CN102543258B - Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof - Google Patents

Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof Download PDF

Info

Publication number
CN102543258B
CN102543258B CN 201210024776 CN201210024776A CN102543258B CN 102543258 B CN102543258 B CN 102543258B CN 201210024776 CN201210024776 CN 201210024776 CN 201210024776 A CN201210024776 A CN 201210024776A CN 102543258 B CN102543258 B CN 102543258B
Authority
CN
China
Prior art keywords
particle diameter
electric field
preparation
slurry
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201210024776
Other languages
Chinese (zh)
Other versions
CN102543258A (en
Inventor
卢森锴
喻亮
韦永森
黄平
曾柳娟
王艳玲
刘鹏
王文峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin Normal College
Original Assignee
Guilin Normal College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin Normal College filed Critical Guilin Normal College
Priority to CN 201210024776 priority Critical patent/CN102543258B/en
Publication of CN102543258A publication Critical patent/CN102543258A/en
Application granted granted Critical
Publication of CN102543258B publication Critical patent/CN102543258B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The invention provides environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and a preparation method thereof and relates to battery back electric field slurry and a preparation method thereof. The slurry comprises the following components in percentage by weight: 20-35 percent of nanometer lithium phosphate powder, 50-68 percent of aluminum powder, 8-16 percent of organic carriers, 0.5-6 percent of bonding materials, 2-15 percent of solvents and 0.2-2.2 percent of dispersing agents; and the preparation method of the slurry comprises the following steps of: S1, selecting the grain sizes of the nanometer lithium phosphate powder and the aluminum powder; S2, preparing the bonding materials; S3, preparing the organic carriers; S4, preparing the solvents; S5, preparing the dispersing agents; and S6, preparing the solar energy battery back electric field slurry. The slurry has the beneficial effects that no Pb, Cd and other poisonous substance is contained, the problem of environmental pollution caused by back electric field silver aluminum slurry containing Pb is truly solved, the strength enhancement of a solar energy battery back electric field is further benefited, and the passivation level of a battery surface field is easily improved, thereby better light absorption rate and lower light reflection rate are obtained, so that the photoelectric conversion efficiency of a battery is remarkably improved.

Description

Phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry and preparation method thereof
Technical field
The present invention relates to a kind of battery back electric field slurry and preparation method thereof, particularly a kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry and preparation method thereof.
Background technology
Energy problem has become focus and the difficult point of global economy development, solar energy is the energy that is rich in development prospect and potentiality, over nearly 2 years, the utilization of solar energy source is just with annual speed rapid growth more than 50%, wherein solar cell is that conversion of solar energy is the important devices of electric energy, be still based on polysilicon solar cell in the photovoltaic generation at present, occupy about 90% of whole market share.And back of the body electric field slurry is the important materials of polysilicon solar cell back electrode, and it can pass through methods such as evaporation, sputter and silk screen printing, forms back electrode grid line firm, low ohm contact resistance at the silicon chip back side of polysilicon solar cell.Domestic year use amount of nearly 2 years back of the body electric field slurries reached about 160 tons, and volume of production and marketing all increases fast.But, increasing to the pollution of environment because these slurry ubiquities contain noxious substances such as Pb, the sustainable development of photovoltaic industry has been produced certain influence.Public announcement of a patent application number discloses a kind of " environment-friendly crystal silicon solar battery back electric field silver aluminum slurry and preparation method thereof " for CN102024856 A, this patent application has proposed a kind of solar battery back electric field slurry that does not contain six materials that the RoHS of European Union instruction forbids and preparation method thereof, but there is following shortcoming in this patent application: (1), battery back electric field weak strength, and the cell photoelectric conversion efficiency is not high; (2), the preparation process of binding material is to carry out under 900-1200 ℃ condition, temperature retention time is 30-60 minute simultaneously, and the slurry particle mean size≤10 μ m of final preparation; Because temperature drift in the preparation process of slurry, and temperature retention time is longer, these high temperature links will cause the solar cell electric property to reduce or amplification not obvious; In addition, the slurry particle diameter that makes is thick also can be to absorption or the reflection influence to some extent of light.
