CN102577118A - 微机械谐振器 - Google Patents

微机械谐振器 Download PDF

Info

Publication number
CN102577118A
CN102577118A CN2010800432683A CN201080043268A CN102577118A CN 102577118 A CN102577118 A CN 102577118A CN 2010800432683 A CN2010800432683 A CN 2010800432683A CN 201080043268 A CN201080043268 A CN 201080043268A CN 102577118 A CN102577118 A CN 102577118A
Authority
CN
China
Prior art keywords
resonator
aforesaid right
combination
requiring according
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800432683A
Other languages
English (en)
Other versions
CN102577118B (zh
Inventor
阿尔内·奥亚
图奥马斯·彭萨拉
约翰纳·梅尔塔乌什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valtion Teknillinen Tutkimuskeskus
Original Assignee
Valtion Teknillinen Tutkimuskeskus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valtion Teknillinen Tutkimuskeskus filed Critical Valtion Teknillinen Tutkimuskeskus
Publication of CN102577118A publication Critical patent/CN102577118A/zh
Application granted granted Critical
Publication of CN102577118B publication Critical patent/CN102577118B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0081Thermal properties
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/0072Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
    • H03H3/0076Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks for obtaining desired frequency or temperature coefficients
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02338Suspension means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02433Means for compensation or elimination of undesired effects
    • H03H9/02448Means for compensation or elimination of undesired effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2436Disk resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2452Free-free beam resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H9/2447Beam resonators
    • H03H9/2463Clamped-clamped beam resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0271Resonators; ultrasonic resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/027Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the microelectro-mechanical [MEMS] type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • H03H2003/0407Temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02496Horizontal, i.e. parallel to the substrate plane
    • H03H2009/02503Breath-like, e.g. Lam? mode, wine-glass mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H2009/02488Vibration modes
    • H03H2009/02511Vertical, i.e. perpendicular to the substrate plane
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H2009/241Bulk-mode MEMS resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/24Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
    • H03H9/2405Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive of microelectro-mechanical resonators
    • H03H2009/2442Square resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及微机械谐振器,包括:第一材料(2)的基底(1);悬挂至支承结构(1)的谐振器(3),谐振器(3)至少部分地具有与支承结构的材料相同的材料(2),并且形成用于以特定频率f0谐振的尺寸;用于启动、维持谐振器(3)的谐振并且将谐振器(3)的谐振耦接至外部电路(6)的耦接装置(5);以及所述谐振器(3)包括有第二材料(4),第二材料(4)的热性质不同于第一材料(2)的热性质。根据本发明,谐振器(3)包括集中位于所述谐振器(3)的特定位置的第二材料(4)。

