CN101789470A - Method for fabricating CuInGaSe absorbed layer in antivacuum way - Google Patents

Method for fabricating CuInGaSe absorbed layer in antivacuum way Download PDF

Info

Publication number
CN101789470A
CN101789470A CN 201010120009 CN201010120009A CN101789470A CN 101789470 A CN101789470 A CN 101789470A CN 201010120009 CN201010120009 CN 201010120009 CN 201010120009 A CN201010120009 A CN 201010120009A CN 101789470 A CN101789470 A CN 101789470A
Authority
CN
China
Prior art keywords
powder
layer
sulfur
indium gallium
cuingase
Prior art date
Application number
CN 201010120009
Other languages
Chinese (zh)
Inventor
杨益郎
陈文仁
Original Assignee
昆山正富机械工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山正富机械工业有限公司 filed Critical 昆山正富机械工业有限公司
Priority to CN 201010120009 priority Critical patent/CN101789470A/en
Publication of CN101789470A publication Critical patent/CN101789470A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

The invention relates to a method for fabricating a CuInGaSe absorbed layer in an antivacuum way, which is used for forming a uniform light absorption layer on a molybdenum layer under an antivacuum condition. The method comprises the following steps of: firstly, mixing the powder of a second component, a third component and a fourth component which contain the elements of an IB group, an IIIA group and a VIA group so as to form a primary mixed powder containing CuInGaSe (sulfide) based on formula ratio; secondly, adding extra VIA group element powder into the mixed powder to form final mixed powder containing the CuInGaSe or CuInGaSe sulfide; thirdly, adding a solvent, a surfactant and an adhesion agent to the final mixed powder and stirring to form CuInGaSe slurry; fourthly, coating the CuInGaSe slurry on a molybdenum layer and soft-baking to enable the solvent to volatilize so as to form a light absorption precursor layer; and finally placing a substrate containing the light absorption precursor layer in an RTA (rapid thermal annealing) furnace containing the VIA group element powder, annealing for growing crystal under a VIA group steam atmosphere formed at high temperature so as to form the light absorption layer containing the CuInGaSe or the CuInGaSe sulfide.

Description

非真空制作铜铟镓硒吸收层的方法 The method of making a non-vacuum CIGS absorber layer

技术领域 FIELD

[0001] 本发明涉及一种制作铜铟镓硒光吸收层的方法,特别是涉及一种非真空制作铜铟 [0001] The present invention relates to a method of making the CIGS light absorbing layer, particularly to a non-vacuum produced copper indium

镓硒吸收层的方法。 Gallium selenium absorption layer method. 背景技术 Background technique

[0002] 近年来,随国际油价高涨及环保意识的抬头,绿色能源已成为新能源主流,其中太阳能电池又因是取自太阳的稳定辐射能,来源不会枯竭,因此更为各国所重视,无不挹注大量研发经费及政策性补贴,以扶植本地的太阳能电池产业,使得全球太阳能产业的发展非常快速。 [0002] In recent years, with the rise of international oil prices and environmental awareness, green energy has become the mainstream of new energy sources, of which solar cells are taken from stable because of the sun's radiant energy source does not dry up, and therefore more valued by various countries, all inject a large number of R & D funding and policy subsidies to foster local solar industry, making the development of the global solar industry is very fast.

[0003] 第一代太阳能模组包括单晶硅和多晶硅的太阳能模组,虽然光电转换效率高且量产技术成熟,但因为材料成本高,且硅晶圆常因半导体工业的需求而货源不足,影响后续的量产规模。 [0003] The first generation of silicon and polysilicon solar modules comprising solar modules, although high photoelectric conversion efficiency and the production technology is mature, but because the material cost is high, and the demand for silicon wafers in the semiconductor industry often due to the shortage of supply , affect the subsequent mass production scale. 因此,包含非晶硅薄膜、铜铟镓硒(CIGS)薄膜或铜铟镓硒(硫)(CIGSS)薄膜和碲化镉薄膜的第二代的薄膜太阳能模组,在近几年已逐渐发展并成熟,其中又以铜铟镓硒或铜铟镓硒(硫)太阳能电池的转换效率最高(单元电池可高达20%而模组约14% ),因此特别受到重视。 Thus, a thin film comprising amorphous silicon, copper indium gallium selenide (CIGS) thin film or a copper indium gallium selenide (thio) (CIGSS) thin film and the cadmium telluride thin film solar module of the second generation, have evolved in recent years and maturation, among which copper indium gallium diselenide, or copper indium gallium selenide (sulfur) the maximum conversion efficiency of the solar cell (cell module up to 20% and about 14%), thus special attention.