Summary of the invention
The technical problem to be solved in the present invention is: provide a kind of phosphorous environment-protecting asepsis type polysilicon solar cell back of the body electric field slurry and preparation method thereof, to solve exist in the above-mentioned prior art big for environment pollution, the cell photoelectric conversion efficiency is not high, the battery electric property reduces weak point.
The technical scheme that solves the problems of the technologies described above is: a kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, and the composition of this slurry and percentage by weight are: nanometer lithium phosphate powder 20~35%, aluminium powder 50~68%; Organic carrier: 8~16%; Binding material: 0.5~6%; Solvent: 2~15%; Dispersant: 0.2~2.2%, the weight summation of above-mentioned each composition is 100%.
Further technical scheme of the present invention is: the particle diameter<40nm of described nanometer lithium phosphate powder, the particle diameter of aluminium powder<1.0 μ m.
Described organic carrier is by weight percentage 30~40% ethyl cellulose resin to be dissolved in 60~70% the organic solvent to form.
Organic solvent in the described organic carrier is the propylene glycol butyl ether.
Described binding material is nano-oxide, and the composition of this binding material and percentage by weight are:
B 2O 3:25~35%, Bi 2O 3:35~55%, Al 2O 3:0~5%, SiO 2:0.05~5%,
TiO 2:0~5%, NiO:0.05~4%, ZnO:15~35%, Ga 2O 3:0.5~10%,
La 2O 3:0.05~3%, LiFePO 4:0.5~5%,
The weight summation of the composition of above-mentioned binding material is 100%.
Further technical scheme more of the present invention is: described B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤5nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm.
Described solvent is the terephthalic acid (TPA) dibutyl ester.
Described dispersant is husky rope wax.
Another technical scheme of the present invention is: this method may further comprise the steps:
S1, choose the nanometer lithium phosphate powder of particle diameter<40nm; Choose the aluminium powder of particle diameter<1.0 μ m;
The preparation of S2, binding material:
S2.1, choose nano oxidized raw material by following particle diameter:
B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤35nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm;
S2.2, take by weighing each by following percentage by weight and chosen the nano oxidized raw material of particle diameter:
B 2O 3:25~35%, Bi 2O 3:35~55%, Al 2O 3:0~5%, SiO 2:0.05~5%,
TiO 2:0~5%, NiO:0.05~4%, ZnO:15~35%, Ga 2O 3:0.5~10%,
La 2O 3:0.05~3%, LiFePO 4: 0.5~5%,
The weight summation of above-mentioned each nano oxidized raw material is 100%;
S2.3, be passed in the high temperature furnace after each nano oxidized raw material mixed, insulation is 20-30 minute under 380-480oC, carries out ball milling after quenching with deionized water subsequently, crosses 400 mesh sieves, namely makes binding material;
The preparation of S3, organic carrier: ethyl cellulose resin 30~40% is added in 60~70% the organic solvent by weight percentage, and this organic solvent is the propylene glycol butyl ether; Place the Water Tank with Temp.-controlled of 80~90oC then, ethyl cellulose resin is dissolved in the organic solvent fully, namely obtain organic carrier after filtering;
The preparation of S4, solvent: choose the terephthalic acid (TPA) dibutyl ester as solvent;
S5: the preparation of dispersant: choose husky rope wax as dispersant;
The preparation of S6, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry: get 20~35% nanometer lithium phosphate powder, get 50~68% aluminium powder, 8~16% organic carrier, 0.5~6% binding material, 2~15% solvent, 0.2~2.2% dispersant according to percentage by weight, after mixing in the planetary stirring machine, be dispersed to particle mean size<below the 1.0 μ m at three-roller again, can make phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry.