Description

微机械谐振器
技术领域
本发明涉及根据权利要求1的前序部分的微机械谐振器。
背景技术
热漂移仍然是阻碍硅MEMS谐振器进入石英晶体振荡器的市场的主要障碍。可以通过使用显示出与硅相反的谐振频率的热漂移的符号的材料如无定形SiO2来替换谐振体积的部分来实现漂移的补偿。相比纯粹的单晶谐振器而言,这会损害谐振性能。
传统地,通过在基本的硅材料周围使用温度补偿环绕结构(典型地为SiO2),或可替代地,通过使用SiO2作为在完整结构中基本上均匀地分布的结构的一部分,解决了与微机械谐振器的温度漂移相关的问题。例如,在出版物“Temperature compensation in silicon-basedmicroelectromechanical resonators(硅基微机电谐振器中的温度补偿)”,F.Schoen等人(ISBN:978-1-4244-2978-3/09)中对这项技术做了更加详细的描述。
发明内容
本发明的目的在于克服上述技术的至少一些缺点,并且提供一种全新类型的微机械谐振器和一种用于制造微机械谐振器的方法。
本发明的目的通过设置集中在谐振器的特定位置的热补偿的第二材料来实现。
在本发明的一种优选的实施例中,通过使用集中在谐振器的最大应力处的补偿材料,以最佳方式使用了谐振频率的热漂移的无源补偿。当实现时,通过提供一种用于制造可以与传统石英谐振器技术潜在地竞争的MEMS谐振器的方法,商业意义是巨大的。本发明陈述了如何通过在最有效的位置即在应力最大处(位移节点)布置补偿材料来最小化补偿材料的数量。
本发明的另一种优选实施例基于在振动结构的中间使用SiO2或TeO2
本发明的进一步优选实施例基于将谐振器的第二材料的部分的尺寸形成为横向大于10μm。
更具体地,根据本发明的微机械谐振器由权利要求1的特征部分中所陈述的特征来表征。
本发明提供了显著的益处。
使用具有相反符号的谐振频率的热漂移的材料替换谐振体积的一部分减小了热漂移。如果将补偿材料布置在正在使用的谐振模式的最大应力位置处,则关于给定的减少水平所需的部分为最少。考虑到在长度伸缩模式振动的梁,在梁的端部处(即在应力最小处/位移最大处)布置少量的补偿材料将具有很小的影响,这是由于补偿材料主要地仅用作无源质量负载,但是其余梁材料用作弹簧。如果,替代地,将补偿材料布置在梁的中间,则补偿材料主要地用作在其自身内具有很高的应力和应变的弹簧,并且更加有效地补偿热漂移。
本申请描述的一些结构实施例(如全部氧化的弹簧区域)具有减小谐振频率的制造公差和谐振频率的热系数的制造公差的重要优点。制造公差影响器件的测试和调谐的要求,并且显著地影响谐振器的成本。在具有全部氧化的弹簧区域的谐振器中,只有一个界面,即,谐振器中间的横向地较大的氧化物区域的周围,该界面的精确位置影响制造公差。
基于材料的热补偿方法相比各种有源的电补偿方案具有多个优点:没有功耗、不受伺服系统缓慢的影响、不降低频谱纯度。
附图说明
以下,将借助于附图所示的示例性实施例更加详细地分析本发明,在附图中:
图1示出了使用压电薄膜作为部件的一部分的可以应用本发明的谐振器的俯视图;
图2a示为图1的谐振器的侧视图;
图2b示为图1的谐振器的实际部件的照片的俯视图;
图3示出了使用压电薄膜作为部件的一部分的可以应用本发明的另一种谐振器的俯视图;
图4示为图3的谐振器的侧视图;
图6示为可以应用本发明的静电驱动板谐振器的示意性俯视图;
图7a示为可以应用本发明的长度伸缩(LE)的梁谐振器的示意性俯视图;
图7b示为图7a的长度伸缩(LE)的梁谐振器的示意性侧视图;
图7c示为根据本发明的长度伸缩(LE)的梁谐振器的示意性俯视图;
图7d示为图7c的长度伸缩(LE)的梁谐振器的示意性侧视图;
图7e示为根据本发明的一种可替代的解决方案的长度伸缩(LE)的梁谐振器的示意性侧视图;
图8a示为根据本发明的具有完全填充的补偿区域的长度伸缩(LE)的梁谐振器的示意性俯视图;
图8b示为图8a的长度伸缩(LE)的梁谐振器的示意性侧视图;
图8c示为根据本发明的具有部分填充的补偿区域(沟槽)的长度伸缩(LE)的梁谐振器的示意性俯视图;
图8d示为图8c的长度伸缩(LE)的梁谐振器的示意性侧视图;
图8e示为根据本发明的具有部分填充的补偿区域(塞子)的长度伸缩(LE)的梁谐振器的示意性俯视图;
图8f示为图8e的长度伸缩(LE)的梁谐振器的示意性侧视图;
图9a至图9c示意性地示出了根据本发明的一种用于制造补偿区域结构的可能的方法;
图10a至图10b示意性地示出了根据本发明的用于制造补偿区域结构的另一种可能的方法;
图11a示为根据本发明的具有完全填充的补偿区域(沟槽)的方形伸缩(SE)的板谐振器的示意性俯视图;
图11b示为图11a的谐振器的示意性侧视图;
图11c示为图11a的谐振器元件的透视图;
图12a至图12d图示了当补偿区域位于谐振器的边缘时的补偿区域的影响;
图13a-13d图示了当补偿区域位于根据本发明的谐振器的最大应力处时的补偿区域的影响;
