CN102508217A - 建立雷达测量误差标定模型的方法 - Google Patents

建立雷达测量误差标定模型的方法 Download PDF

Info

Publication number
CN102508217A
CN102508217A CN2011103799440A CN201110379944A CN102508217A CN 102508217 A CN102508217 A CN 102508217A CN 2011103799440 A CN2011103799440 A CN 2011103799440A CN 201110379944 A CN201110379944 A CN 201110379944A CN 102508217 A CN102508217 A CN 102508217A
Authority
CN
China
Prior art keywords
deviation
vector
formula
observation
constantly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103799440A
Other languages
English (en)
Other versions
CN102508217B (zh
Inventor
史忠科
张宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN 201110379944 priority Critical patent/CN102508217B/zh
Publication of CN102508217A publication Critical patent/CN102508217A/zh
Application granted granted Critical
Publication of CN102508217B publication Critical patent/CN102508217B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种建立雷达测量误差标定模型的方法,用于解决现有的雷达测量误差标定方法精度差的技术问题。技术方案是通过建立系统状态方程和观测方程,并引入系统偏差和测量偏差,建立完整的雷达测量误差标定模型,通过联合估计方法直接修正雷达的测量误差,减少积累误差的影响,提高了雷达测量误差标定方法的精度。

Description

建立雷达测量误差标定模型的方法
技术领域
本发明涉及一种建模方法,特别是涉及一种建立雷达测量误差标定模型的方法。 
背景技术
雷达测量误差是指目标参数测量值和真实值之间的偏差,它直接决定雷达的测量精度。对雷达测量误差的标定能够减少误差,改进雷达的测量精度,提高雷达检测和跟踪目标的能力,具有重要意义。 
雷达测量的主要参数为目标斜距、方位角、高低角、速度等。测量误差主要由热噪声、雷达自身不完善因素、电波传播因素、目标及其运动引起的误差等造成。主要包括:跟踪环路存在热噪声、伺服噪声和不平衡等而引起的雷达相关跟踪误差;雷达数据系统非线性、轴系不正交、结构变化等因素带来的雷达相关转换误差;目标回波的起伏和闪烁、目标的速度、加速度引起的目标相关的跟踪误差;以及由于对流层、电离层等导致雷达电波传播折射及不规则性带来的传播误差(王德纯等著,精密跟踪测量雷达技术.北京:电子工业出版社,2006)。雷达测量误差主要可分为两种类型:系统误差和随机误差。其中,随机误差可以通过各种滤波方法进行消除;系统误差是一种确定性误差,无法通过滤波方法去除,需要通过校准或标定技术进行修正。 
文献“胡波,梁星霞,练学辉.雷达系统误差的测量和修正方法.雷达与对抗,2005,2:12-15”公开了一种雷达测量误差标定方法,该标定方法 
1.静态标定:目的是为了确保雷达测量目标距离、方位的准确性。方法是:选择一个已知的孤立地标进行跟踪,录取数据。对数据进行处理,算出该地标的距离、方位,与给定的真值进行比较。若两者的均方差小于标定指标要求则完成静态标定;否则,根据两者一次差的分布,对雷达方位零位进行修正,然后再跟踪该地标,直到满足标定指标要求; 
2.动态标定:对三坐标雷达来说,还需要动态标定,其目的是保证雷达测量目标距离、方位角和高低角的准确性。方法为:跟踪飞机或挂有角反射器的气球,录取数据。计算这些数据与GPS或真值雷达录取数据的平均差和均方差,若满足标定指标要求则完成动态标定;否则,根据一次差的分布,对方位、距离和仰角零位进行分段修正,修正后再次跟踪,直到满足标定指标要求。 
3.系统误差的估值计算:标定试验后,对录取的数据进行处理、分析,可得到雷达的系统误差。通常采用分段方法来处理数据,在保证一定样本数的前提下,段内的数据应是平稳或近似平稳的随机函数。具体方法为:对每个航次,进入和远离均作为 一次进入计算每次进入数据与其对应真值之间的一次差,画出一次差相对于真值的曲线。汇总所有航次,根据一次差曲线的分布,将数据分段,根据下式计算每段数据的系统误差: 