[0004] 请参阅图l所示,是现有技术铜铟镓硒或铜铟镓硒(硫)太阳能电池结构的示意图。 [0004] Referring to FIG. L, it is a schematic view of the prior art copper indium gallium diselenide, or copper indium gallium selenide (sulfur) solar cell structure. 如图1所示,现有技术的铜铟镓硒太阳能电池结构包括基板10、第一导电层20、铜铟镓硒或铜铟镓硒(硫)吸收层30、缓冲层40、绝缘层50以及第二导电层60,其中基板10可为玻璃板、铝板、不绣钢板或塑胶板,第一导电层20 —般包括金属钼,当作背面电极,铜铟镓硒或铜铟镓硒(硫)吸收层30是包括适当比例的铜、铟、镓及硒,当作p型薄膜,为主要的光线吸收层,缓冲层40可包括硫化镉(CdS),当作n型薄膜,绝缘层50包括氧化锌(ZnO), 用以提供保护,第二导电层60包含氧化锌铝(ZnO:Al),用以连接正面电极。 As shown, the CIGS solar cell structure of the prior art comprises a substrate 10, a first conductive layer 20, copper indium gallium diselenide, or copper indium gallium selenide (thio) absorption layer 30, buffer layer 40, insulating layer 50 and a second conductive layer 60, wherein the substrate 10 may be a glass plate, an aluminum plate, stainless steel plate or a plastic plate, a first conductive layer 20 - as a metal including molybdenum, as a back electrode, the CIGS, or copper indium gallium selenide ( sulfur) absorption layer 30 comprising copper, indium, gallium, and selenium in the appropriate proportion, as the p-type thin film, the light absorbing layer as the main, the buffer layer 40 may include cadmium sulfide (CdS), as the n-type thin film, an insulating layer 50 include zinc oxide (ZnO), to provide protection, the second conductive layer 60 comprises aluminum zinc oxide (ZnO: Al), is connected to the front electrode. [0005] 上述铜铟镓硒或铜铟镓硒(硫)太阳能电池的制造方法主要依据铜铟镓硒或铜铟镓硒(硫)吸收层的制造环境而分成真空制造工艺及非真空制造工艺。 [0005] The copper indium gallium diselenide, or copper indium gallium selenide (thio) producing a solar cell is mainly based manufacturing environment copper indium gallium diselenide, or copper indium gallium selenide (thio) absorption layer is divided into the vacuum producing process and non-vacuum fabrication process . 真空制造工艺包括溅镀法或蒸镀法,缺点是投资成本较高且材料利用率较低,因此整体制作成本较高。 The manufacturing process comprises a vacuum sputtering or vapor deposition method, a disadvantage is the higher investment costs and lower material utilization, and therefore higher overall production costs. 非真空制造工艺包括印刷法或电沉积法,缺点是技术仍不成熟,仍无较大面积的商品化产品。 Non-vacuum fabrication process comprises a printing method or an electrodeposition method, the disadvantage is still not mature technology, there is still no large area commercial products. 不过非真空制造工艺仍具有制造设备简单且制造工艺条件容易达成的优点,而有相当的商业潜力。 However, non-vacuum manufacturing process still has the advantage of a simple manufacturing equipment and manufacturing process conditions easy to achieve, but there is considerable commercial potential.

[0006] 铜铟镓硒或铜铟镓硒(硫)吸收层的非真空制造工艺是先调配铜铟镓硒或铜铟镓硒(硫)浆料或墨水(Ink),用以涂布到钼层上。 [0006] copper indium gallium diselenide, or copper indium gallium selenide (thio) the absorbent layer is non-vacuum process for manufacturing the first formulation, or copper indium gallium selenide, copper indium gallium selenide (thio) a slurry or ink (Ink), applied to the molybdenum layer.

