CN102586266A - 拟南芥白粉病抗性相关基因edr6的克隆及应用 - Google Patents
拟南芥白粉病抗性相关基因edr6的克隆及应用 Download PDFInfo
- Publication number
- CN102586266A CN102586266A CN2011100070956A CN201110007095A CN102586266A CN 102586266 A CN102586266 A CN 102586266A CN 2011100070956 A CN2011100070956 A CN 2011100070956A CN 201110007095 A CN201110007095 A CN 201110007095A CN 102586266 A CN102586266 A CN 102586266A
- Authority
- CN
- China
- Prior art keywords
- gene
- edr6
- powdery mildew
- application
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
本发明涉及一种拟南芥白粉病抗病负调控基因EDR6的分离克隆、功能验证及应用。本发明还涉及所述EDR6基因的突变基因、所述EDR6基因编码的蛋白及其应用。另外本发明还涉及其他自噬相关蛋白包括ATG5,ATG7,ATG10等作为白粉病抗性负调控因子,在抗病过程中的应用。
Description
技术领域
本专利涉及到植物分子生物学及基因工程技术领域,具体涉及模式植物拟南芥中白粉病抗病相关基因的分离克隆、功能验证及应用。
背景技术
植物在生长发育过程中无时无刻都在和环境相互作用。其中包括和其他生物的相互作用。而这当中病原菌对植物生长发育更是具有重要影响。包括细菌,真菌,病毒等会通过各种方式入侵植物,最终可能导致在植物体内繁殖并引起相关病症或者是病原菌直接杀死植物。但是植物通过积极的防御和抗病机制,杀死或抑制病原菌的生长。
植物抗病机主要通过激活两种层次的防御反应:基础抗性和抗病基因(R基因)介导的抗性。植物通过识别病原菌相关的分子模式(PAMP)比如鞭毛蛋白来通过激活有丝分裂原激活的蛋白激酶信号(MAPK)的级联机制激活基础抗性(Chisholm et al.,2006)。目前在拟南芥中已经发现很多蛋白在基础抗性起负调控/正调控作用,这些蛋白功能丧失导致植物对病原菌抗性/易感性的增强,如MLO,EDR1,PMR4,NPR1,PAD4等(Büschgeset al.,1997;Cao et al.,1997;Jirage et al.,1999;Frye et al.,2001;Nishimura etal.,2003)。
尽管已经发现了很多蛋白组分在植物抗病中起重要作用。但是这些研究发现并没有阐释清楚植物抗病机制。在抗病网络的很多蛋白组分还不为人知。通过遗传学,生物化学,细胞生物学,基因组学等的方法,可以有效的寻找抗病特定的蛋白组分。而遗传学的方法被证明非常行之有效,很多抗病相关的蛋白的编码基因都是通过遗传学的方法分离克隆得到。
正向遗传学方法,即指通过表型来研究基因的方法,是遗传学中重要的组成部分。通过各种手段,比如EMS诱变、重中子轰击、激活子标签、转座子标签等,可以获得不同表型的各种突变体,然后通过图位克隆,TAIL-PCR,反式PCR等技术可以克隆控制各种不同表型的对应的基因。
白粉病是广泛威胁许多农作物的病原菌,研究对白粉病的抗性具有重要理论价值和农业生产上的重要性。我们运用正向遗传学的方法分离克隆了拟南芥中抗白粉病的一个相关基因。该基因功能的丧失导致对白粉抗性的提高。通过寻找该基因在作物中的同源基因,利用RNA干扰或是过量表达的技术降低或增强该基因的表达,从而实现作物对病原菌抗性的提高和品种的改良,对农业生产具有重要的现实意义。
发明内容
本发明通过图位克隆分离得到拟南芥中到白粉抗性的基因EDR6。EDR6是拟南芥中白粉病抗性负调控因子。该基因编码拟南芥自噬(autophagy)相关蛋白ATG2。该基因编码区总共有5679个核苷酸组成,共十二个外显子。它的序列如SEQ ID No.1所示。
EDR6基因编码的蛋白ATG2总共有1892个氨基酸组成。它的序列如SEQ ID No.2所示。
EDR6基因丧失功能后导致拟南芥对白粉病抗性的增强。EDR6基因的突变体edr6导致对白粉抗性的增强,用EDR6的基因组DNA能互补edr6突变体表型。
另外其他的自噬相关蛋白包括ATG5,ATG7,ATG10等也都是白粉病抗性的负调控因子,它们在抗病过程中有着和ATG2类似的功能。
