CN102590398A - 一种双面膜片微型气体富集器 - Google Patents

一种双面膜片微型气体富集器 Download PDF

Info

Publication number
CN102590398A
CN102590398A CN2012100788538A CN201210078853A CN102590398A CN 102590398 A CN102590398 A CN 102590398A CN 2012100788538 A CN2012100788538 A CN 2012100788538A CN 201210078853 A CN201210078853 A CN 201210078853A CN 102590398 A CN102590398 A CN 102590398A
Authority
CN
China
Prior art keywords
enricher
diaphragm
gas
silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100788538A
Other languages
English (en)
Inventor
杜晓松
吴泽
李臆
蒋亚东
邱栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2012100788538A priority Critical patent/CN102590398A/zh
Publication of CN102590398A publication Critical patent/CN102590398A/zh
Priority to US13/570,249 priority patent/US8969976B2/en
Priority to US14/593,304 priority patent/US9726651B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • G01N30/93Application of the sorbent layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4005Concentrating samples by transferring a selected component through a membrane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/08Preparation using an enricher
    • G01N2030/085Preparation using an enricher using absorbing precolumn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明公开了一种双面膜片微型气体富集器,由上下两个硅片键合而形成一个微型气室,每个硅片上设置有一个或多个悬空膜片,悬空膜片对应位置的硅被完全去除而形成空腔,每个悬空膜片上制备有薄膜加热器,每个悬空膜片的内壁涂敷有吸附薄膜。本发明通过将富集器的双面都设计成悬空膜片的方法,提高了膜片上吸附薄膜的面积,在保留膜片型富集器热容小、加热速率快、功耗小等优点的基础上,增大了吸附薄膜的面积,提高了富集效率。