Owing to adopt technique scheme, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry of the present invention and preparation method thereof compared with prior art has following beneficial effect:
1, can solve with containing the problem of environmental pollution that Pb back electric field silver aluminum slurry causes:
Because in the composition of the present invention's phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, do not contain Pb, Cd, Hg, Cr (Vl), 6 kinds of noxious substances such as Polybrominated biphenyl PBB, Poly Brominated Diphenyl Ethers PBDE, stock quality meets the RoHS of European Union about the regulation of the instruction 2005/84/EC of phthalic acid ester, has really solved present photovoltaic industry with containing the problem of environmental pollution that Pb back electric field silver aluminum slurry causes.
2, cell photoelectric conversion efficiency height:
In the present invention's phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, the content of lithium phosphate powder reaches 20~35%, this is not only because the diffusion concentration of phosphorus compares all high orders of magnitude of silver, aluminium, the phosphorus gettering is faster than silver, aluminium gettering, and the more important thing is that phosphorus can absorb the beavy metal impurity of silicon chip inside, be conducive to improve polysilicon P-N junction characteristic.Therefore, phosphorous slurry more is conducive to the enhancing of solar battery back electric field intensity, is easier to improve battery surface field passivation level, thereby obtains better absorptivity and lower light reflectivity, and it is more remarkable that the cell photoelectric conversion efficiency is improved.
3, the electric property of battery is better:
Because in phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry of the present invention and preparation method thereof, the lithium phosphate powder is to adopt nanometer lithium phosphate powder, binding material is to prepare with nano-oxide, because its particle is little, nano-particle surface can be high, therefore cause slurry fusing point, sintering temperature and crystallization temperature all much lower than conventional powder body material, the light absorption of polycrystal silicon cell like this, sensitiveness are better, and the electric property of battery is even better.
In addition, because binding material of the present invention has adopted nano material Ga 2O 3, La 2O 3, LiFePO 4Substitute traditional coarse grain material CaO, NiO 2, Li 2O, V 2O 5Deng, its role is to: the one, can make the sintering temperature of binding material preparation process reduce more than one times; The 2nd, Ga 2O 3(gallium oxide) is a kind of wide bandgap semiconductor, its energy gap Eg=4.9eV, and its electric conductivity and the characteristics of luminescence are better, La 2O 3(lanthana) is conducive to the improvement of solar cell dielectric property, LiFePO 4(LiFePO4) plays good catalytic action.
4, cost low, be easy to produce in batches:
Because in the composition of the present invention's phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, the binding material that includes nanometer lithium phosphate powder and prepared by nano-oxide, these nano materials are domestic to be produced in enormous quantities, price is also lower, be easy to produce in batches the present invention's slurry, also be conducive to the target that realizes that the polysilicon solar cell cost reduces, production scale enlarges.
Below, the technical characterictic to phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry of the present invention and preparation method thereof is further described in conjunction with specific embodiments.
Specific embodiment
Embodiment one:
A kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, the composition of this slurry and percentage by weight are: nanometer lithium phosphate powder 20%, aluminium powder 68%; Organic carrier: 8%; Binding material: 0.5%; Solvent: 3.3%; Dispersant: 0.2%, the weight summation of above-mentioned each composition is 100%.
Wherein, particle diameter<the 40nm of described nanometer lithium phosphate powder, the particle diameter of aluminium powder<1.0 μ m, described organic carrier is by weight percentage 30% ethyl cellulose resin to be dissolved in 70% the organic solvent to form, organic solvent is the propylene glycol butyl ether, described solvent is the terephthalic acid (TPA) dibutyl ester, and described dispersant is husky rope wax.
Described binding material is nano-oxide, and the composition of this binding material and percentage by weight are:
B 2O 3:25%, Bi 2O 3:55%, Al 2O 3:0%, SiO 2:0.05%,
TiO 2:0%, NiO:0.05%, ZnO:15%, Ga 2O 3:3%,
La 2O 3:0.9%, LiFePO 4:1%,
The weight summation of the composition of above-mentioned binding material is 100%.
Described B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤5nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm.