[0007] 现有技术中,铜铟镓硒或铜铟镓硒(硫)浆料调配是先以适当比例混合含IB、IIIA 及VIA族元素的二成份、三成份或四成份的粉末以形成原始含铜铟镓硒或铜铟镓硒(硫) 的粉末,再添加适当比例的溶剂,并进行搅拌以形成原始铜铟镓硒或铜铟镓硒(硫)浆料, 最后添加接着剂(binder)或界面活性剂以提高铜铟镓硒或铜铟镓硒(硫)吸收层和钼背面电极的接着性,并进行搅拌混合以形成最后铜铟镓硒或铜铟镓硒(硫)浆料。 [0007] In the prior art, copper indium gallium diselenide, or copper indium gallium selenide (sulfur) to the slurry preparation is suitable proportions two ingredients containing IB, IIIA and VIA elements, the three or four-component powder ingredients to form original copper indium gallium selenide, or copper indium gallium selenide (sulfur) powder, then add the appropriate proportions of solvent, and stirred to form a CIGS original or copper indium gallium selenide (sulfur) slurry was then added last agent ( Binder) or a surfactant to improve the copper indium gallium diselenide, or copper indium gallium selenide (thio) absorbing layer and a molybdenum back electrode adhesive properties, and mixed with stirring to form the final CIGS, or copper indium gallium selenide (thio) pulp material. [0008] 上述现有技术的缺点是,配置好的浆料在RTA过程中,会因为硒挥发,造成铜铟镓硒或铜铟镓硒(硫)吸收层中IB/IIIA/VIA的原始比例变化太大,影响铜铟镓硒或铜铟镓硒(硫)吸收层的光吸收特性,严重者会造成此光吸收层从P层变化成N层,所形成的太阳能电池会失去电池的特性,以往为补充损失的硒,会使用硒化制程,即用高毒性的硒化氢气体,以补充损失的硒成份,但高毒性的硒化氢气体,稍一不慎会造成致命的危险。 [0008] In the above-described disadvantages of the prior art is configured RTA slurry process, because of volatilization of selenium, resulting in the original proportions of copper indium gallium diselenide, or copper indium gallium selenide (thio) absorbing layer IB / IIIA / VIA of changed too, the influence of light absorption characteristics of copper indium gallium diselenide, or copper indium gallium selenide (thio) absorbing layer, will cause serious light-absorbing layer from the N layer changed to the P layer, the formed solar cell will lose the characteristics of the battery , conventional to supplement the loss of selenium uses the selenium process, i.e., a highly toxic hydrogen selenide gas, to supplement the loss of the selenium component, but highly toxic hydrogen selenide gas, carelessness and can be fatal. 因此,需要一种危险性较低,又可补充VI族成份的光吸收层制作方法,以改善上述现有技术的问题。 Accordingly, a need for a less dangerous method for preparing a light-absorbing layer and complementing the Group VI components, in order to improve the above prior art problems.

发明内容 SUMMARY

[0009] 本发明的目的在于,克服现有的非真空制作铜铟镓硒吸收层的方法存在的缺陷, 而提供一种新的非真空制作铜铟镓硒吸收层的方法,所要解决的技术问题是使其不使用硒化法,避免使用危险的硒化氢。 [0009] The object of the present invention is to solve the problems of the conventional method of making a non-vacuum CIGS absorber layer, to provide a new method of making non-vacuum CIGS absorber layer, to be Solved the problem is that it does not use selenium method, avoiding the use of dangerous hydrogen selenide.

[0010] 本发明的目的及解决其技术问题是采用以下技术方案来实现的。 [0010] objects and to solve the technical problem of the invention is achieved by the following technical solutions. 依据本发明提出的一种非真空制作铜铟镓硒吸收层的方法,用以在非真空下一钼层上而形成均匀光吸收层,该方法包括以下步骤:步骤一,依据配方比例,混合含IB、 IIIA及VIA族元素的二成份、 三成份或四成份粉末以形成原始含铜铟镓硒(硫)混合粉末;步骤二,在该混合粉末中添加额外的VIA族元素粉末,使VIA族的比例提高,形成含铜铟镓硒或含铜铟镓硒硫的最后混合粉末;步骤三,添加溶剂、界面活性剂和接着剂至该最后混合粉末中并进行搅拌,藉以形成含有IB、IIIA及VIA族元素的铜铟镓硒浆料;步骤四,将该铜铟镓硒浆料涂布在钼层上,软烤使溶剂挥发形成光吸收前驱层;以及步骤五,再将含铜铟镓硒(硫)前驱层的基板置于含VIA族元素粉末的RTA炉中,高温形成VIA族蒸气气氛下退火长晶,以形成含铜铟镓硒(硫) 的光吸收层。 A method in accordance with one layer is made non-vacuum CIGS absorber by the present invention, in a non-vacuum for the next molybdenum layer to form a uniform light-absorbing layer, the method comprising the steps of: a step of, based on the formulation ratio, mixing containing IB, IIIA and VIA elements of the two component, three component or four-component original powder to form a copper indium gallium diselenide (sulfur) mixed powder; step two, additional group VIA element powder in the mixed powder, so that VIA increase the proportion of the group, and finally the mixed powder of copper indium gallium diselenide, or copper indium gallium selenide sulfur formed; step three, adding a solvent, a surfactant and a bonding agent to the final powder mix and stirred, thereby forming the IB comprising, CIGS slurry of IIIA and VIA elements; step four, the CIGS slurry was coated on the molybdenum layer, soft baking to volatilize the solvent precursor is formed a light absorbing layer; and step five, then copper indium gallium selenide substrate (thio) precursor layer is placed in the powder-containing group VIA elements RTA furnace, high-temperature annealing is formed under crystal growth group VIA vapor atmosphere to form a copper indium gallium diselenide (sulfur) in the light absorbing layer.