Δx p = 1 N Σ i = 1 N Δx i
其中,Δxp为每段数据的系统误差,Δxi为测量值与真值之间的差值,N为数据段内的数据个数。 
上述雷达系统误差标定方法利用GPS或真值雷达测量数据作为参考值,与被标定雷达测量数据进行比较,计算参考值与测量值之间的差值,并将差值取平均值作为系统误差,对雷达系统误差进行修正。由于仅仅使用误差的平均值作为系统误差过于粗糙,误差修正精度较差。 
发明内容
为了克服现有的雷达测量误差标定方法精度差的不足,本发明提供一种建立雷达测量误差标定模型的方法。该方法通过建立系统状态方程和观测方程,并引入系统偏差和测量偏差,建立完整的雷达测量误差标定模型,通过联合估计方法直接修正雷达的测量误差,可以提高雷达测量误差标定方法的精度。 
本发明解决其技术问题所采用的技术方案是:一种建立雷达测量误差标定模型的方法,其特点是包括以下步骤: 
在原有的飞机运动方程中,引入飞机的斜距、方位角和高低角,得到 
Figure BDA0000112174580000022
式中,飞机飞行状态为平飞或盘旋,选择原点O和飞机质心重合而固连于飞机机体坐标系的动坐标系OXYZ,设u,v,w分别为质心沿动坐标系轴OX,OY,OZ的速度分量;雷达极坐标系原点位于雷达质心,R,A,B分别为在雷达极坐标系下的飞机斜距、高低角和方位角; 
Figure BDA0000112174580000031
为俯仰角, 
Figure BDA0000112174580000032
为滚转角,Ψ为偏航角,指向正北方向,p,q,r分别为飞机的滚转、俯仰、偏航角速率,nx,ny,nz为过载分量,且 
nx=Ax/g,ny=Ay/g,nz=Az/g 
式中,g为重力加速度,Ax,Ay,Az为沿动坐标系轴OX,OY,OZ的加速度分量;设 
Figure BDA0000112174580000033
ui=[nx ny nz p q r]T
考虑到测量值中的系统偏差和尺度因子偏差,得 
u i = I + λ nx 0 0 0 0 0 0 I + λ ny 0 0 0 0 0 0 I + λ nz 0 0 0 0 0 0 I + λ p 0 0 0 0 0 0 I + λ q 0 0 0 0 0 0 I + λ r u im + w ‾ + b u i
式中,uim为ui的测量值,w为过程噪声向量,即ui的量测噪声, 
Figure BDA0000112174580000035
为状态向量的系统偏差向量,λnx、λny、λnz、λp、λq和λr分别为nx,ny,nz,p,q和r测量偏差的尺度因子;设 
b u i = b nx b ny b nz b p b q b r T
式中,bnx,bny,bnz,bp,bq和br分别为nx,ny,nz,p,q和r的系统偏差; 
飞机全面运动的观测方程为 
Figure BDA0000112174580000037
V 0 = u 2 + v 2 + w 2
α = tan - 1 ( w - q X α + p Y α u )
β = tan - 1 ( v + r X β - p Z β u )
R = 111 2 ( ζ p - ζ l ) 2 + 111 2 cos 2 δ ( σ p - σ l ) 2 + h 2
A = tan - 1 ( cos δ ( σ p - σ l ) ζ p - ζ l )
B = tan - 1 ( h R )
式中,V0为空速,Xα,Yα,Zα和Xβ,Yβ,Zβ分别为气流迎角和侧滑角传感器在动坐标系中的坐标,α,β分别为气流迎角和侧滑角,h为高度,σl,ζl为雷达质心的经度和纬度坐标,σp,ζp为飞机的经度和纬度坐标, λα,λβ,λh,λR,λA,λB分别为V0,α,β,h,R,A,B测量偏差的尺度因子, 
Figure BDA0000112174580000048
bα,bβ, 
Figure BDA0000112174580000049
Figure BDA00001121745800000410
bΨ,bh,bR,bA,bB和 
Figure BDA00001121745800000411
v αv β, 
Figure BDA00001121745800000412
v Ψv hv Rv Av B分别为V0,α,β, 
Figure BDA00001121745800000414
Figure BDA00001121745800000415
Ψ,h,R,A,B的系统偏差和观测噪声,下标m代表测量值;V0m,αm,βm,θm, 
Figure BDA00001121745800000416
Ψm,hm,Rm,Am,Bm分别为VO,α,β,θ, 
Figure BDA00001121745800000417
Ψ,h,R,A,B的实际测量值; 
将观测方程写成矩阵形式,有 
ym=Hyyc+by+v    (3) 
式中, 
Figure BDA00001121745800000418
为观测向量的计算值, 
Figure BDA00001121745800000419