Its preparation method of above-mentioned phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry comprises following method:
S1, choose the nanometer lithium phosphate powder of particle diameter<40nm; Choose the aluminium powder of particle diameter<1.0 μ m;
The preparation of S2, binding material:
S2.1, choose nano oxidized raw material by following particle diameter:
B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤35nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm;
S2.2, take by weighing each by following percentage by weight and chosen the nano oxidized raw material of particle diameter:
B 2O 3:25%, Bi 2O 3:55%, Al 2O 3:0%, SiO 2:0.05%,
TiO 2:0%, NiO:0.05%, ZnO:15%, Ga 2O 3:3%,
La 2O 3:0.9%, LiFePO 4:1%,
The weight summation of above-mentioned each nano oxidized raw material is 100%;
S2.3, be passed in the high temperature furnace after each nano oxidized raw material mixed, insulation is 20 minutes under 380oC, carries out ball milling after quenching with deionized water subsequently, crosses 400 mesh sieves, namely makes binding material;
The preparation of S3, organic carrier: ethyl cellulose resin 30% is added in 70% the organic solvent by weight percentage, and this organic solvent is the propylene glycol butyl ether; Place the Water Tank with Temp.-controlled of 80oC then, ethyl cellulose resin is dissolved in the organic solvent fully, namely obtain organic carrier after filtering;
The preparation of S4, solvent: choose the terephthalic acid (TPA) dibutyl ester as solvent;
S5: the preparation of dispersant: choose husky rope wax as dispersant;
The preparation of S6, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry: get nanometer lithium phosphate powder 20% according to percentage by weight, aluminium powder 68%, organic carrier 8%, binding material 0.5%, solvent 3.3%, dispersant 0.2% is after mixing in the planetary stirring machine, be dispersed to particle mean size<below the 1.0 μ m at three-roller again, can make phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry.
Embodiment two:
A kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, it is characterized in that: the composition of this slurry and percentage by weight are: nanometer lithium phosphate powder 25%, aluminium powder 55%; Organic carrier: 10%; Binding material: 3%; Solvent: 6%; Dispersant: 1%, the weight summation of above-mentioned each composition is 100%.
Wherein, particle diameter<the 40nm of described nanometer lithium phosphate powder, the particle diameter of aluminium powder<1.0 μ m, described organic carrier is by weight percentage 35% ethyl cellulose resin to be dissolved in 65% the organic solvent to form, organic solvent is the propylene glycol butyl ether, described solvent is the terephthalic acid (TPA) dibutyl ester, and dispersant is husky rope wax.
Described binding material is nano-oxide, and the composition of this binding material and percentage by weight are:
B 2O 3:30%, Bi 2O 3:45%, Al 2O 3:3%, SiO 2:0.5%,
TiO 2:1%, NiO:0.5%, ZnO:18%, Ga 2O 3:0.5%,
La 2O 3:1%, LiFePO 4:0.5%,
The weight summation of the composition of above-mentioned binding material is 100%;
Above-mentioned B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤5nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm.
Its preparation method of above-mentioned phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry comprises following method:
S1, choose the nanometer lithium phosphate powder of particle diameter<40nm; Choose the aluminium powder of particle diameter<1.0 μ m;
The preparation of S2, binding material:
S2.1, choose nano oxidized raw material by following particle diameter:
B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤35nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm;
S2.2, take by weighing each by following percentage by weight and chosen the nano oxidized raw material of particle diameter:
B 2O 3:30%, Bi 2O 3:45%, Al 2O 3:3%, SiO 2:0.5%,
TiO 2:1%, NiO:0.5%, ZnO:18%, Ga 2O 3:0.5%,
La 2O 3:1%, LiFePO 4:0.5%,
The weight summation of above-mentioned each nano oxidized raw material is 100%;
S2.3, be passed in the high temperature furnace after each nano oxidized raw material mixed, insulation is 25 minutes under 430oC, carries out ball milling after quenching with deionized water subsequently, crosses 400 mesh sieves, namely makes binding material;
The preparation of S3, organic carrier: ethyl cellulose resin 35% is added in 65% the organic solvent by weight percentage, and this organic solvent is the propylene glycol butyl ether; Place the Water Tank with Temp.-controlled of 85oC then, ethyl cellulose resin is dissolved in the organic solvent fully, namely obtain organic carrier after filtering;
The preparation of S4, solvent: choose the terephthalic acid (TPA) dibutyl ester as solvent;
S5: the preparation of dispersant: choose husky rope wax as dispersant;
The preparation of S6, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry: get nanometer lithium phosphate powder 25%, aluminium powder 55% according to percentage by weight; Organic carrier: 10%; Binding material: 3%; Solvent: 6%; Dispersant: 1%, after mixing in the planetary stirring machine, be dispersed to particle mean size<below the 1.0 μ m at three-roller again, can make phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry.