在作物中,如水稻、小麦中,通过RNAi降低内源EDR6基因的表达,实现作物增强对某些真菌病原体引起的病害,如水稻稻瘟病和小麦白粉病、锈病等的抗性。
具体内容如下:
1.一种拟南芥白粉病抗性负调控基因EDR6,其为下列核苷酸序列之一:
1)SEQ ID No.1的核苷酸序列;
2)与SEQ ID No.1的核苷酸序列具有90%以上同源性且编码具有相同功能蛋白质的核苷酸序列。
2.一种蛋白,其由以上1的基因EDR6编码。
3.以上2的蛋白,其为:
1)拟南芥自噬相关蛋白ATG2,其氨基酸序列如SEQ ID No.2所示;或
2)将(1)的氨基酸序列经过取代、缺失或添加一个或几个氨基酸且具有与(1)相同的功能的由(1)衍生的蛋白。
4.以上1的基因EDR6的突变基因edr6,其核苷酸序列与SEQ ID No.1的核苷酸序列的区别在于其中第2407位的C碱基被T碱基取代。
5.以上1的基因EDR6,或其同源基因用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
6.以上5的应用,所述应用通过使所述基因EDR6或其同源基因发生丧失功能的突变来实现,其中优选地,所述突变通过RNA干扰的方式来实现。
7.以上2或3的蛋白,或其同源蛋白用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
8.以上7的应用,所述应用通过降低所述蛋白在植物中的内源表达来实现。
9.以上4的基因EDR6的突变基因edr6,或其同源基因用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
10.自噬相关蛋白包括ATG5,ATG7,ATG10用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
附图说明
图1.野生型Col-0和edr6突变体的表型,其中显示生长4周的野生型和edr6突变体接种白粉菌,7天后观察到的表型。
图2.图1植物接菌前和接菌后1,3,5天PR基因相对表达情况,以ACT2基因作为内参。
图3.图位克隆EDR6基因及互补。用图位克隆的办法克隆得到控制edr6表型的基因EDR6编码拟南芥自噬相关蛋白2(ATG2)
图4.拟南芥其他自噬相关蛋白的基因如ATG5,ATG7,ATG10等突变后,表现出类似于edr6的表型。
具体实施方式
实施例一.edr6突变体抗病表型分析
用0.03%EMS(购自sigma公司)诱变野生型Col-0(Weigel D,Glazebrook J,2002)(购自Arabidopsis Biological Resource Center(ABRC)),从诱变群体中筛选出现有白粉诱导的细胞死亡和抗白粉病的突变体,将得到的一个突变体命名为edr6。在短光照(9小时光照/15小时黑暗)光照强度为8000lux,相对湿度为70%的生长环境下生长的四周的野生型Col-0和edr6突变体接种拟南芥白粉病菌(G.cichoracearum,Adam et al,1999)。该白粉病菌用拟南芥的一个对该白粉病菌易感的突变体pad4(Jirage et al.,1999,商购自ABRC)保存。接菌时将生长有大量白粉孢子的pad4的植株轻轻地刮在待接白粉的植物叶片上,然后将接完菌的植物用保鲜膜覆盖,在正常的生长环境下生长一天后取下保鲜膜,然后放在正常的生长环境下继续生长。接菌7天后观察野生型和突变体植株白粉生长和细胞死亡的情况。从图1(a)中能看到,野生型植株叶片上大量的白粉孢子的生长,而没有明显的细胞死亡导致的坏死斑。在edr6突变体中,看不到明显的白粉孢子的生长,而出现了大量的细胞死亡。图1(b)为trypan blue染色,同样说明edr6突变体增强了对白粉菌的抗性和白粉菌诱导的细胞死亡。
同时,我们用trizol试剂(商购自invitrogen)提取接菌前和接菌后1,3,5天的野生型Col-0和edr6突变体植株的RNA(方法参照trizol试剂的使用说明书,invitrogen),DNA酶消化后用鼠源反转录酶MLV(M-MLV ReverseTranscriptase,invitrogen)试剂盒反转录合成cDNA第一链。反应条件为:
RNA: 2μg
10mM dNTP: 1μl
oligodT(500μg/ml, 1μl
18T):
加RNase-free water至 12ul
65℃变性5min,立即放置
冰上。
加以下试剂:
5x first strand buffer:4μl
0.1M DTT: 2μl
RNase inhibitor: 1μl
混匀,37℃水浴2min。
之后,加1μl M-MLV(200u/μl)反转录酶,用枪头上下打匀后,放入37℃水浴中处理50min。最后70℃水浴处理15min以终止反应。用双蒸水稀释到100μl后作为实时定量PCR模板待用。