为观测向量的实际测量值, 
H y = diag [ ( 1 + λ V 0 ) , ( 1 + λ α ) , ( 1 + λ β ) , 1,1,1 , ( I + λ h ) , ( I + λ R ) , ( I + λ A ) , ( I + λ B ) ] 为观测向量的测量偏差矩阵, 
Figure BDA00001121745800000421
为观测向量的系统偏差向量, 
Figure BDA00001121745800000422
为观测噪声向量, 
b 1 = λ nx λ ny λ nz λ p λ q λ r b u i T T
b 2 = λ V 0 λ α λ β λ h λ R λ A λ B b y T T
根据(1)式,系统的状态方程写为 
Figure BDA0000112174580000051
式中,x为9维状态向量,f为9维函数向量,b1为12维状态偏差向量,Γ(x)为过程噪声的系数矩阵,w为零均值高斯白噪声序列,方差为Q; 
观测方程写为 
y=к(x,ui,b2)+v    (5) 
式中, 
Figure BDA0000112174580000052
为10维观测向量,b2为17维观测偏差向量,к为10维输出函数向量,v为零均值高斯白噪声序列,方差为R; 
将(4)式和(5)式按泰勒级数展开,并取一次项,得雷达测量误差的标定模型为 
x ( k + 1 ) = A ‾ ( k ) x ( k ) + B ‾ ( k ) b 1 ( k ) + R u ( k ) + Γ ( k ) w ‾ ( k ) y ( k + 1 ) = H ( k + 1 ) x ( k + 1 ) + D ( k + 1 ) b 2 ( k + 1 ) + R y ( k + 1 ) + v ‾ ( k + 1 ) - - - ( 6 )
式中,x(k)为目标kT时刻的状态向量, 
b1(k)为kT时刻的状态偏差向量, 
Γ(k)为kT时刻过程噪声的系数矩阵, 
w(k)为kT时刻的过程噪声向量, 
y(k)为kT时刻的观测向量, 
b2(k)为kT时刻的观测偏差向量, 
v(k)为kT时刻的观测噪声向量, 
A ‾ ( k ) = ∂ f [ x ( k ) , b 1 , k ] ∂ x | b 1 = b 1 ( k ) , x ( k ) = x ( k | k )
B ‾ ( k ) = ∂ f [ x ( k ) , b 1 , k ] ∂ b 1 | b 1 = b 1 ( k ) , x ( k ) = x ( k | k )
H ( k + 1 ) = ∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ x | b 2 = b 2 ( k ) , x ( k ) = x ( k + 1 | k )
D ( k + 1 ) = ∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ b 2 | b 2 = b 2 ( k ) , x ( k ) = x ( k + 1 | k )
Ru(k)=f[x(k|k),b1(k),k]-A(k)x(k|k)-B(k)b1(k) 
Ry(k)=к[x(k+1/k),b2(k),k+1]-H(k+1)x(k+1|k)-D(k+1)b2(k) 
Figure BDA0000112174580000061
∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ x = ( 1 + λ V 0 ) u V 0 ( 1 + λ V 0 ) v V 0 ( 1 + λ V 0 ) w V 0 0 0 0 0 0 0 h 21 0 h 23 0 0 0 0 0 0 h 31 h 32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( 1 + λ R ) 0 0 0 0 0 0 0 0 0 ( 1 + λ A ) 0 0 0 0 0 0 0 0 0 ( 1 + λ B )
h 21 = - ( 1 + λ α ) ( w - q X α + p Y α ) u 2 ( 1 + tan 2 α )
h 23 = ( 1 + λ α ) u ( 1 + tan 2 α )
h 31 = - ( 1 + λ β ) ( v + r X β - p Z β ) u 2 ( 1 + tan 2 β )
h 32 = ( 1 + λ β ) u ( 1 + tan 2 β )
x(k/k)为目标kT时刻状态的滤波值, 
x(k/k-1)为目标kT时刻状态的一步预测值, 
ui(k)为kT时刻的输入, 
nxm,nym,nzm,pm,qm,rm分别为nx,ny,nz,p,q,r的实际测量值, 
∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ b 2 = V 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 α 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 β 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 h 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0 1
Figure BDA0000112174580000071
Figure BDA0000112174580000072
Figure BDA0000112174580000073
Figure BDA0000112174580000075
Figure BDA0000112174580000076
f 71 = cos B cos A cos θ cos ψ + cos B sin A cos θ sin ψ - sin B sin θ
Figure BDA0000112174580000078
Figure BDA00001121745800000710
Figure BDA00001121745800000711
Figure BDA00001121745800000713
Figure BDA00001121745800000714
Figure BDA00001121745800000715
Figure BDA00001121745800000716
Figure BDA00001121745800000717
Figure BDA00001121745800000719
Figure BDA00001121745800000720
Figure BDA00001121745800000721
Figure BDA00001121745800000723
Figure BDA00001121745800000725
Figure BDA00001121745800000726
f 81 = - sin B cos A cos θ cos ψ - sin A sin B cos θ sin ψ - u sin θ ( cos 2 A cos B + sin A cos A cos B )
Figure BDA0000112174580000082
Figure BDA0000112174580000083
Figure BDA0000112174580000084
Figure BDA0000112174580000085
Figure BDA0000112174580000086
Figure BDA0000112174580000087
Figure BDA0000112174580000088
Figure BDA0000112174580000089
Figure BDA00001121745800000810
Figure BDA00001121745800000812
Figure BDA00001121745800000813
Figure BDA00001121745800000814
Figure BDA00001121745800000815
Figure BDA00001121745800000819
Figure BDA00001121745800000820
Figure BDA00001121745800000821
Figure BDA00001121745800000823
Figure BDA00001121745800000824
Figure BDA00001121745800000825
Figure BDA00001121745800000826
Figure BDA00001121745800000828
Figure BDA00001121745800000829
Figure BDA00001121745800000830
Figure BDA00001121745800000831
Figure BDA00001121745800000832
Figure BDA00001121745800000833
Figure BDA0000112174580000091
Figure BDA0000112174580000092
Figure BDA0000112174580000093
pc=(I+λp)pm+bp
qc=(I+λq)qm+bq
rc=(I+λr)rm+br
pc,qc,rc为p,q,r的计算值。 
本发明的有益效果是:由于通过建立系统状态方程和观测方程,并引入系统偏差和测量偏差,建立完整的雷达测量误差标定模型,通过联合估计方法直接修正雷达的测量误差,减少积累误差的影响,提高了雷达测量误差标定方法的精度。 
下面结合具体实施方式对本发明作详细说明。 
具体实施方式
在原有的飞机运动方程中,引入飞机的斜距、方位角和高低角,得到: 
其中,假设飞机飞行状态为平飞或盘旋,选择原点O和飞机质心重合而固连于飞机机体坐标系的动坐标系(广义的体轴系)OXYZ,设u,v,w分别为质心沿动坐标系轴OX,OY,OZ的速度分量;雷达极坐标系原点位于雷达质心,R,A,B分别为在雷达极坐 标系下的飞机斜距、高低角和方位角; 为俯仰角, 