Description

一种双面膜片微型气体富集器
技术领域
本发明涉及气体富集器技术领域,具体涉及一种采用MEMS技术制备的微型气体富集器。
背景技术
外场环境下对痕量的工业污染、高爆炸药、毒品、化学及生物毒剂等的检测,需要高灵敏、高选择、快响应、低功耗、便携型的气体探测器。单单依靠气体传感器自身已经难以满足要求,需要在传感器的前端引入微型富集器以提高灵敏度,引入微型色谱以提高选择性,研制由多个部件构成的气体探测器集成系统。
在分析化学领域,富集器已经应用多年。其工作原理是使待测气体通过吸附材料,富集一段时间后,加热吸附材料使吸附气体在短时间内解吸,从而得到高浓度气体。富集器不仅可以提升探测器的灵敏度1-3个数量级,而且通过采用合适的吸附薄膜,还可以提高探测器对特定目标的选择性。
影响富集器效率的因素除了吸附薄膜的本质特性以外,主要由吸附薄膜的面积、气流的大小和加热的快慢所决定。当富集的气体分子一样多时,加热速度越快,气体解吸峰的峰强越高、半高宽越窄。快速加热的关键是低热容的富集器结构,需要采用MEMS技术制作,文献Trends in Analytical Chemistry, 2008, 27(4): 327-343对MEMS气体富集器近年来的研究现状进行了系统总结。
在所有的微型富集器中,USP6171378公开的二维膜片型富集器(见图1a)具有最小的热容,对于0.5μm厚的SiN膜片,仅用10ms就能在100mW的功率下加热到200℃,气体解吸峰的半高宽仅为200ms。但该富集器的缺点也很突出,一是吸附薄膜的面积小,二是富集时气体的流量小,导致其富集效率远远低于传统的管式富集器。(参见文献IEEE Sensor Journal, 2006, 6(3): 784-795图4b)。
针对二维膜片富集器吸附薄膜面积过小的问题,USP7118712和USP7306649公开了三维结构的富集器,其特征是在一定厚度的三维材料上设置多个穿孔形成气体的流道,吸附薄膜涂敷在孔壁。与二维膜片型富集器相比,吸附薄膜的面积可以增大数十倍,气体流量也大大增加。蛤壳形富集器(见图1b)是三维富集器的典型代表,它是利用鱼鳍状的平行槽作为吸附薄膜的支撑结构以增大吸附面积,使得其富集率与管式富集器相当。蛤壳形富集器也有悬空膜片,薄膜加热器和鱼鳍状的吸附支撑结构分别位于膜片的两面。尽管采用了上述绝热措施,但由于鳍状结构增加了热容,其解吸峰的半高宽增大到2.3s。(参见文献IEEE Sensor Journal, 2006, 6(3): 784-795图4b)。
对于集成气体探测器而言,当其后端设置有微型色谱时,富集器还必须起到色谱仪中注入器的作用,要求富集器的气体解吸峰的半高宽应尽量小,否则会导致色谱谱峰的展宽,降低色谱的性能。可见,三维富集器富集效率的提高是以牺牲快速加热能力为代价,不能满足集成气体探测器对低热容、高效率的富集器的需要。
二维膜片富集器还存在着在加热时膜片易破的问题,这是由于设置在玻璃顶盖上的进/出气口的截面过小所致。三维富集器的穿孔结构大大增加了流道截面,很好地改善了这一问题。但在USP7118712给出的多个实施例中(如图1b),三维的吸附支撑结构都是悬挂在一层薄薄的膜片上,膜片会受到很大的静态应力,也存在破裂的风险。
发明内容
本发明所要解决的问题是:如何在保持膜片型富集器热容小、加热速率快、功耗低等优点的条件下,有效地提高吸附薄膜的面积,从而获得更大的富集效率。
本发明所提出的技术问题是这样解决的:一种双面膜片微型气体富集器,具有两个硅片,每个硅片上设置有至少一个悬空膜片,每个悬空膜片上制备有薄膜加热器,两个硅片上下对准后键合形成至少一个微型气室,每个悬空膜片的内壁涂敷有吸附薄膜,在微型气室的侧壁开有气孔以形成多个微型气室之间的气流通道或整个富集器的进气口和出气口。
按照本发明所提供的双面膜片微型气体富集器,其特征在于,所述悬空膜片为氮化硅或氮氧硅或二氧化硅薄膜或氮化硅/二氧化硅多层薄膜,厚度为0.5~2微米。
按照本发明所提供的双面膜片微型气体富集器,其特征在于,所述薄膜加热器由蛇形金属薄膜或重掺多晶硅薄膜构成,金属薄膜的材料采用铂或钯或钨或钼或钽。
按照本发明所提供的双面膜片微型气体富集器,其特征在于,所述吸附薄膜为聚合物或碳黑/聚合物复合材料或溶胶-凝胶无机氧化物。
本发明是对现有膜片型气体富集器的改进,通过将微型气室的上下两面都制作成悬空膜片,并在膜片上涂覆吸附薄膜,从而在不改变富集器尺寸大小的前提下,将吸附薄膜的面积增大了一倍,获得了一种富集效率更高的微型气体富集器。
附图说明
图1a和图1b为现有技术,其中,图1a为单膜片富集器,图1b为蛤壳形富集器;
图2a至图2c为本发明的单元型1双面膜片气体富集器结构示意图,其中,图2a为立体图,图2b为俯视图,图2c为图2b的A-A剖面图;
图3a至图3f为单元型1双面膜片气体富集器的制备工艺流程图;
图4为本发明的单元型2双面膜片气体富集器结构示意图;
图5a和图5b为本发明的阵列型双面膜片气体富集器结构示意图,其中,图5a为俯视图,图5b为图5a的A-A剖面图;