Embodiment three:
A kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, the composition of this slurry and percentage by weight are: nanometer lithium phosphate powder 35%, aluminium powder 50%; Organic carrier: 9%; Binding material: 2%; Solvent: 2%; Dispersant: 2%, the weight summation of above-mentioned each composition is 100%.
Wherein, the particle diameter<40nm of described nanometer lithium phosphate powder, the particle diameter of aluminium powder<1.0 μ m, described organic carrier are dissolved in 40% ethyl cellulose resin in 60% the organic solvent to form by weight percentage, and organic solvent is the propylene glycol butyl ether.Described solvent is the terephthalic acid (TPA) dibutyl ester, and dispersant is husky rope wax.
Described binding material is nano-oxide, and the composition of this binding material and percentage by weight are:
B 2O 3:35%, Bi 2O 3:35%, Al 2O 3:5%, SiO 2:1%,
TiO 2:5%, NiO:0.25%, ZnO:15%, Ga 2O 3:0.5%,
La 2O 3:0.25%, LiFePO 4:3%,
The weight summation of the composition of above-mentioned binding material is 100%.
Above-mentioned B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤5nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm.
The preparation method of above-mentioned phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry may further comprise the steps:
S1, choose the nanometer lithium phosphate powder of particle diameter<40nm; Choose the aluminium powder of particle diameter<1.0 μ m;
The preparation of S2, binding material:
S2.1, choose nano oxidized raw material by following particle diameter:
B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤35nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm;
S2.2, take by weighing each by following percentage by weight and chosen the nano oxidized raw material of particle diameter:
B 2O 3:35%, Bi 2O 3:35%, Al 2O 3:5%, SiO 2:1%,
TiO 2:5%, NiO:0.25%, ZnO:15%, Ga 2O 3:0.5%,
La 2O 3:0.25%, LiFePO 4:3%,
The weight summation of above-mentioned each nano oxidized raw material is 100%;
S2.3, be passed in the high temperature furnace after each nano oxidized raw material mixed, insulation is 30 minutes under 480oC, carries out ball milling after quenching with deionized water subsequently, crosses 400 mesh sieves, namely makes binding material;
The preparation of S3, organic carrier: ethyl cellulose resin 40% is added in 60% the organic solvent by weight percentage, and this organic solvent is the propylene glycol butyl ether; Place the Water Tank with Temp.-controlled of 90oC then, ethyl cellulose resin is dissolved in the organic solvent fully, namely obtain organic carrier after filtering;
The preparation of S4, solvent: choose the terephthalic acid (TPA) dibutyl ester as solvent;
S5: the preparation of dispersant: choose husky rope wax as dispersant;
The preparation of S6, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry: get nanometer lithium phosphate powder 35%, aluminium powder 50% according to percentage by weight; Organic carrier: 9%; Binding material: 2%; Solvent: 2%; Dispersant: 2%, after mixing in the planetary stirring machine, be dispersed to particle mean size<below the 1.0 μ m at three-roller again, can make phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry.