Figure BDA0000112174580000102
为滚转角,Ψ为偏航角,指向正北方向,p,q,r分别为飞机的滚转、俯仰、偏航角速率,nx,ny,nz为过载分量,且 
nx=Ax/g,ny=Ay/g,nz=Az/g 
g为重力加速度,Ax,Ay,Az为沿动坐标系轴OX,OY,OZ的加速度分量;设 
Figure BDA0000112174580000103
ui=[nx ny nz p q r]T
输入向量ui的准确值无法知道,只能得到其测量值,考虑到测量值中的系统偏差和尺度因子偏差,可得 
u i = I + λ nx 0 0 0 0 0 0 I + λ ny 0 0 0 0 0 0 I + λ nz 0 0 0 0 0 0 I + λ p 0 0 0 0 0 0 I + λ q 0 0 0 0 0 0 I + λ r u im + w ‾ + b u i
其中,uim为ui的测量值,w为过程噪声向量,即ui的量测噪声, 
Figure BDA0000112174580000105
为状态向量的系统偏差向量,λnx、λny、λnz、λp、λq和λr分别为nx,ny,nz,p,q和r测量偏差的尺度因子;设 
b u i = b nx b ny b nz b p b q b r T
其中,bnx,bny,bnz,bp,bq和br分别为nx,ny,nz,p,q和r的系统偏差; 
飞机全面运动的观测方程为 
V 0 = u 2 + v 2 + w 2
α = tan - 1 ( w - q X α + p Y α u )
β = tan - 1 ( v + r X β - p Z β u )
R = 111 2 ( ζ p - ζ l ) 2 + 111 2 cos 2 δ ( σ p - σ l ) 2 + h 2
A = tan - 1 ( cos δ ( σ p - σ l ) ζ p - ζ l )
B = tan - 1 ( h R )
其中,V0为空速,Xα,Yα,Zα和Xβ,Yβ,Zβ分别为气流迎角和侧滑角传感器在动坐标系中的坐标,α,β分别为气流迎角和侧滑角,h为高度,σl,ζl为雷达质心(NEU坐标系原点)的经度和纬度坐标,σp,ζp为飞机的经度和纬度坐标, 
Figure BDA0000112174580000117
λα,λβ,λh,λR,λA,λB分别为V0,α,β,h,R,A,B测量偏差的尺度因子, 
Figure BDA0000112174580000118
bα,bβ, 
Figure BDA0000112174580000119
Figure BDA00001121745800001110
bΨ,bh,bR,bA,bB和  v αv β, 
Figure BDA00001121745800001112
Figure BDA00001121745800001113
v Ψv hv Rv Av B分别为V0,α,β, 
Figure BDA00001121745800001115
Ψ,h,R,A,B的系统偏差和观测噪声,下标m代表测量值;V0m,αm,βm,θm, 
Figure BDA00001121745800001116
Ψm,hm,Rm,Am,Bm分别为VO,α,β,θ, 
Figure BDA00001121745800001117
Ψ,h,R,A,B的实际测量值; 
将观测方程写成矩阵形式,有 
ym=Hyyc+by+v    (3) 
其中 
Figure BDA00001121745800001118
为观测向量的计算值, 
Figure BDA00001121745800001119
为观测向量的实际测量值, 
H y = diag [ ( 1 + λ V 0 ) , ( 1 + λ α ) , ( 1 + λ β ) , 1,1,1 , ( I + λ h ) , ( I + λ R ) , ( I + λ A ) , ( I + λ B ) ] 为观测向量的测量偏差矩阵, 
Figure BDA00001121745800001121
为观测向量的系统偏差向量, 
Figure BDA00001121745800001122
为观测噪声向量, 
b 1 = λ nx λ ny λ nz λ p λ q λ r b u i T T
b 2 = λ V 0 λ α λ β λ h λ R λ A λ B b y T T
根据(1)式,系统的状态方程可写成 
Figure BDA0000112174580000122
其中,x为9维状态向量,f为9维函数向量,b1为12维状态偏差向量,Γ(x)为过程噪声的系数矩阵,w为零均值高斯白噪声序列,方差为Q; 
观测方程可写成 
y=к(x,ui,b2)+v    (5) 
Figure BDA0000112174580000123
为10维观测向量,b2为17维观测偏差向量,к为10维输出函数向量,v为零均值高斯白噪声序列,方差为R; 