图14a示为根据本发明的具有完全填充的补偿区域的竖直BAW SOI(Bulk Acoustic Wave Silicon-On-Insulator,体声波绝缘体上硅)谐振器的示意性俯视图;
图14b示为图8a的谐振器的示意性侧视图;
图15a至图15e图示了在根据本发明的谐振器的应力最大处在中间具有2.075μm的SiO2弹簧的竖直1D谐振器中的补偿区域的影响;
图16a至图16d图示了在谐振器的顶部和底部具有SiO2层的竖直的1D谐振器中的补偿区域的影响;
图17a至图17d图示了在谐振器的端部处具有1μm SiO2层的竖直的1D谐振器中的补偿区域的影响;
具体实施方式
根据图1至图4,本发明涉及微机械结构,其中,谐振器3通过锚10悬挂至支承结构1。在本发明的一个典型实施例中,支承结构1是一种SOI(绝缘体上硅)晶片的硅器件层。谐振器3的尺寸和悬挂使得当谐振器3被相应的电信号激励时,谐振器3会以特定的频率f0振动。梁谐振器的典型长度为320μm并且其典型高度为20μm。激励可以由形成在谐振器3上和基底1上的电极5来电容性地完成,或可替代地,由图2a或图4的压电结构完成。
电信号可以通过电极或通过使全部结构对电信号可导来传导至结构。谐振器中的典型材料是用于导电结构的Si和用于绝缘体的无定形SiO2。无定形TeO2也是用于绝缘的可替代性材料。此外,SOI(绝缘体上硅)晶片可以用作用于谐振器的预制件。
图5示出了一种板谐振器。板谐振器应用了相同的主要布置,锚定方案更加复杂并且锚不是必须地处在结点处。在本图中,Si用作底/接地电极。SiO2绝缘体应用在除了关于Si的接地触点下方的开口区域的任何地方。
图6示出了静电驱动的器件,其中,没有对谐振器自身施加金属化。在Si中的竖直缝隙上施加电压。外部电路6负责激励和维持谐振。
图7a和图7b更加详细地示出了谐振器元件3并且还表示了对于谐振器的应力分布在梁3的中间具有最大值7。
在7a和图7b中示出了本发明的基本的解决方案,其中温度补偿材料4如SiO2或TeO2(氧化碲)的区域布置在梁3的应力最大处。区域4的宽度大约是梁3的长度的10%,但是取决于梁的基本材料和梁的几何结构,区域4的宽度可以在从5%到30%的范围内变化。除了SiO2或TeO2,还可以使用具有相似的热性质的玻璃材料。
根据图7e,第二材料4可以布置在谐振器3的端部处。在本发明的一种有益的解决方案中,第二材料的区域横向尺寸定为大于10μm。这里的横向尺寸表示在谐振器3的上表面30的平面中的尺寸。谐振器3的上表面30例如是如图7c中的可见表面,或可替代地,是图11a和图11b中的可见表面。通过这样定尺寸,可以最小化关于生产公差的问题。如果满足如对于f0的其他定尺寸的规则,这种定尺寸方式还可以应用于图7a和图7b的解决方案。
图8a和图8b对应于图7a至图7d的解决方案。图8c至图8d示出了由横向沟槽形成的、部分地填充的补偿区域4。
图9a至图9c中更加详细地描述了用于制造谐振器的过程。根据图9a,洞20被蚀刻成穿过硅器件层(如非等向性干法蚀刻)。这是本领域普通技术人员已知的标准蚀刻过程。在图9b中,由沉积相来填充洞,或可替代地进行局部氧化。在图9c的阶段中,氧化扩展成填充整个体积。
换言之,本发明的典型实施例是:
1)在方形伸缩的谐振器3的中间、贯穿谐振器器件层4的深度设置氧化物或部分氧化物(或其他补偿材料)区域4。
2)在长度伸缩的梁谐振器3的中间设置氧化物或部分氧化物(或其他补偿材料)的区域4。
3)通过在应力最大处/位移节点位置中放置补偿材料来相似地设置用于其它谐振器几何结构和谐振模式的补偿区域。
4)与在应力最大处而不是极限表面相似地在竖直堆叠的薄膜绝缘体上硅谐振器中布置补偿层4。以上,已结合附图描述了实施例的示例和相关仿真结果。
本发明关注寻找如下的热补偿谐振结构:该热补偿谐振结构通过在对热系数具有最大影响的位置中放置氧化物来最小化氧化物材料的数量。对1-D长度伸缩的谐振器的仿真示出:通过在伸缩杆的端部处放置氧化物,需要38%的氧化物的容积比。(实际数量当然对具有某些不确定性的材料参数敏感)。应当注意到:如果大量的氧化物没有任何显著的负面效果,本解决方案还是一种好的解决方案。再假设氧化物区域被“全部氧化”(见上述描述),在氧化硅界面的精确位置的制造公差不具有对热系数的值的谐振频率的值的很大影响。从光刻的角度来看,事实上有利的是硅的体积与氧化物的体积将尽可能地相等。将这样的结构与上述解决方案区别开的再次是氧化物形成了很大的体积(所有的尺寸都远大于1微米)。
在本申请中,谐振器3表示实际的机械地振动的元件并且支承结构1表示在其上悬挂谐振器的构造。
在这里也称作补偿材料4的第二材料4具有不同于支承结构1的第一材料2的热性质。在本发明的优选实施例中,材料中的声速的热相关性在这两种结构中是彼此相反的。例如,以下对满足这种条件:
第一材料:Si
第二材料:无定形SiO2、或无定形TeO2、或具有适合的热性质的玻璃。
对于本领域的普通技术人员很明显的是谐振器在特定频率f0处可以具有若干张力最大值,并且本方法将应用于所有的这些情况。