Embodiment four~embodiment ten:
A kind of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry and preparation method thereof, the composition of this slurry is with embodiment one~embodiment three, the step of its preparation method is also with embodiment one~embodiment three, institute's difference is: the percentage by weight of each composition of described phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry changes to some extent, specifically changes referring to subordinate list one; Simultaneously, the percentage by weight of each composition of binding material also changes to some extent, specifically changes referring to subordinate list two.
As a kind of conversion of embodiment one~embodiment ten, described organic carrier generally is 30~40% ethyl cellulose resin to be dissolved in 60~70% the organic solvent form; And generally be the Water Tank with Temp.-controlled that places 80~90oC, ethyl cellulose resin is dissolved in the organic solvent fully.
Another conversion as embodiment one~embodiment ten, in the preparation method of phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, in the preparation of step S2, binding material, described in high temperature furnace heat-retaining condition generally be: under 380~480oC, be incubated 20~30 minutes.
Figure 748669DEST_PATH_IMAGE001
The test example:
Carry on the back every performance of electric field slurry in order to verify the present invention's phosphorous environment-protecting asepsis polysilicon solar cell, the inventor randomly draws three batches sample and tests, its result of the test is respectively referring to subordinate list three, this shows that every performance of the present invention's phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry all is better than conventional polysilicon solar cell back of the body electric field slurry.
Figure 320913DEST_PATH_IMAGE003

Claims (6)

1. a phosphorous environment-protecting asepsis polysilicon solar cell is carried on the back the electric field slurry, and it is characterized in that: the composition of this slurry and percentage by weight are: nanometer lithium phosphate powder 20~35%, aluminium powder 50~68%; Organic carrier: 8~16%; Binding material: 0.5~6%; Solvent: 2~15%; Dispersant: 0.2~2.2%, the weight summation of above-mentioned each composition is 100%;
Particle diameter<the 40nm of described nanometer lithium phosphate powder, the particle diameter of aluminium powder<1.0 μ m;
Described binding material is nano-oxide, and the composition of this binding material and percentage by weight are:
B 2O 3:25~35%,Bi 2O 3:35~55%,Al 2O 3:0~5%,SiO 2:0.05~5%,
TiO 2:0~5%,NiO:0.05~4%,ZnO:15~35%,Ga 2O 3:0.5~10%,
La 2O 3:0.05~3%,LiFePO 4:0.5~5%,
The weight summation of the composition of above-mentioned binding material is 100%;
Described B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤5nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm.
2. phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry according to claim 1 is characterized in that: described organic carrier is by weight percentage 30~40% ethyl cellulose resin to be dissolved in 60~70% the organic solvent to form.
3. phosphorous environment-protecting asepsis polysilicon solar cell according to claim 2 is carried on the back the electric field slurry, and it is characterized in that: the organic solvent in the described organic carrier is the propylene glycol butyl ether.
4. phosphorous environment-protecting asepsis polysilicon solar cell according to claim 1 is carried on the back the electric field slurry, and it is characterized in that: described solvent is the terephthalic acid (TPA) dibutyl ester.
5. phosphorous environment-protecting asepsis polysilicon solar cell according to claim 1 is carried on the back the electric field slurry, and it is characterized in that: described dispersant is husky rope wax.