[0011] 本发明的目的及解决其技术问题还可采用以下技术措施进一步实现。 [0011] objects and solve the technical problem of the present invention can also be further achieved by the following technical measures.

[0012] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的IB族元素包括铜。 [0012] The method of the vacuum layer of the non-production of CIGS absorber, wherein the group IB element comprises copper.

[0013] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的IIIA族元素包括铟或镓 [0013] A method for the production of non-vacuum CIGS absorber layer, wherein the Group IIIA element comprises gallium or indium

或铟镓混合材料。 Indium gallium or mixed material.

[0014] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的VI族元素可为硒、硫或硒硫混合材料。 [0014] A method for the production of non-vacuum CIGS absorber layer, wherein the Group VI element may be selenium, sulfur, selenium, or sulfur mixed material.

[0015] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的额外添加的VI族元素可为硒粉、硫粉或硒硫混合粉末。 [0015] A method for the production of non-vacuum CIGS absorber layer, wherein the Group VI element may be additionally added selenium powder, sulfur powder sulfur, selenium, or a mixed powder.

[0016] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的溶剂包括醇类、醚类、酮类或混合所述二种以上溶剂的至少其中之一。 [0016] A method for the production of non-vacuum CIGS absorber layer, wherein said solvents include alcohols, ethers, ketones, or mixed solvents of two or more of said at least one of them.

[0017] 前述的非真空制作铜铟镓硒吸收层的方法,其中所述的RTA炉温度介于400-800°C。 [0017] The method of making the above-described non-vacuum CIGS absorber layer, wherein the RTA furnace at a temperature between 400-800 ° C.

[0018] 前述的非真空制作铜铟镓硒吸收层的方法,其中中所述的置于RTA炉中的VIA族元素粉末可为硒粉末、硫粉末或含硒硫的混合粉末。 [0018] A method for the production of non-vacuum CIGS absorber layer, wherein said Group VIA element powder was placed RTA furnace may be selenium powder, sulfur powder or a mixed powder selenium sulfur.

[0019] 本发明与现有技术相比具有明显的优点和有益效果。 [0019] The prior art and the present invention has obvious advantages and beneficial effects compared. 由以上可知,为达到上述目的,本发明提供了一种非真空制作铜铟镓硒吸收层的方法,主要利用调配铜铟镓硒或铜铟镓硒(硫)浆料时,使用正常比例的铜铟镓硒化合物配成浆料,涂布形成光前驱层后,在RTA 过程中加入VIA族粉末,使VIA族粉末高温形成蒸气,补充铜铟镓硒或铜铟镓硒(硫)前驱层的VIA族挥发所造成的损失。 When seen from the above, in order to achieve the above object, the present invention provides a method of making non-vacuum CIGS absorber layer, formulations using mainly copper indium gallium selenide, or copper indium gallium selenide (sulfur) slurry, using the normal ratio after CIGS compound formulated as a slurry, the precursor layer is formed by coating a light, powder RTA group VIA added during the formation of a high temperature vapor group VIA powder, copper indium gallium selenide supplement or a copper indium gallium selenide (thio) precursor layer Group VIA volatilization losses caused. [0020] 借由上述技术方案,本发明非真空制作铜铟镓硒吸收层的方法至少具有下列优点及有益效果: [0020] By the above aspect, the method of the present invention is a non-vacuum produced CIGS absorbing layer having at least the following advantages and beneficial effects:

[0021] 本发明所解决的问题或所带来的好处 [0021] the problem addressed by the present invention or the benefits

[0022] —、本发明非真空制作铜铟镓硒吸收层的方法不使用硒化法,避免使用危险的硒化氢。 [0022] - The method of the present invention produced non-vacuum CIGS absorbing layer without using selenium method, avoiding the use of dangerous hydrogen selenide.