图6为本发明的单元型富集器的加热曲线;
图7为本发明的单元型和阵列型富集器的热解吸曲线。
其中,1为硅底座;2为硅顶盖;3为悬空膜片;4为薄膜加热器;5为吸附薄膜;6为进气口;7为出气口;8为硅衬底;9为SiN薄膜;10为空腔;11为粘接层;12为微型气室;13为气流通孔;14为气体分配网络;15为玻璃盖。
具体实施方式
本发明的双面膜片微型气体富集器,分为单元型和阵列型两种。其核心是将两个硅片上的悬空膜片上下对准后键合在一起,形成富集器的微型气室,使得气室的上下内壁都涂敷有吸附薄膜。下面结合附图以及实施例对本发明作进一步描述:
实施例1—单元型1
图2a至图2c为单元型1双面膜片气体富集器的结构示意图。主要结构包括硅底座1、硅顶盖2、悬空膜片3、薄膜加热器4、吸附薄膜5、进气口6、出气口7。图3a至图3f为该单元型富集器的制备流程,过程如下:在两块约500μm厚的硅衬底8上加工硅底座1和硅顶盖2,硅底座1和硅顶盖2上的图形结构和尺寸完全一样,因此下面仅以硅底座1的加工为例进行说明。首先在硅衬底8正面采用PECVD(等离子体增强化学气相沉积法)制备约700nm厚的低应力SiN薄膜9,也可以是氮氧硅薄膜。然后采用剥离法在SiN薄膜上制备1个蛇形的薄膜加热器4.1,加热器外沿尺寸为2mm×2mm,线条宽度约100μm,采用溅射法依次沉积20nm厚的NiCr薄膜和300nm厚的Pt薄膜。接着采用反应离子刻蚀技术(DRIE)从背面刻蚀薄膜加热器4.1下方的硅衬底8形成悬空膜片3.1、进气口6.1和出气口7.1。刻蚀分两步进行,第一步刻蚀进气口6.1和排气口7.1,深度约为250μm,宽约500μm,长约3mm;第二步将薄膜加热器4.1正下方的硅衬底完全刻蚀掉,形成2.2 mm×2.2mm的空腔10.1,进气口6.1和出气口7.1分别位于空腔10.1的两侧并相互连通。采用漏板喷涂、喷墨打印或滴涂法将吸附薄膜5沉积在悬空膜片3.1的背面(没有薄膜加热器的那一面)。吸附薄膜可以采用各种聚合物,在本实施例中,采用的是一种强氢键酸性聚合物聚甲基-{3-[2-羟基-4,6-二(三氟甲基)]苯基}-丙基硅氧烷(简称DKAP),它对有机磷毒气具有选择性吸附功能。吸附薄膜也可以采用碳黑/聚合物复合材料,还可以是溶胶凝胶无机氧化物。通过上述工艺步骤完成硅底座1的加工,然后采用同样的方法制作硅顶盖2,最后将硅顶盖2倒扣在硅底座1上,图形上下对准后将上下两个硅片键合形成一个整体。对于所有种类的吸附薄膜5,键合都可采用聚合物中间层键合技术;而当吸附薄膜5为无机氧化物等耐高温材料时,也可采用金硅键合或铝硅键合技术。在键合时吸附薄膜5位于微型气室的内壁,空腔10.1和10.2合并而形成微型气室12,进气口6.1和6.2合并形成总的进气口6,出气口7.1和7.2合并形成总的出气口7。因此,进气口6和出气口7的截面积为500μm×500μm,通过一个外接的微型气泵抽气,可以保证获得足够大的流量。
实施例2—单元型2
图4为单元型2双面膜片气体富集器的结构示意图。单元型2与单元型1的结构和加工方法大体相同,不同之处在于:①在键合时是将硅顶盖2正置于硅底座1上,因此,微型气室12仅由空腔10.2构成,空腔10.1是开放的。②在硅底座1上不制作进气口6.1和出气口7.1,总的进气口6和出气口7由硅顶盖上的进气口6.2和出气口7.2单独构成。③在硅底座1上的吸附薄膜5沉积在悬空膜片3.1的正面而不是背面。
实施例3—阵列型
图5a和图5b为阵列型双面膜片气体富集器的结构示意图,是在图2所示的单元型1富集器的基础上扩展而成。在硅底座1和硅顶盖2上分别设置了16个悬空膜片,16个悬空膜片上的薄膜加热器前后连接各形成一个总的加热器网络。每个悬空膜片之间留有500微米左右宽度的硅框架进行支撑,16个悬空膜片排列成4行,每行4个,行与行之间完全隔离。硅底座1和硅顶盖2对准键合后形成16个空腔,每行的空腔通过气流通孔13前后贯通。而总的进气口6和出气口7分别设计成气流分配网络14,使得气路一分为二,再二分为四,以使得4个流路的气流均匀。在DRIE刻蚀时,气流分配网络14和气流通孔13先刻蚀,而悬空膜片处的硅衬底后刻蚀。
图6为单个膜片的加热速率测试结果,膜片尺寸为2.2 mm×2.2mm,厚1m,其上设置有铂膜加热器4和聚合物吸附薄膜5。在约120mW的加热功率下,膜片的温度从室温升高到200℃只需约15ms。可见,本发明的富集器的热性能与USP6171378公开的二维膜片型富集器的性能相当。
本发明富集器的典型解吸曲线如图7所示,对于0.01ppm的DMMP,富集30s后加热1s,采用火焰电离计测试(FID)富集效果。可见,单元型富集器的解吸峰的半高宽为260ms,也与USP6171378公开的二维膜片型富集器的性能相当。而阵列型富集器的半高宽虽然增大到405ms,但也远远优于三维结构的MEMS富集器。本发明的阵列型富集器和单元型富集器相比,富集效率提高了约15倍。