6. the preparation method of a phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry, it is characterized in that: this method may further comprise the steps:
S1, choose the nanometer lithium phosphate powder of particle diameter<40nm; Choose the aluminium powder of particle diameter<1.0 μ m;
The preparation of S2, binding material:
S2.1, choose nano oxidized raw material by following particle diameter:
B 2O 3Particle diameter≤80nm, Bi 2O 3Particle diameter≤80nm, Al 2O 3Particle diameter≤20nm, SiO 2Particle diameter≤30nm, TiO 2Particle diameter≤35nm, particle diameter≤30nm of NiO, particle diameter≤30nm of ZnO, Ga 2O 3Particle diameter≤80nm, La 2O 3Particle diameter≤40nm, LiFePO 4Particle diameter≤40nm;
S2.2, take by weighing each by following percentage by weight and chosen the nano oxidized raw material of particle diameter:
B 2O 3:25~35%,Bi 2O 3:35~55%,Al 2O 3:0~5%,SiO 2:0.05~5%,
TiO 2:0~5%,NiO:0.05~4%,ZnO:15~35%,Ga 2O 3:0.5~10%,
La 2O 3:0.05~3%,LiFePO 4:0.5~5%,
The weight summation of above-mentioned each nano oxidized raw material is 100%;
S2.3, be passed in the high temperature furnace after each nano oxidized raw material mixed, insulation is 20-30 minute under 380-480 ° of C, carries out ball milling after quenching with deionized water subsequently, crosses 400 mesh sieves, namely makes binding material;
The preparation of S3, organic carrier: ethyl cellulose resin 30~40% is added in 60~70% the organic solvent by weight percentage, and this organic solvent is the propylene glycol butyl ether; Place the Water Tank with Temp.-controlled of 80~90 ° of C then, ethyl cellulose resin is dissolved in the organic solvent fully, namely obtain organic carrier after filtering;
The preparation of S4, solvent: choose the terephthalic acid (TPA) dibutyl ester as solvent;
S5: the preparation of dispersant: choose husky rope wax as dispersant;
The preparation of S6, phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry: get 20~35% nanometer lithium phosphate powder, get 50~68% aluminium powder, 8~16% organic carrier, 0.5~6% binding material, 2~15% solvent, 0.2~2.2% dispersant according to percentage by weight, after mixing in the planetary stirring machine, be dispersed to particle mean size<below the 1.0 μ m at three-roller again, can make phosphorous environment-protecting asepsis polysilicon solar cell back of the body electric field slurry.
CN 201210024776 2011-10-24 2012-02-06 Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof Expired - Fee Related CN102543258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210024776 CN102543258B (en) 2011-10-24 2012-02-06 Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110324473.3 2011-10-24
CN201110324473 2011-10-24
CN 201210024776 CN102543258B (en) 2011-10-24 2012-02-06 Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102543258A CN102543258A (en) 2012-07-04
CN102543258B true CN102543258B (en) 2013-08-07

Family

ID=46349934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210024776 Expired - Fee Related CN102543258B (en) 2011-10-24 2012-02-06 Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102543258B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098826B (en) * 2016-08-05 2017-09-15 星慧照明工程集团有限公司 A kind of high-efficiency solar silion cell plate and preparation method, battery component
CN106224877A (en) * 2016-08-05 2016-12-14 星慧照明工程集团有限公司 A kind of wind-solar hybrid intelligent LED street lamp and preparation method
CN106597241A (en) * 2017-01-24 2017-04-26 桂林师范高等专科学校 Monitoring system for insulator arc-over
CN106597240A (en) * 2017-01-24 2017-04-26 桂林师范高等专科学校 Insulator contamination monitoring system
CN107240436A (en) * 2017-06-30 2017-10-10 北京市合众创能光电技术有限公司 A kind of PERC crystal silicon solar energy batteries positive silver paste and preparation method thereof
CN112289481B (en) * 2019-07-23 2022-05-13 苏州晶银新材料股份有限公司 Solar cell front electrode slurry and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295739A (en) * 2007-04-26 2008-10-29 比亚迪股份有限公司 Conductive slurry for solar battery front side electrode and production method thereof
CN101453010A (en) * 2007-12-04 2009-06-10 比亚迪股份有限公司 Electrode pulp, preparation method and battery pole piece thereof
CN101582462A (en) * 2009-06-29 2009-11-18 广州市儒兴科技股份有限公司 Lead-free Al-back-surface-field (BSF) paste for crystalline silicon solar battery and preparation method thereof