[0023] 二、本发明非真空制作铜铟镓硒吸收层的方法不使用硒化法,rta过程中加入via 族粉末,使via族粉末高温形成蒸气,补充铜铟镓硒或铜铟镓硒(硫)前驱层的via族挥发所造成的损失。 [0023] Second, the method of vacuum-making inventive copper indium gallium diselenide absorber layer without the use of selenium method, via aromatic powder rta added during the via aromatic powder temperature form a vapor, supplemented CIGS, or copper indium gallium selenide (thio) aromatic precursor layer via volatilization losses caused.

[0024] 上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段, 而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并配合附图,详细说明如下。 [0024] The above description is only an overview of the technical solution of the present invention, in order to more fully understood from the present invention, but may be implemented in accordance with the contents of the specification, and in order to make the aforementioned and other objects, features and advantages of the present invention can be more apparent from the following Patent cited preferred embodiments accompanied with figures are described in detail below.

附图说明 BRIEF DESCRIPTION

[0025] 图1为现有技术的铜铟镓硒太阳能电池结构的示意图。 Schematic [0025] FIG 1 CIGS solar cell structure of the prior art. [0026] 图2为本发明非真空制作铜铟镓硒吸收层的方法的流程图。 [0026] FIG 2 is a flowchart of a method of non-absorbent layer made vacuum CIGS invention.

具体实施方式 Detailed ways

[0027] 为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的非真空制作铜铟镓硒吸收层的方法其具体实施方式、结构、步骤、特征及其功效,详细说明如启。 [0027] To further elaborate the technical means and effects the present invention is predetermined to achieve the object of the invention taken in conjunction with the accompanying drawings and the following preferred embodiments, a method of making non-vacuum CIGS absorber according to the present invention provides a layer which is dETAILED DESCRIPTION, structures, steps, characteristics and efficacy, as described in detail start.

[0028] 请参阅图2所示,是本发明非真空制作铜铟镓硒吸收层的方法的流程图。 [0028] Please refer to FIG. 2 is a flowchart of a method of indium gallium diselenide absorber layer is made non-vacuum copper present invention. 本发明较佳实施例的非真空制作铜铟镓硒吸收层的方法,包括以下步骤。 The method of making a non-vacuum layer CIGS preferred embodiment of the present invention, the absorbent, comprises the following steps.

[0029] 步骤100,先计算需求铜铟镓硒或铜铟镓硒硫配方比例,混合含ib、iiia及via族元素的二成份、三成份或四成份粉末以形成含铜铟镓硒或含铜铟镓硒硫的原始混合粉末。 [0029] Step 100, the first computing needs, or copper indium gallium selenide, copper indium gallium selenide sulfur formulation ratio, mixing the two components containing IB, and via Ilia group elements, three component, or four component to form a powder or copper indium gallium selenide containing raw mixed powder CIGS sulfur. 在本具体实施例中,本发明可选择ib族中的铜元素、11ia族中的纯铟元素、纯镓元素、或混合铟元素与镓元素的材料、via族中的纯硒元素、纯硫元素或混合硒元素与硫元素的材料, 以形成上述混合粉末,例如可选择含铜-硒(ib-via)或铜-铟/镓(ib-iiia)的二元化合物粉末和iiia族中的纯铟元素、纯镓元素混合铟元素与镓元素的粉末混合成原始的混合粉末,但不以上述为限。 In this particular embodiment, the present invention optionally ib family of copper, pure indium element 11ia group, materials of pure gallium, indium or a mixture of elements and gallium, selenium via pure family of pure sulfur or elemental selenium material is mixed with elemental sulfur to form the mixed powder, for example, be selected copper - selenium (ib-via), or copper - indium / gallium (ib-iiia) powder and a binary compound of a group iiia pure indium element, pure elements and gallium indium gallium mixed powder is mixed into the raw mixed powder, but is not limited to the above.

[0030] 铜铟镓硒或铜铟镓硒硫配方比例所包含的ib、 iiia及via族元素的比例为 [0030] The ratio of copper indium gallium diselenide, or copper indium gallium selenide proportion of sulfur contained in the formulation ib, iiia via elements and is

ib : iiia : vi的摩尔比例=o.9-1.o : io : 2.o。 ib: iiia: molar ratio of vi = o.9-1.o: io: 2.o. 其中ib族元素包括铜,ii ia族 Wherein ib elements include copper, ii ia Group

元素可为纯铟、纯镓或混合铟和镓的材料,另via族元素可为纯硒、纯硫或混合硒和硫的材料。 Element may be a pure indium, or pure gallium, indium and gallium mixed material, via other elements may be pure selenium, selenium pure or mixed sulfur and sulfur materials.