应用实时定量PCR,体系为SYBR Green supermix reagent(购自Takara)5ul,2ul模板(即以上稀释后的反转录产物),0.8ul 10uM的引物,用水补足10ul。反应程序为94度2分钟;94度20秒,55度20秒,72度30秒,40个循环;72度5分钟。每个样品(即野生型和突变体的反转录后的cDNA)做3个重复。以Actin2引物为内参,对病程相关基因(植物在病理或病理相关的环境下诱导产生的一类蛋白的基因,反映植物抗病水平的标志基因)PR1,PR2,PR5实时定量PCR。其引物如下所示。
Gene | Forward primer | Reverse primer |
PR2 | TCGATGAGAATAAGAAGGAACCAAC | ATAACAACATACTACACGCTGAAAG |
PR5 | GCACAGAGACACACACAAAA | TGTTCCTTAGAGTGAAGTCTG |
PR1 | GTGGGTTAGCGAGAAGGCTA | ACTTTGGCACATCCGAGTCT |
ACT2 | AGTGTCTGGATCGGTGGTTC | CCCCAGCTTTTTAAGCCTTT |
从图2中我们看到,接菌前野生型和突变体中PR1和PR5表达量都非常低。接菌后,突变体中的PR1和PR5基因迅速积累,3到5天达到很高的值,而野生型中的PR1,PR5的积累较突变体明显少,在接菌3天野生型中PR1的相对表达量只有野生型的10%左右。接菌3天后PR2在突变体中叶比野生型明显高。说明突变体中抗病反应更快,更强地激活。实施例二图位克隆分离鉴定EDR6基因及互补
运用图位克隆的方法(Jander et al,2002)我们克隆了EDR6基因。通过edr6突变体和另外一个生态型Ler(商购自ABRC)的杂交得到F1代,F1待再自交获得F2代杂交群体。通过寻找其中表现出edr6表型的个体,我们对这些个体运用Col和Ler有多态性的SSLP marker(http://signal.salk.edu/genome/SSLP_info/SSLPsordered.html)进行PCR,寻找与edr6表型连锁的SSLP marker即初定位(Jander et al,2002),把该基因定位于3号染色体MCB22和MQC11之间。应用这两个marker之间更多的多态性marker把该基因定位为MVI11上的45kb区间。对突变体这段区间的基因测序显示,在AT3G19190的CDS的2407位核苷酸C碱基变成T碱基,导致了803位谷氨酰胺变成一个终止密码子。该基因编码拟南芥中自噬相关蛋白2(ATG2)(如图3a和3b所示)。
我们从SALK拟南芥种质库获得了AT3G19190基因突变的一个T-DNA line SALK_076727,表现出类似的表型(如图3(c)中atg2-1所示)。并且用CTAB法(Weigel and Glazebrook,2002)提取的Col-0野生型基因组DNA作为模板,用KOD Taq酶(购自东洋纺),以引物F(TTTTCCCGGG TGAAAGAAGAAACCCAACGGT)和引物R(TTTTGTCGACATTATGTCCTAGTTCTGTGGCAA)为引物PCR扩增AT3G19190基因(提供使用的引物和反应条件)。反应条件为PCR反应体系
DNA: 2.0ul
10xbuffer: 5.0ul
dNTPs(2.0mM): 5.0ul
MgSO4(25mM): 2.0ul
引物F(10uM): 1.6ul
引物R(10uM):1.6ul
KOD Taq(1U):1.0ul
H2O: 31.8ul
PCR反应程序:预变性,96℃3分钟;热循环,变性96℃30秒钟,退火55℃30秒钟,延伸68℃8分钟,循环数30个。
随后用Xma1(购自NEB公司)和Sal1(购自NEB公司)酶切该扩增产物,然后和用这两个酶酶切回收的pCAMBIAL1300(Hajdukiewicz et al,1994)片段,用T4连接酶(购自NEB公司)在16摄氏度下连接,转化DH10b感受态细胞(购自全式金公司),经测序(华大基因)发现没有碱基突变后提取质粒(Sambrook,1989),之后冻融法转化农杆菌感受态GV3101(购自Biovector Science Lab,北京),再用该农杆菌用花dipping的方法(Clough and Bent,1998)转化edr6突变体,用潮霉素筛选转基因植株得到阳性植株,该转化子表现出与野生型一样的表型。证明了EDR6基因即为AT3G19190基因,编码拟南芥自噬相关蛋白2(ATG2)(如图3c所示)。