CN101950594A (en) * 2010-09-20 2011-01-19 浙江大学 Lead-free environment-friendly electronic Ag/Al (silver/aluminum) paste and preparation method thereof
CN101968975A (en) * 2010-08-20 2011-02-09 长兴化学工业股份有限公司 Aluminum paste composition and solar cell module using same
CN102142467A (en) * 2010-01-29 2011-08-03 比亚迪股份有限公司 Solar cell back electric field aluminium paste and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101295739A (en) * 2007-04-26 2008-10-29 比亚迪股份有限公司 Conductive slurry for solar battery front side electrode and production method thereof
CN101453010A (en) * 2007-12-04 2009-06-10 比亚迪股份有限公司 Electrode pulp, preparation method and battery pole piece thereof
CN101582462A (en) * 2009-06-29 2009-11-18 广州市儒兴科技股份有限公司 Lead-free Al-back-surface-field (BSF) paste for crystalline silicon solar battery and preparation method thereof
CN102142467A (en) * 2010-01-29 2011-08-03 比亚迪股份有限公司 Solar cell back electric field aluminium paste and preparation method thereof
CN101968975A (en) * 2010-08-20 2011-02-09 长兴化学工业股份有限公司 Aluminum paste composition and solar cell module using same
CN101950594A (en) * 2010-09-20 2011-01-19 浙江大学 Lead-free environment-friendly electronic Ag/Al (silver/aluminum) paste and preparation method thereof

Also Published As

Publication number Publication date
CN102543258A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102543258B (en) Environmentally-friendly and innocuous polycrystalline silicon solar energy battery back electric field slurry containing phosphorus and preparation method thereof
CN107746184B (en) Glass powder composition, conductive silver paste containing glass powder composition and preparation method of conductive silver paste
CN101901844B (en) Solar cell conductive slurry and preparation method thereof
CN105702865B (en) A kind of metal-doped perovskite thin film, preparation method and application
CN102347094B (en) Aluminium paste for preparing crystal silicon solar cell aluminium back surface field and manufacture method thereof
CN102956283B (en) A kind of new and effective crystal silicon solar batteries unleaded silver slurry and preparation and application thereof
CN104376894B (en) Solar cell conductive front side silver paste
TWI523041B (en) Composition for forming solar cell electrode and electrode prepared using the same
CN107611269B (en) Perovskite photovoltaic composite material for 3D printing molding and preparation method
CN104795127A (en) Electric conduction slurry and application of electric conduction slurry in N type silicon wafer solar cells
CN101804971A (en) Preparation method of copper indium selenide nanocrystalline material
CN102569439B (en) Environment-friendly and non-toxic crystalline silicon solar cell back surface field paste and preparation method thereof
CN103545017A (en) Conductor paste for positive electrode of solar cell and preparation method of conductor paste
CN106847367A (en) A kind of front electrode of solar battery conductive silver paste and preparation method thereof
CN102543252B (en) Silicon solar battery front silver paste with wide high-temperature sintering window
Jiang et al. Inserting an intermediate band in Cu-and Ag-based Kesterite compounds by Sb doping: a first-principles study
CN110120274B (en) Back electrode slurry of all-aluminum back surface field and preparation method and application thereof
CN101818375A (en) Method for preparing copper-indium-gallium-selenium(sulfur) light absorption layer by adopting non-vacuum process
CN104810431A (en) Method for preparing copper indium gallium selenide thin film through screen printing process
KR101189623B1 (en) Metal paste composition for front electrode of silicon solar cell, Method of preparing the same and Silicon solar cell comprising the same
CN103606573A (en) Intermediate band absorbing material of chalcopyrite structure and preparing method thereof
Liu et al. Optimizing the Se/S atom ratio and suppressing Sb2O3 impurities in hydrothermal deposition of Sb2 (S, Se) 3 films via Na+ doping
CN101789470A (en) Method for fabricating CuInGaSe absorbed layer in antivacuum way
CN105590663A (en) Lead-free and bismuth-free conductive silver paste, preparation method of silver grid line, and silicon solar cell
CN104538499B (en) Solar energy film material copper-zinc-tin-sulfur raw powder's production technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130807

Termination date: 20200206

CF01 Termination of patent right due to non-payment of annual fee