将(4)式和(5)式按泰勒级数展开,并取一次项,可得雷达测量误差的标定模型为 
x ( k + 1 ) = A ‾ ( k ) x ( k ) + B ‾ ( k ) b 1 ( k ) + R u ( k ) + Γ ( k ) w ‾ ( k ) y ( k + 1 ) = H ( k + 1 ) x ( k + 1 ) + D ( k + 1 ) b 2 ( k + 1 ) + R y ( k + 1 ) + v ‾ ( k + 1 ) - - - ( 6 )
式中,x(k)为目标kT 时刻的状态向量, 
b1(k)为kT时刻的状态偏差向量, 
Γ(k)为kT时刻过程噪声的系数矩阵, 
w(k)为kT时刻的过程噪声向量, 
y(k)为kT时刻的观测向量, 
b2(k)为kT时刻的观测偏差向量, 
v(k)为kT时刻的观测噪声向量, 
A ‾ ( k ) = ∂ f [ x ( k ) , b 1 , k ] ∂ x | b 1 = b 1 ( k ) , x ( k ) = x ( k | k )
B ‾ ( k ) = ∂ f [ x ( k ) , b 1 , k ] ∂ b 1 | b 1 = b 1 ( k ) , x ( k ) = x ( k | k )
H ( k + 1 ) = ∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ x | b 2 = b 2 ( k ) , x ( k ) = x ( k + 1 | k )
D ( k + 1 ) = ∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ b 2 | b 2 = b 2 ( k ) , x ( k ) = x ( k + 1 | k )
Ru(k)=f[x(k|k),b1(k),k]-A(k)x(k|k)-B(k)b1(k) 
Ry(k)=к[x(k+1/k),b2(k),k+1]-H(k+1)x(k+1|k)-D(k+1)b2(k) 
Figure BDA0000112174580000131
∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ x = ( 1 + λ V 0 ) u V 0 ( 1 + λ V 0 ) v V 0 ( 1 + λ V 0 ) w V 0 0 0 0 0 0 0 h 21 0 h 23 0 0 0 0 0 0 h 31 h 32 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ( 1 + λ R ) 0 0 0 0 0 0 0 0 0 ( 1 + λ A ) 0 0 0 0 0 0 0 0 0 ( 1 + λ B )
h 21 = - ( 1 + λ α ) ( w - q X α + p Y α ) u 2 ( 1 + tan 2 α )
h 23 = ( 1 + λ α ) u ( 1 + tan 2 α )
h 31 = - ( 1 + λ β ) ( v + r X β - p Z β ) u 2 ( 1 + tan 2 β )
h 32 = ( 1 + λ β ) u ( 1 + tan 2 β )
x(k/k)为目标kT时刻状态的滤波值, 
x(k/k-1)为目标kT时刻状态的一步预测值, 
ui(k)为kT时刻的输入, 
nxm,nym,nzm,pm,qm,rm分别为nx,ny,nz,p,q,r的实际测量值, 
∂ κ [ x ( k + 1 ) , b 2 , k + 1 ] ∂ b 2 = V 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 α 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 β 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 h 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 A 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 B 0 0 0 0 0 0 0 0 0 1
Figure BDA0000112174580000141
Figure BDA0000112174580000142
Figure BDA0000112174580000143
Figure BDA0000112174580000144
Figure BDA0000112174580000145
Figure BDA0000112174580000146
f 71 = cos B cos A cos θ cos ψ + cos B sin A cos θ sin ψ - sin B sin θ
Figure BDA0000112174580000148