[0031] 步骤110,以含铜铟镓硒或铜铟镓硒硫配方中的原始混合粉末,添加额外的via族元素粉末,使via族的比例提高,形成含铜铟镓硒或铜铟镓硒硫的最后混合粉末,其中包含 [0031] Step 110 to copper indium gallium selenide or CIGS sulfur raw mixed powder formulations, additional elements via a powder, via the proportional increase family, formed copper indium gallium diselenide, or copper indium gallium Finally, the mixed powder selenium sulfur, which comprises

的iB、niA及viA族元素的比例为ib : iiia : vi的摩尔比例二io : io : x,x介于 Ratio iB, niA and viA elements of ib: iiia: titanium molar ratio of vi io: io: x, x is between

2. 0〜4. 0。 2. 0~4 0.

[0032] 步骤120,将溶剂、界面活性剂和接着剂添加至步骤110的最后混合粉末中并进行搅拌形成含铜铟镓硒或含铜铟镓硒硫的浆料,以作为光吸收前驱层的材料。 [0032] Step 120, the addition of a solvent, surfactant agents, and then to the final step 110 the mixed powder slurry was stirred and copper indium gallium selenide formed copper indium gallium selenide or sulfur, as a light absorbing layer precursor s material. 该溶剂可以是醇类、醚类、酮类等单一溶剂或混合两种以上的混合溶剂;该界面活性剂可以如Nal或不同性质的界面活性剂。 The solvent may be a mixed solvent of two or more alcohols, ethers, ketones, and the like single solvent or a mixed; the surfactant may be a surfactant such as Nal or different nature.

[0033] 步骤130,将步骤110中的浆料以非真空涂布法涂布在钼层(含下电极的基板) 上,并软烤去除溶剂以形成光吸收前驱层。 [0033] Step 130, in Step 110 the non-vacuum coating slurry was coated on molybdenum layer (including the lower electrode substrate), and soft baking the solvent was removed to form a light absorbing layer precursor. 该非真空涂布法,如电沉积法、刮刀涂布法、狭缝涂布法、网印法或超音波涂布法等,但并不以此为限。 The non-vacuum coating process, such as an electrodeposition method, a knife coating method, slit coating method, screen printing method or a coating method, ultrasonic, but not limited thereto.

[0034] 步骤140,再将步骤120中的光吸收前驱层以RTA炉400-80(TC高温长晶使形成光吸收层,在RTA过程中添加VIA族元素粉末,使粉末在高温中挥发形成VIA族蒸气,补充损失的硒成份,使前驱层中含IB、IIIA及VIA族元素的比例仍维持在IB : IIIA : VI的摩尔比例=0.9-1.0 : 1.0 : 2的最佳比例。步骤140中添加的VIA族元素粉末可为硒粉、硫 [0034] Step 140, and then step in the light absorbing layer 120 to the precursor RTA furnace 400-80 (TC Wen Zhangjing high light absorbing layer formed, add the Group VIA element powder RTA process, the powder formed at high temperature volatilization group VIA vapors, the loss of supplemental selenium component, so that the ratio of the layer containing the precursor IB, IIIA and VIA elements remained at IB: the molar ratio of VI = 0.9-1.0:: IIIA 1.0:. 2, step 140 optimum ratio group VIA element powder may be added to selenium powder and sulfur

粉或混合硒粉和硫粉的混合物。 Powder or mixing a mixture of selenium powder and sulfur powder.

[0035] —、本发明非真空制作铜铟镓硒吸收层的方法,不使用硒化法,避免使用危险的硒化氢。 [0035] -, the present invention is a method making a non-vacuum CIGS absorber layer, without using a selenization method, avoiding the use of dangerous hydrogen selenide.

[0036] 二、本发明非真空制作铜铟镓硒吸收层的方法,不使用硒化法,RTA过程中加入VIA族粉末,使VIA族粉末高温形成蒸气,补充铜铟镓硒或铜铟镓硒(硫)前驱层的VIA族挥发所造成的损失。 [0036] Second, the present invention is a non-indium-gallium-selenium absorption layer vacuum production, without using selenization method, Group VIA powder RTA added during the Group VIA powder temperature form a vapor, supplemented CIGS, or copper indium gallium selenium (thio) group VIA precursor layer caused by volatilization loss.