实施例三其他自噬相关蛋白基因突变体表现出类似于EDR6的表型
由于EDR6编码ATG2蛋白,我们也分析了拟南芥中其它自噬相关蛋白的功能。我们研究在这些基因丧失功能后,拟南芥是否也表现出类似于edr6的白粉抗性。从SALK种质库中我们获得了ATG5,ATG7,ATG9,ATG10的T-DNA插入突变体,经鉴定,获得纯合植株用于接菌实验。光照4周大小的植物接菌G.cichoracearum(方法参见实施例一),7天后观察表型。从图4所示,接菌后7天,atg5,atg7,atg10都表现出对白粉菌的抗性,但是都弱于edr6的抗性。说明其他的自噬相关蛋白也对白粉抗性起着重要作用。
实施例四在作物中通过ATG2在作物改良抗病性的应用
由于自噬是一个真核生物普遍存在的生物学过程(Klionsky andOhsumi,1999),几乎所有的真核生物都拥有自噬相关蛋白的同源基因,包括ATG2。在作物中,可以通过网上公布的序列数据库寻找作物中的ATG2基因序列,或是通过同源克隆获得作物中的ATG2基因序列,并通过RNA干扰的技术降低作物内源的ATG2基因的表达,可以提高作物对某些病原菌如白粉病、锈病的抗性,从而实现作物抗性的品种改良。
参考文献
Adam,L.,Ellwood,S.,Wilson,I.,Saenz,G.,Xiao,S.,Oliver,R.P.,Turner,J.G.,and Somerville,S.(1999).Comparison of Erysiphe cichoracearum and E.cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistanceto these two powdery mildew pathogens.Mol Plant Microbe Interact 12,1031-1043.
Büschges,R.,Hollricher,K.,Panstruga,R.,Simons,G.,Wolter,M.,Frijters,A.,van Daelen,R.,van der Lee,T.,Diergaarde,P.,Groenendijk,J.,S.,Vos,P.,Salamini,F.and Schulze-Lefert,P.(1997)The barley Mlo gene:anovel control element of plant pathogen resistance.Cell,88,695-705.
Cao,H.,Glazebrook,J.,Clarke,J.D.,Volko,S.and Dong,X.(1997)TheArabidopsis NPR1 gene that controls systemic acquired resistance encodes anovel protein containing ankyrin repeats.Cell,88,57-63.
Chisholm,S.T.,Coaker,G.,Day,B.and Staskawicz,B.J.(2006)Host-microbeinteractiohs:shaping the evolution ofthe plant immune response.Cell,124,803-814.
In Arabidopsis:A Laboratory Manual.Edited by:Weigel D,Glazebrook J.New York,Cold Spring Harbor Laboratory Press;2002.
Clough SJ,Bent AF.(1998).Floral dip:a simplified methodforAgrobacteriummediated transformation of Arabidopsis thaliana.Plant J.1998;16:735-43.
Frye,C.A.,Tang,D.and Innes,R.W.(2001)Negative regulation of defenseresponses in plants by a conserved MAPKK kinase.Proc Natl Acad Sci USA,98,373-378.
Georg Jander,Susan R.Norris,Steven D.Rounsley,David F.Bush,Irena M.Levinl,and Robert L.Last.(2002)Arabidopsis Map-Based Cloning in thePost-Genome Er.Plant Physiology,June 2002,Vol.129,pp.440-450.