Claims (12)

1.一种微机械谐振器,包括:
第一材料(2)的支承结构(1),
谐振器(3),所述谐振器(3)悬挂至所述支承结构(1),所述谐振器(3)至少部分地具有与所述支承结构的材料相同的材料(2)并且形成用于以特定频率f0谐振的尺寸,
耦接装置(5),所述耦接装置(5)用于启动、维持所述谐振器(3)的谐振,并且将所述谐振器(3)的谐振耦接至外部电路(6),以及
所述谐振器(3)包括有第二材料(4),所述第二材料(4)的热性质不同于所述第一材料(2)的热性质,
其特征在于,
所述谐振器(3)包括集中位于所述谐振器(3)的特定位置的所述第二材料(4),以及
所述谐振器(3)的所述第二材料(4)的部分形成横向大于10μm的尺寸。
2.根据权利要求1所述的谐振器,其特征在于,所述谐振器(3)的所述第二材料(4)的部分至少主要地位于所述谐振器(3)在所述特定频率f0处具有张力最大值(7)的区域中。
3.根据权利要求1所述的谐振器,其特征在于,所述谐振器(3)的所述第二材料(4)的部分至少主要地位于所述谐振器(3)的横向端部处。
4.根据上述权利要求中任一项所述的谐振器,其特征在于,所述第一材料(2)是硅(Si),第二材料(4)是氧化硅(SiO2)、氧化碲(TeO2)或玻璃。
5.根据上述权利要求中任一项所述的谐振器,其特征在于,所述谐振器(3)是在所述结构的中间悬挂至所述基底(1)的梁。
6.根据上述权利要求中任一项所述的谐振器,其特征在于,所述谐振器(3)是从板(3)的拐角悬挂至所述基底(1)的所述板。
7.根据上述权利要求中任一项或它们的组合所述的谐振器,其特征在于,所述第二材料(4)的部分是均匀的。
8.根据上述权利要求中任一项或它们的组合所述的谐振器,其特征在于,布置至应力最大处的所述第二材料(4)的部分仅部分地填充了所述第一材料作为沟槽或塞子。
9.根据上述权利要求中任一项或它们的组合所述的谐振器,其特征在于,所述谐振器(3)是长度伸缩(LE)的梁谐振器。
10.根据权利要求1至9中任一项或它们的组合所述的谐振器,其特征在于,所述谐振器(3)是方形伸缩(SE)的板谐振器。
11.根据权利要求1至9中任一项或它们的组合所述的谐振器,其特征在于,所述谐振器(3)是竖直的BAW SOI谐振器。
12.根据上述权利要求中任一项或它们的组合所述的谐振器,其特征在于,所述第一材料(3)的声速的热相关性与所述第二材料(4)相反。
CN201080043268.3A 2009-09-28 2010-09-27 微机械谐振器 Active CN102577118B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20095988A FI20095988A0 (fi) 2009-09-28 2009-09-28 Mikromekaaninen resonaattori ja menetelmä sen valmistamiseksi
FI20095988 2009-09-28
PCT/FI2010/050744 WO2011042597A1 (en) 2009-09-28 2010-09-27 A micromechanical resonator

