CN105356746A (zh) 用于电源变换器的导通时间产生电路及电源变换器
CN102594135B (zh) 一种升压型pfc控制器
CN104902648A (zh) 一种带有可控硅的led调光电路及调光方法
CN103066823A (zh) 一种开关电源控制器和控制方法
CN103384117B (zh) 一种变频模式转换器及其调控方法
CN106527299B (zh) 一种小型化触屏高压脉冲电源
CN102684517B (zh) 一种具有高功率因数的开关电源及其控制器
CN204205946U (zh) 开关变换器及其控制电路
CN103414333B (zh) 一种有源功率因数校正控制器
CN106301038B (zh) 一种开关电源固定频率的控制电路及控制方法
CN202713146U (zh) 峰值电流信号产生电路和开关电源电路
CN103916020A (zh) 开关电源及其控制电路
CN108111031B (zh) 非隔离式的单芯片ac/dc开关电源控制电路
CN114944748B (zh) 一种恒定导通时间控制模式转换器的定频控制电路及方法
CN203014698U (zh) 一种高功率因数恒流控制电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 310012 Wensanlu Road science and technology building, Hangzhou, Zhejiang, No. 90 A1501

Applicant after: Silergy Semiconductor Technology (Hangzhou ) Co., Ltd.

Address before: 310012 Wensanlu Road science and technology building, Hangzhou, Zhejiang, No. 90 A1501

Applicant before: Hangzhou Silergy Semi-conductor Technology Co., Ltd.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: HANGZHOU SILERGY SEMI-CONDUCTOR TECHNOLOGY CO., LTD. TO: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) CO., LTD.

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 310051 No. 6 Lianhui Street, Xixing Street, Binjiang District, Hangzhou City, Zhejiang Province

Patentee after: Silergy Semiconductor Technology (Hangzhou ) Co., Ltd.

Address before: 310012 Wensanlu Road science and technology building, Hangzhou, Zhejiang, No. 90 A1501

Patentee before: Silergy Semiconductor Technology (Hangzhou ) Co., Ltd.