Jirage,D.,Tootle,T.L.,Reuber,T.L.,Frost,L.N.,Feys,B.J.,Parker,J.E.,Ausubel,F.M.and Glazebrook,J.(1999)Arabidopsis thaliana PAD4encodes alipase-like gene that is important for salicylic acid signaling.Proc Natl AcadSci USA,96,13583-13588.
Klionsky,D.J.and Ohsumi,Y.(1999)Vacuolar import of proteins andorganelles from the cytoplasm.Annu Rev Cell Dev Biol,15,1-32.
Nishimura,M.T.,Stein,M.,Hou,B.H.,Vogel,J.P.,Edwards,H.andSomerville,S.C.(2003)Loss of a callose synthase results in salicylicacid-dependent disease resistance.Science,301,969-972.
Hajdukiewicz P,Svab Z,Maliga P.(1994)The small,versatile pPZP family ofAgrobacterium binary vectors for plant transformation.Plant Mol.Biol.25(1994),pp.989-994.
Sambrook J,Fritsch E F,Maniatis T A.Molecular Cloning:A LaboratoryManual.2nd Ed.Plainview,NY:Cold Spring Harbor Lab.Press;1989.
Claims (10)
1.一种拟南芥白粉病抗性负调控基因EDR6,其为下列核苷酸序列之一:
1)SEQ ID No.1的核苷酸序列;
2)与SEQ ID No.1的核苷酸序列具有90%以上同源性且编码具有相同功能蛋白质的核苷酸序列。
2.一种蛋白,其由权利要求1的基因EDR6编码。
3.权利要求2的蛋白,其为:
1)拟南芥自噬相关蛋白ATG2,其氨基酸序列如SEQ ID No.2所示;或
2)将(1)的氨基酸序列经过取代、缺失或添加一个或几个氨基酸且具有与(1)相同的功能的由(1)衍生的蛋白。
4.权利要求1的基因EDR6的突变基因edr6,其核苷酸序列与SEQ IDNo.1的核苷酸序列的区别在于其中第2407位的C碱基被T碱基取代。
5.权利要求1的基因EDR6,或其同源基因用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
6.权利要求5的应用,所述应用通过使所述基因EDR6或其同源基因发生丧失功能的突变来实现,其中优选地,所述突变通过RNA干扰的方式来实现。
7.权利要求2或3的蛋白,或其同源蛋白用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
8.权利要求7的应用,所述应用通过降低所述蛋白在植物中的内源表达来实现。
9.权利要求4的基因EDR6的突变基因edr6,或其同源基因用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
10.自噬相关蛋白包括ATG5,ATG7,ATG10用于增强植物对真菌病原体引起的病害,如水稻稻瘟病、拟南芥白粉病和小麦白粉病、锈病等的抗性的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110007095 CN102586266B (zh) | 2011-01-13 | 2011-01-13 | 拟南芥白粉病抗性相关基因edr6的克隆及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110007095 CN102586266B (zh) | 2011-01-13 | 2011-01-13 | 拟南芥白粉病抗性相关基因edr6的克隆及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102586266A true CN102586266A (zh) | 2012-07-18 |
CN102586266B CN102586266B (zh) | 2013-09-18 |
Family
ID=46475494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110007095 Expired - Fee Related CN102586266B (zh) | 2011-01-13 | 2011-01-13 | 拟南芥白粉病抗性相关基因edr6的克隆及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102586266B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104211792A (zh) * | 2013-05-31 | 2014-12-17 | 中国科学院遗传与发育生物学研究所 | 一个白粉病抗性相关蛋白及其编码基因和其应用 |
CN107236746A (zh) * | 2017-07-28 | 2017-10-10 | 福建农林大学 | 小麦白粉病抗性基因PmR2及其克隆与应用 |
CN107429239A (zh) * | 2015-03-04 | 2017-12-01 | 多盟集团公司 | 伽蓝菜属中的霉菌病抗性基因 |
CN114107373A (zh) * | 2021-10-15 | 2022-03-01 | 华南农业大学 | 一种制备拟南芥自噬基因突变体的方法及应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016625A2 (en) * | 2000-08-25 | 2002-02-28 | Basf Plant Science Gmbh | Plant polynucleotides encoding prenyl proteases |
CN101885765A (zh) * | 2010-07-15 | 2010-11-17 | 南京农业大学 | 一种小麦凝集素类蛋白TaJRL1及其编码基因与应用 |
-
2011
- 2011-01-13 CN CN 201110007095 patent/CN102586266B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016625A2 (en) * | 2000-08-25 | 2002-02-28 | Basf Plant Science Gmbh | Plant polynucleotides encoding prenyl proteases |