Publications (2)

Publication Number Publication Date
CN102577118A true CN102577118A (zh) 2012-07-11
CN102577118B CN102577118B (zh) 2016-03-16

Family

ID=41136448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080043268.3A Active CN102577118B (zh) 2009-09-28 2010-09-27 微机械谐振器

Country Status (6)

Country Link
US (1) US20120229226A1 (zh)
EP (1) EP2484008B1 (zh)
JP (1) JP5704614B2 (zh)
CN (1) CN102577118B (zh)
FI (1) FI20095988A0 (zh)
WO (1) WO2011042597A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107659283A (zh) * 2017-09-21 2018-02-02 华中科技大学 一种基于soi‑mems的温控隔振平台加工方法
CN108093679A (zh) * 2015-06-19 2018-05-29 芯时光公司 微机电谐振器
CN109417368A (zh) * 2016-07-01 2019-03-01 芬兰国家技术研究中心股份公司 微机械谐振器和用于微机械谐振器的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9158106B2 (en) 2005-02-23 2015-10-13 Pixtronix, Inc. Display methods and apparatus
US9261694B2 (en) 2005-02-23 2016-02-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US8519945B2 (en) 2006-01-06 2013-08-27 Pixtronix, Inc. Circuits for controlling display apparatus
US8482496B2 (en) 2006-01-06 2013-07-09 Pixtronix, Inc. Circuits for controlling MEMS display apparatus on a transparent substrate
US20070205969A1 (en) 2005-02-23 2007-09-06 Pixtronix, Incorporated Direct-view MEMS display devices and methods for generating images thereon
US9082353B2 (en) 2010-01-05 2015-07-14 Pixtronix, Inc. Circuits for controlling display apparatus
US7999994B2 (en) 2005-02-23 2011-08-16 Pixtronix, Inc. Display apparatus and methods for manufacture thereof
US8310442B2 (en) 2005-02-23 2012-11-13 Pixtronix, Inc. Circuits for controlling display apparatus
US8159428B2 (en) 2005-02-23 2012-04-17 Pixtronix, Inc. Display methods and apparatus
US9229222B2 (en) 2005-02-23 2016-01-05 Pixtronix, Inc. Alignment methods in fluid-filled MEMS displays
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US9176318B2 (en) 2007-05-18 2015-11-03 Pixtronix, Inc. Methods for manufacturing fluid-filled MEMS displays
US8169679B2 (en) 2008-10-27 2012-05-01 Pixtronix, Inc. MEMS anchors
EP2531997A1 (en) 2010-02-02 2012-12-12 Pixtronix Inc. Circuits for controlling display apparatus
FI123933B (fi) * 2011-05-13 2013-12-31 Teknologian Tutkimuskeskus Vtt Mikromekaaninen laite ja menetelmä sen suunnittelemiseksi
US9695036B1 (en) 2012-02-02 2017-07-04 Sitime Corporation Temperature insensitive resonant elements and oscillators and methods of designing and manufacturing same
US9134552B2 (en) 2013-03-13 2015-09-15 Pixtronix, Inc. Display apparatus with narrow gap electrostatic actuators
TWI538396B (zh) * 2013-05-20 2016-06-11 國立清華大學 微機電共振器之主動式溫度補償方法及其共振器
US9712128B2 (en) 2014-02-09 2017-07-18 Sitime Corporation Microelectromechanical resonator
US9705470B1 (en) 2014-02-09 2017-07-11 Sitime Corporation Temperature-engineered MEMS resonator
TWI569571B (zh) * 2015-05-12 2017-02-01 國立清華大學 超低功率熱致動振盪器及其驅動電路
US10676349B1 (en) 2016-08-12 2020-06-09 Sitime Corporation MEMS resonator
WO2019211926A1 (ja) 2018-05-02 2019-11-07 株式会社村田製作所 共振子及び共振装置
US11637540B2 (en) * 2019-10-30 2023-04-25 X-Celeprint Limited Non-linear tethers for suspended devices
FI20205711A1 (en) * 2020-07-03 2022-01-04 Kyocera Tikitin Oy Mems resonator and manufacturing process