Figure BDA0000112174580000149
Figure BDA00001121745800001410
Figure BDA00001121745800001412
Figure BDA00001121745800001413
Figure BDA00001121745800001414
Figure BDA00001121745800001415
Figure BDA00001121745800001416
Figure BDA00001121745800001417
Figure BDA00001121745800001418
Figure BDA00001121745800001419
Figure BDA00001121745800001420
Figure BDA00001121745800001421
Figure BDA00001121745800001422
Figure BDA00001121745800001423
Figure BDA00001121745800001424
Figure BDA00001121745800001425
Figure BDA00001121745800001426
f 81 = - sin B cos A cos θ cos ψ - sin A sin B cos θ sin ψ - u sin θ ( cos 2 A cos B + sin A cos A cos B )
Figure BDA0000112174580000152
Figure BDA0000112174580000153
Figure BDA0000112174580000154
Figure BDA0000112174580000156
Figure BDA0000112174580000157
Figure BDA0000112174580000158
Figure BDA0000112174580000159
Figure BDA00001121745800001511
Figure BDA00001121745800001512
Figure BDA00001121745800001513
Figure BDA00001121745800001514
Figure BDA00001121745800001515
Figure BDA00001121745800001516
Figure BDA00001121745800001519
Figure BDA00001121745800001522
Figure BDA00001121745800001523
Figure BDA00001121745800001524
Figure BDA00001121745800001525
Figure BDA00001121745800001528
Figure BDA00001121745800001529
Figure BDA00001121745800001530
Figure BDA00001121745800001531
Figure BDA00001121745800001532
Figure BDA00001121745800001533
Figure BDA0000112174580000161
Figure BDA0000112174580000162
Figure BDA0000112174580000163
pc=(I+λp)pm+bp
qc=(I+λq)qm+bq
rc=(I+λr)rm+br
pc,qc,rc为p,q,r的计算值; 
建立上述雷达测量误差的标定模型后,作为实例,采用非线性系统状态估计和偏差辨识的分离算法(史忠科.最优估计的计算方法[M].北京:科学出版社,2001)对雷达测量误差进行修正: 
时间更新 
x ( k + 1 / k ) = f [ x ( k | k ) , b 1 ( k ) , k ] P x % ( k + 1 | k ) = A ( k ) P x % ( k | k ) A T ( k ) + Γ ( k ) Q ( k ) Γ T ( k )
式中, 
Figure BDA0000112174580000165
表示0偏差估计误差的协方差阵, 
f为函数向量, 
x(k/k)为目标kT时刻状态的滤波值, 
x(k/k-1)为目标kT时刻状态的一步预测值, 
b1(k)为kT时刻的状态偏差向量, 
Γ(x)为过程噪声的系数矩阵, 
Q(k)为过程噪声向量w的方差; 
状态测量更新为 
x ( k + 1 | k + 1 ) = f [ x ( k | k ) , b 1 ( k ) , k ] + { G x % ( k + 1 ) + V b ( k + 1 ) G b ( k + 1 ) } × { y ( k + 1 ) - κ [ x ( k + 1 | k ) , b 2 ( k ) , k + 1 ] } G x % ( k + 1 ) = P x % ( k + 1 | k + 1 ) H T ( k + 1 ) R - 1 ( k + 1 ) P x % ( k + 1 / k + 1 ) = [ 1 - G x % ( k + 1 ) H ( k + 1 ) ] P x % ( k + 1 | k ) - - - ( 7 . a )