[0037] 以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。 [0037] The above are only preferred embodiments of the present invention only, not limitation of the present invention in any form, although the invention has been disclosed above by the preferred embodiments, but not intended to limit the present invention, anyone familiar with Those skilled in the art, without departing from the scope of the technical solution of the present invention, when the method disclosed above can be utilized to make various omissions, substitutions and the technical contents of the embodiment is a modification or equivalent change in the equivalent, but all without departing from the aspect of the present invention content, according to the technical spirit of the present invention, any simple modification of the above embodiment made equivalent modifications and variations, provided they fall within the scope of the present invention.

Claims (8)

  1. 一种非真空制作铜铟镓硒吸收层的方法,用以在非真空下一钼层上而形成均匀光吸收层,其特征在于该方法包括以下步骤:首先,依据配方比例,混合含IB、IIIA及VIA族元素的二成份、三成份或四成份粉末以形成含铜铟镓硒或含铜铟镓硒硫的原始混合粉末;其次,在该混合粉末中添加额外的VIA族元素粉末,使VIA族的比例提高,形成含铜铟镓硒或含铜铟镓硒硫的最后混合粉末;再添加溶剂、界面活性剂和接着剂至该最后混合粉末中并进行搅拌,藉以形成含有IB、IIIA及VIA族元素的铜铟镓硒浆料;接着,将该铜铟镓硒浆料涂布在钼层上,软烤使溶剂挥发形成光吸收前驱层;以及最后,再将含该光吸收前驱层的基板置于含VIA族元素粉末的RTA炉中,高温形成VIA族蒸气气氛下退火长晶,以形成含铜铟镓硒或含铜铟镓硒硫的的光吸收层。 A method for making a vacuum CIGS absorber layer non for non-vacuum is formed next on the light absorbing layer having a uniform layer of molybdenum, characterized in that the method comprises the following steps: First, based on the formulation ratio, mixing the IB containing, the two components of IIIA and VIA elements, three component or four component powder to form a copper indium gallium diselenide, or copper indium gallium selenide sulfur raw mixed powder; Second, additional group VIA element powder in the mixed powder, so that group VIA ratio is increased, the final powder mixture containing copper indium gallium diselenide, or copper indium gallium selenide sulfur formed; further adding a solvent, a surfactant and a bonding agent to the final powder mix and stirred, thereby forming containing IB, IIIA CIGS slurry and group VIA elements; Next, the CIGS slurry was coated on the molybdenum layer, soft baking to volatilize the solvent forming the light absorbing layer precursor; and finally, then the light absorbing precursor containing the substrate layer is disposed containing the group VIA element powder RTA furnace, high-temperature annealing is formed under crystal growth group VIA vapor atmosphere to form the light absorption layer of copper indium gallium diselenide, or copper indium gallium selenide sulfur.
  2. 2. 根据权利要求1所述的方法,其特征在于其中所述的IB族元素包括铜。 The method according to claim 1, characterized in that wherein the group IB element comprises copper.
  3. 3. 根据权利要求1所述的方法,其特征在于其中所述的IIIA族元素包括铟或镓或铟镓混合材料。 3. The method according to claim 1, characterized in that said Group IIIA elements include gallium, indium or gallium or indium mixed material.
  4. 4. 根据权利要求1所述的方法,其特征在于其中所述的VI族元素可为硒、硫或硒硫混合材料。 4. The method according to claim 1, characterized in that wherein said Group VI element may be selenium, sulfur, selenium, or sulfur mixed material.
  5. 5. 根据权利要求1所述的方法,其特征在于其中所述额外添加的VIA族元素粉末包括硒粉末、硫粉末或含硒硫的混合粉末的至少其中之一。 5. The method according to claim 1, characterized in that wherein the group VIA element powder comprises additionally added at least one of selenium powder, sulfur powder or a mixed powder of selenium sulfur.
  6. 6. 根据权利要求1所述的方法,其特征在于其中所述的溶剂包括醇类、醚类、酮类或混合所述二种以上溶剂的至少其中之一。 6. The method according to claim 1, characterized in that wherein said solvent comprises at least one of alcohols, ethers, ketones or a mixture of two or more solvents wherein.
  7. 7. 根据权利要求1所述的方法,其特征在于其中所述的RTA炉温度介于400-800°C。 7. The method according to claim 1, characterized in that said RTA furnace wherein the temperature is between 400-800 ° C.
  8. 8. 根据权利要求1所述的方法,其特征在于其中所述的置于RTA炉中的VIA族元素粉末为硒粉末、硫粉末或含硒硫的混合粉末。 8. The method according to claim 1, characterized in that wherein the group VIA element is placed in the RTA furnace powder selenium powder, sulfur powder or a mixed powder selenium sulfur.
CN 201010120009 2010-02-12 2010-02-12 Method for fabricating CuInGaSe absorbed layer in antivacuum way CN101789470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010120009 CN101789470A (en) 2010-02-12 2010-02-12 Method for fabricating CuInGaSe absorbed layer in antivacuum way