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186467A (ja) * 1994-12-29 1996-07-16 Murata Mfg Co Ltd 拡がり振動型圧電振動子およびその製造方法
EP1313216A2 (en) * 1999-11-02 2003-05-21 ETA SA Manufacture Horlogère Suisse Temperature compensation mechanism for a micromechanical ring resonator
US20050195050A1 (en) * 2004-03-04 2005-09-08 Markus Lutz Temperature controlled mems resonator and method for controlling resonator frequency
WO2007072409A2 (en) * 2005-12-23 2007-06-28 Nxp B.V. A mems resonator, a method of manufacturing thereof, and a mems oscillator
JP2007184815A (ja) * 2006-01-10 2007-07-19 Seiko Epson Corp Mems振動子
US20070188269A1 (en) * 2003-04-16 2007-08-16 Markus Lutz Temperature compensation for silicon MEMS resonator
JP2008219237A (ja) * 2007-03-01 2008-09-18 Seiko Epson Corp バルク音響振動子
JP2008546243A (ja) * 2005-05-19 2008-12-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的共振器構造及びその設計方法、作動方法、及び使用方法
US20090072663A1 (en) * 2007-09-19 2009-03-19 Georgia Tech Research Corporation Single-resonator dual-frequency lateral-extension mode piezoelectric oscillators, and operating methods thereof
US20090158566A1 (en) * 2007-12-21 2009-06-25 Paul Merritt Hagelin Temperature Stable MEMS Resonator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153412A (ja) * 1982-03-08 1983-09-12 Nec Corp 圧電薄膜複合振動子
DE19641284C1 (de) * 1996-10-07 1998-05-20 Inst Mikro Und Informationstec Drehratensensor mit entkoppelten orthogonalen Primär- und Sekundärschwingungen
US6557419B1 (en) * 1996-12-31 2003-05-06 Honeywell International Inc. Zero TCF thin film resonator
JP3589211B2 (ja) * 2001-09-19 2004-11-17 株式会社大真空 圧電振動デバイス
US7824098B2 (en) * 2006-06-02 2010-11-02 The Board Of Trustees Of The Leland Stanford Junior University Composite mechanical transducers and approaches therefor
CH700716B1 (fr) * 2006-10-09 2010-10-15 Suisse Electronique Microtech Résonateur en silicium de type diapason.
JPWO2008093514A1 (ja) * 2007-02-02 2010-05-20 株式会社村田製作所 圧電薄膜共振子
US7591201B1 (en) * 2007-03-09 2009-09-22 Silicon Clocks, Inc. MEMS structure having a compensated resonating member
US7639104B1 (en) * 2007-03-09 2009-12-29 Silicon Clocks, Inc. Method for temperature compensation in MEMS resonators with isolated regions of distinct material
JP5122888B2 (ja) * 2007-08-27 2013-01-16 セイコーインスツル株式会社 発振子、発振子の製造方法、及び発振器
JP2009111623A (ja) * 2007-10-29 2009-05-21 Murata Mfg Co Ltd 圧電振動装置
JP5128296B2 (ja) * 2008-01-21 2013-01-23 セイコーインスツル株式会社 静電振動子および発振器
US7889030B2 (en) * 2008-08-07 2011-02-15 Infineon Technologies Ag Passive temperature compensation of silicon MEMS devices