Claims (4)

1.一种双面膜片微型气体富集器,其特征在于,具有两个硅片,每个硅片上设置有至少一个悬空膜片,每个悬空膜片上制备有薄膜加热器,两个硅片上下对准后键合形成至少一个微型气室,每个悬空膜片的内壁涂敷有吸附薄膜,在微型气室的侧壁开有气孔以形成多个微型气室之间的气流通道或整个富集器的进气口和出气口。
2.根据权利要求1所述的双面膜片微型气体富集器,其特征在于,所述悬空膜片为氮化硅薄膜或氮氧硅薄膜或二氧化硅薄膜或氮化硅/二氧化硅多层薄膜。
3.根据权利要求1所述的双面膜片微型气体富集器,其特征在于,所述薄膜加热器由蛇形金属薄膜或重掺多晶硅薄膜构成,金属薄膜的材料采用铂或钯或钨或钼或钽。
4.根据权利要求1所述的双面膜片微型气体富集器,其特征在于,所述吸附薄膜为聚合物或碳黑/聚合物复合材料或溶胶-凝胶无机氧化物。
CN2012100788538A 2012-03-23 2012-03-23 一种双面膜片微型气体富集器 Pending CN102590398A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2012100788538A CN102590398A (zh) 2012-03-23 2012-03-23 一种双面膜片微型气体富集器
US13/570,249 US8969976B2 (en) 2012-03-23 2012-08-09 Double-sided diaphragm micro gas-preconcentrator
US14/593,304 US9726651B2 (en) 2012-03-23 2015-01-09 Double-sided diaphragm micro gas-preconcentrator with a back-on-face configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100788538A CN102590398A (zh) 2012-03-23 2012-03-23 一种双面膜片微型气体富集器

Publications (1)

Publication Number Publication Date
CN102590398A true CN102590398A (zh) 2012-07-18

Family

ID=46479330

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100788538A Pending CN102590398A (zh) 2012-03-23 2012-03-23 一种双面膜片微型气体富集器

Country Status (2)

Country Link
US (2) US8969976B2 (zh)
CN (1) CN102590398A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228447A (ja) * 2013-05-23 2014-12-08 木村 光照 濃縮機能を有する水素ガスセンサとこれに用いる水素ガスセンサプローブ
CN104931654A (zh) * 2015-06-11 2015-09-23 吉林大学 一种用于气体传感器表面的仿生微结构
CN106568640A (zh) * 2016-11-09 2017-04-19 西安交通大学 一种基于金属基片的微型填充式富集器及制备方法
CN107014666A (zh) * 2017-03-21 2017-08-04 西安交通大学 一种微型气体富集器及其制备方法
CN108896458A (zh) * 2018-05-18 2018-11-27 中国科学院上海微系统与信息技术研究所 一种微传感器、制备及其使用方法
CN110906053A (zh) * 2019-11-12 2020-03-24 上海交通大学 基于微机电系统的相变材料驱动的气体流量调节阀

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552838B (zh) 2013-06-24 2016-10-11 研能科技股份有限公司 微型氣壓動力裝置
JP6470985B2 (ja) * 2015-01-27 2019-02-13 日本特殊陶業株式会社 マイクロヒータ及びセンサ
US10041898B2 (en) 2015-12-01 2018-08-07 International Business Machines Corporation 3D micro and nanoheater design for ultra-low power gas sensors
CN108310927B (zh) * 2018-04-16 2023-11-28 中国科学技术大学 一种多层平面膜进样装置
CN111591951B (zh) * 2020-02-24 2023-09-26 上海集成电路研发中心有限公司 一种超声传感器结构及其制造方法
CN114100716B (zh) * 2021-12-01 2023-04-21 上海天马微电子有限公司 微流控装置及其驱动方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171378B1 (en) * 1999-08-05 2001-01-09 Sandia Corporation Chemical preconcentrator
US7118712B1 (en) * 2003-10-28 2006-10-10 Sandia Corporation Non-planar chemical preconcentrator
CN101603956A (zh) * 2009-07-14 2009-12-16 电子科技大学 一种基于聚酰亚胺薄膜的膜片型气体富集器
CN101625345A (zh) * 2009-06-18 2010-01-13 电子科技大学 一种大面积mems膜片型气体富集器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008193B2 (en) * 2002-05-13 2006-03-07 The Regents Of The University Of Michigan Micropump assembly for a microgas chromatograph and the like