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010120009 CN101789470A (en) 2010-02-12 2010-02-12 Method for fabricating CuInGaSe absorbed layer in antivacuum way

Publications (1)

Publication Number Publication Date
CN101789470A true CN101789470A (en) 2010-07-28

Family

ID=42532606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010120009 CN101789470A (en) 2010-02-12 2010-02-12 Method for fabricating CuInGaSe absorbed layer in antivacuum way

Country Status (1)

Country Link
CN (1) CN101789470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463349A (en) * 2010-11-05 2012-05-23 慧濠光电科技股份有限公司 Manufacturing method of copper-indium-gallium-selenium-sulfur five-element target material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178012A1 (en) * 2001-04-16 2006-08-10 Basol Bulent M Method of Forming Semiconductor Compound Film for Fabrication of Electronic Device and Film Produced By Same
CN101443892A (en) * 2006-02-23 2009-05-27 耶罗恩·K·J·范杜伦;克雷格·R·莱德赫尔姆 High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
CN101531529A (en) * 2009-04-14 2009-09-16 武汉理工大学 Preparation method of CuInxGa1-xSe2 powder
CN201332102Y (en) * 2008-12-25 2009-10-21 北京有色金属研究总院 Device for selenizing light absorption layer of thin film solar cell based on copper indium selenide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178012A1 (en) * 2001-04-16 2006-08-10 Basol Bulent M Method of Forming Semiconductor Compound Film for Fabrication of Electronic Device and Film Produced By Same
CN101443892A (en) * 2006-02-23 2009-05-27 耶罗恩·K·J·范杜伦;克雷格·R·莱德赫尔姆 High-throughput formation of semiconductor layer by use of chalcogen and inter-metallic material
CN201332102Y (en) * 2008-12-25 2009-10-21 北京有色金属研究总院 Device for selenizing light absorption layer of thin film solar cell based on copper indium selenide
CN101531529A (en) * 2009-04-14 2009-09-16 武汉理工大学 Preparation method of CuInxGa1-xSe2 powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463349A (en) * 2010-11-05 2012-05-23 慧濠光电科技股份有限公司 Manufacturing method of copper-indium-gallium-selenium-sulfur five-element target material

Similar Documents

Publication Publication Date Title
Sinsermsuksakul et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer
Ramanujam et al. Copper indium gallium selenide based solar cells–a review
Green et al. Solar cell efficiency tables (version 50)
Kapur et al. Non-vacuum processing of CuIn1− xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks
JP2008520102A (en) Method and photovoltaic device using alkali-containing layer
JP2010512647A (en) Doping technology for IBIIIAVIA group compound layer
JP2009076842A (en) Ink for forming thin film for solar cell and method for preparing the same, cigs thin film solar cell using the same and manufacturing method thereof
Kodigala Cu (In1-xGax) Se2 Based thin film solar cells
Shi et al. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source
Shafarman et al. Cu (InGa) Se2 Solar Cells
CN101452969B (en) Copper zincium tin sulfur compound semiconductor thin-film solar cell and manufacturing method
CN101471394A (en) Method for preparing optical absorption layer of copper indium gallium sulphur selenium film solar battery
US8617642B2 (en) Preparation of thin film for solar cell using paste
CN101099243A (en) Optical absorber layers for solar cell and method of manufacturing the same
US8071875B2 (en) Manufacture of thin solar cells based on ink printing technology
CN101443929A (en) Process and photovoltaic device using an akali-containing layer
US8431430B2 (en) Method for forming a compound semi-conductor thin-film
CN101613091B (en) CIGS powder, CIGS target, CIGS film and preparation method thereof
CN102168252A (en) In chamber sodium doping process and system for large scale fabrication of CIGS based thin film photovoltaic materials
JP2008507835A (en) Method for producing thin-film chalcopyrite compounds
JP5748787B2 (en) Solar cell and manufacturing method thereof
CN101299446A (en) Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment
CN102034898B (en) Preparation method of Cu-In-S photoelectric film material for solar cells
CN103474574A (en) Hybrid solar cell with aluminum-doped zinc oxide nanorod as electron transfer layer
US20110083743A1 (en) Photoelectric conversion device, method for producing the same, and solar battery

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)