CN101885765A (zh) * | 2010-07-15 | 2010-11-17 | 南京农业大学 | 一种小麦凝集素类蛋白TaJRL1及其编码基因与应用 |
Non-Patent Citations (1)
Title |
---|
WANG Y. 等: "ATG2,an autophagy-related protein,negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis", 《THE PLANT JOURNAL》, vol. 68, no. 1, 14 July 2011 (2011-07-14), pages 74 - 87 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104211792A (zh) * | 2013-05-31 | 2014-12-17 | 中国科学院遗传与发育生物学研究所 | 一个白粉病抗性相关蛋白及其编码基因和其应用 |
CN104211792B (zh) * | 2013-05-31 | 2017-05-10 | 中国科学院遗传与发育生物学研究所 | 一个白粉病抗性相关蛋白及其编码基因和其应用 |
CN107429239A (zh) * | 2015-03-04 | 2017-12-01 | 多盟集团公司 | 伽蓝菜属中的霉菌病抗性基因 |
CN107236746A (zh) * | 2017-07-28 | 2017-10-10 | 福建农林大学 | 小麦白粉病抗性基因PmR2及其克隆与应用 |
CN107236746B (zh) * | 2017-07-28 | 2020-03-24 | 福建农林大学 | 小麦白粉病抗性基因PmR2及其克隆与应用 |
CN114107373A (zh) * | 2021-10-15 | 2022-03-01 | 华南农业大学 | 一种制备拟南芥自噬基因突变体的方法及应用 |
CN114107373B (zh) * | 2021-10-15 | 2023-05-12 | 华南农业大学 | 一种制备拟南芥自噬基因突变体的方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN102586266B (zh) | 2013-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10696981B2 (en) | Phacosporacea resistant soybean plants | |
Merz et al. | The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola | |
US11299746B2 (en) | Disease resistant pepper plants | |
Mes et al. | Expression of the Fusarium resistance gene I‐2 colocalizes with the site of fungal containment | |
US10329579B2 (en) | Genes to enhance disease resistance in crops | |
CN101765660A (zh) | 具有提高的环境胁迫耐受性和/或抗性和提高的生物量生产的植物细胞和植物 | |
CN104093842B (zh) | 改善植物耐旱性、氮利用效率和产量 | |
US10570412B2 (en) | Method of increasing resistance against soybean rust in transgenic plants by increasing the scopoletin content | |
EA034064B1 (ru) | Ген устойчивости к ризомании | |
US9688998B2 (en) | Powdery mildew resistance providing genes in Cucumis melo | |
WO2014164014A1 (en) | Genes for improving nutrient uptake and abiotic stress tolerance in plants | |
MX2013001225A (es) | Metodo para incrementar resistencia contra roya de soya en plantas transgenicas por gen adr-1. | |
WO2013092275A2 (en) | Genes to enhance the defense against pathogens in plants | |
EP3228187A1 (en) | Novel means and methods for cereal pathogen resistance | |
CN102586266B (zh) | 拟南芥白粉病抗性相关基因edr6的克隆及应用 | |
CN102174529A (zh) | 棉花黄萎病抗病相关基因GhVdr2及其应用 | |
US8329988B2 (en) | Method for increasing pathogen resistance in transgenic plants | |
AU2018258016B2 (en) | Controlling stomatal density in plants | |
JP7105759B2 (ja) | 叢根病に対する耐性遺伝子 | |
CN104211792A (zh) | 一个白粉病抗性相关蛋白及其编码基因和其应用 | |
WO2022266271A1 (en) | Modification of growth regulating factor family transcription factors in soybean | |
Singh et al. | Role of miRNAs in Legume Crops in Response to Biotic and Abiotic Stress. | |
Yadav et al. | Biotic stress management in rice through RNA interference | |
Drechsler | SUPPRESSOR OF APICAL DOMINANCE1 of the maize pathogen Sporisorium reilianum induces outgrowth of subapical ears by induction of abiotic stress response | |
Greyling | Isolation of Russian wheat aphid-induced ncRNA from wheat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130918 Termination date: 20140113 |