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171378B1 (en) * 1999-08-05 2001-01-09 Sandia Corporation Chemical preconcentrator
US7118712B1 (en) * 2003-10-28 2006-10-10 Sandia Corporation Non-planar chemical preconcentrator
CN101625345A (zh) * 2009-06-18 2010-01-13 电子科技大学 一种大面积mems膜片型气体富集器
CN101603956A (zh) * 2009-07-14 2009-12-16 电子科技大学 一种基于聚酰亚胺薄膜的膜片型气体富集器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IOANA VOICULESCU ET AL.: "Microfabricated chemical preconcentrators for gas-phase microanalytical detection systems", 《TRENDS IN ANALYTICAL CHEMISTRY》, vol. 27, no. 4, 31 December 2008 (2008-12-31), pages 327 - 343 *
PATRICK R. LEWIS ET AL.: "Recent Advancements in the Gas-Phase MicroChemLab", 《IEEE SENSORS JOURNAL》, vol. 6, no. 3, 30 June 2006 (2006-06-30) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228447A (ja) * 2013-05-23 2014-12-08 木村 光照 濃縮機能を有する水素ガスセンサとこれに用いる水素ガスセンサプローブ
CN105229451A (zh) * 2013-05-23 2016-01-06 木村光照 具有浓缩功能的氢气传感器以及其中使用的氢气传感器探头
CN104931654A (zh) * 2015-06-11 2015-09-23 吉林大学 一种用于气体传感器表面的仿生微结构
CN106568640A (zh) * 2016-11-09 2017-04-19 西安交通大学 一种基于金属基片的微型填充式富集器及制备方法
CN106568640B (zh) * 2016-11-09 2019-03-01 西安交通大学 一种基于金属基片的微型填充式富集器及制备方法
CN107014666A (zh) * 2017-03-21 2017-08-04 西安交通大学 一种微型气体富集器及其制备方法
CN107014666B (zh) * 2017-03-21 2019-06-11 西安交通大学 一种微型气体富集器及其制备方法
CN108896458A (zh) * 2018-05-18 2018-11-27 中国科学院上海微系统与信息技术研究所 一种微传感器、制备及其使用方法
CN108896458B (zh) * 2018-05-18 2020-10-27 中国科学院上海微系统与信息技术研究所 一种微传感器、制备及其使用方法
CN110906053A (zh) * 2019-11-12 2020-03-24 上海交通大学 基于微机电系统的相变材料驱动的气体流量调节阀

Also Published As

Publication number Publication date
US20150160172A1 (en) 2015-06-11
US9726651B2 (en) 2017-08-08
US20130249022A1 (en) 2013-09-26
US8969976B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
CN102590398A (zh) 一种双面膜片微型气体富集器
CN101625345B (zh) 一种mems膜片型气体富集器
CN101308110B (zh) 有加热功能低功耗双模块集成湿度敏感芯片及其制作方法
CN102735712B (zh) 一种基于微井的气体传感器阵列及其制作方法
US7306649B2 (en) 3D miniature preconcentrator and inlet sample heater
EP3185011B1 (fr) Capteur de gaz microelectromecanique ou nanoelectromecanique
US7578167B2 (en) Three-wafer channel structure for a fluid analyzer
CN101607167A (zh) 一种带制冷器的微型气体富集器及其使用方法
US20110252882A1 (en) Robust sensor with top cap
US20070028668A1 (en) Molecule detection sensor, detection sensor, and gas transferring pump
CN110514721B (zh) 一种自储水自补水pH传感器
CN102288644A (zh) 一种具有四支撑悬梁四层结构的电阻式气体传感器及方法
Gràcia et al. Sub-ppm gas sensor detection via spiral μ-preconcentrator
CN104828771A (zh) 一种集成过滤结构的微型热导检测器及制备方法
Kühne et al. Wafer-level flame-spray-pyrolysis deposition of gas-sensitive layers on microsensors
CN102662033A (zh) 一种测试腔结构
CN101603956A (zh) 一种基于聚酰亚胺薄膜的膜片型气体富集器
CN201203591Y (zh) 有热净化功能的低功耗热隔离双模块集成湿度传感器芯片
CN100410657C (zh) 电热双参数检测芯片的制备方法
EP1167280B1 (en) Production of diaphragms
KR101811694B1 (ko) 가스-선택적 멤브레인 및 그의 제조 방법
US11906490B2 (en) Micro gas chromatography system
KR101539560B1 (ko) 탄소나노튜브 폼, 이의 제조방법 및 이를 이용한 마이크로 전농축기 모듈
US20080190171A1 (en) Shelled thermal structures for fluid sensing
Sekimori et al. Pressure sensor for micro chemical system on a chip

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120718