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186467A (ja) * 1994-12-29 1996-07-16 Murata Mfg Co Ltd 拡がり振動型圧電振動子およびその製造方法
EP1313216A2 (en) * 1999-11-02 2003-05-21 ETA SA Manufacture Horlogère Suisse Temperature compensation mechanism for a micromechanical ring resonator
US20070188269A1 (en) * 2003-04-16 2007-08-16 Markus Lutz Temperature compensation for silicon MEMS resonator
US20050195050A1 (en) * 2004-03-04 2005-09-08 Markus Lutz Temperature controlled mems resonator and method for controlling resonator frequency
JP2008546243A (ja) * 2005-05-19 2008-12-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的共振器構造及びその設計方法、作動方法、及び使用方法
WO2007072409A2 (en) * 2005-12-23 2007-06-28 Nxp B.V. A mems resonator, a method of manufacturing thereof, and a mems oscillator
JP2007184815A (ja) * 2006-01-10 2007-07-19 Seiko Epson Corp Mems振動子
JP2008219237A (ja) * 2007-03-01 2008-09-18 Seiko Epson Corp バルク音響振動子
US20090072663A1 (en) * 2007-09-19 2009-03-19 Georgia Tech Research Corporation Single-resonator dual-frequency lateral-extension mode piezoelectric oscillators, and operating methods thereof
US20090158566A1 (en) * 2007-12-21 2009-06-25 Paul Merritt Hagelin Temperature Stable MEMS Resonator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108093679A (zh) * 2015-06-19 2018-05-29 芯时光公司 微机电谐振器
CN108093679B (zh) * 2015-06-19 2022-03-04 芯时光公司 微机电谐振器
CN109417368A (zh) * 2016-07-01 2019-03-01 芬兰国家技术研究中心股份公司 微机械谐振器和用于微机械谐振器的方法
CN109417368B (zh) * 2016-07-01 2023-06-23 芬兰国家技术研究中心股份公司 微机械谐振器和用于微机械谐振器的方法
CN107659283A (zh) * 2017-09-21 2018-02-02 华中科技大学 一种基于soi‑mems的温控隔振平台加工方法
CN107659283B (zh) * 2017-09-21 2019-09-24 华中科技大学 一种基于soi-mems的温控隔振平台加工方法

Also Published As

Publication number Publication date
US20120229226A1 (en) 2012-09-13
JP5704614B2 (ja) 2015-04-22
WO2011042597A1 (en) 2011-04-14
JP2013506334A (ja) 2013-02-21
EP2484008A4 (en) 2014-06-18
CN102577118B (zh) 2016-03-16
EP2484008A1 (en) 2012-08-08
EP2484008B1 (en) 2016-08-10
FI20095988A0 (fi) 2009-09-28

Similar Documents

Publication Publication Date Title
CN102577118A (zh) 微机械谐振器
JP4099393B2 (ja) 集積されたマイクロメカニカル音叉共振器を備えるタイムベース
US8339131B2 (en) Electric field sensor with electrode interleaving vibration
US7999635B1 (en) Out-of plane MEMS resonator with static out-of-plane deflection
US6940370B2 (en) MEMS resonator and method of making same
US8289092B2 (en) Microelectromechanical resonant structure having improved electrical characteristics
US9071226B2 (en) Micromechanical resonator and method for manufacturing thereof
CN110289823B (zh) 一种微机械谐振器
US9300227B2 (en) Monolithic body MEMS devices
CN102947674A (zh) 用于角速率传感器的mems结构
US11277112B2 (en) Micro-electro-mechanical device with reduced temperature sensitivity and manufacturing method thereof
FI130145B (en) MICROELECTROMECHANICAL RESONATOR
CN103808961A (zh) 悬臂件及应用其的谐振式加速度传感器
US20230133733A1 (en) Microelectromechanical system resonator assembly
EP2339748B1 (en) Resonator
CN114911051B (zh) 一种低温漂静电mems微镜及其实现方法
EP2713509B1 (en) MEMS resonator with improved amplitude saturation
CN117833854A (zh) Mems谐振器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Espoo, Finland

Applicant after: Finnish National Technical Research Center joint-stock company

Address before: Espoo, Finland

Applicant before: Teknologian Tutkimuskeskus Vtt

COR Change of bibliographic data
C14 Grant of patent or utility model
GR01 Patent grant