式中,b2(k)为kT时刻的观测偏差向量, 
R(k)为观测噪声向量v的方差, 
y(k+1)为观测向量, 
к为输出函数向量, 
偏差辨识的测量更新为 
b 2 ( k + 1 ) = b 2 ( k ) + G b ( k + 1 ) { y ( k + 1 ) - κ [ x ( k + 1 | k ) , b 2 ( k ) , k + 1 ] } G b ( k + 1 ) = P 0 ( k + 1 | k + 1 ) [ H ( k + 1 ) V b ( k + 1 ) + D ( k + 1 ) ] T R - 1 ( k + 1 ) P b ( k + 1 | k + 1 ) = P 0 ( k | k ) + C T ( k + 1 ) [ H ( k + 1 ) P x % ( k + 1 | k ) H T ( k + 1 ) + R ( k + 1 ) ] - 1 C ( k + 1 ) - - - ( 7 . b )
式中 
C ( k + 1 ) = H ( k + 1 ) U ( k ) + D ( k + 1 ) V b ( k + 1 ) = U ( k ) - G x % ( k + 1 ) C ( k + 1 ) U ( k ) = A ( k ) V b ( k ) + B ( k ) - - - ( 7 . c )
初始条件为P0(k|k); 
式(7.a)~式(7.c)就构成了完整的非线性离散系统的分离算法。 

Claims (1)

1.一种建立雷达测量误差标定模型的方法,其特征在于包括以下步骤:
在原有的飞机运动方程中,引入飞机的斜距、方位角和高低角,得到
式中,飞机飞行状态为平飞或盘旋,选择原点O和飞机质心重合而固连于飞机机体坐标系的动坐标系OXYZ,设u,v,w分别为质心沿动坐标系轴OX,OY,OZ的速度分量;雷达极坐标系原点位于雷达质心,R,A,B分别为在雷达极坐标系下的飞机斜距、高低角和方位角; 
Figure FDA0000112174570000012
为俯仰角, 为滚转角,Ψ为偏航角,指向正北方向,p,q,r分别为飞机的滚转、俯仰、偏航角速率,nx,ny,nz为过载分量,且
nx=Ax/g,ny=Ay/g,nz=Az/g
式中,g为重力加速度,Ax,Ay,Az为沿动坐标系轴OX,OY,OZ的加速度分量;设
Figure FDA0000112174570000014
ui=[nx ny nz p q r]T
考虑到测量值中的系统偏差和尺度因子偏差,得 
Figure FDA0000112174570000021
式中,uim为ui的测量值,w为过程噪声向量,即ui的量测噪声, 
Figure FDA0000112174570000022
为状态向量的系统偏差向量,λnx、λny、λnz、λp、λq和λr分别为nx,ny,nz,p,q和r测量偏差的尺度因子;设
Figure FDA0000112174570000023
式中,bnx,bny,bnz,bp,bq和br分别为nx,ny,nz,p,q和r的系统偏差;
飞机全面运动的观测方程为
Figure FDA0000112174570000024
Figure FDA0000112174570000025
Figure FDA0000112174570000026
Figure FDA0000112174570000027
Figure FDA0000112174570000028
Figure FDA0000112174570000029
Figure FDA00001121745700000210
式中,V0为空速,Xα,Yα,Zα和Xβ,Yβ,Zβ分别为气流迎角和侧滑角传感器在动坐标系中的坐标,α,β分别为气流迎角和侧滑角,h为高度,σl,ζl为雷达质心的经度和纬度坐标,σp,ζp为飞机的经度和纬度坐标, λα,λβ,λh,λR,λA,λB分别为V0,α,β,h,R,A,B测量偏差的尺度因子, bα,bβ, 
Figure FDA0000112174570000033
Figure FDA0000112174570000034
bΨ,bh,bR,bA,bB和 
Figure FDA0000112174570000035
v αv β, 
Figure FDA0000112174570000036
Figure FDA0000112174570000037
v Ψv hv Rv Av B分别为V0,α,β, 
Figure FDA0000112174570000039
Ψ,h,R,A,B的系统偏差和观测噪声,下标m代表测量值;V0m,αm,βm,θm, 
Figure FDA00001121745700000310
Ψm,hm,Rm,Am,Bm分别为VO,α,β,θ, 
Figure FDA00001121745700000311
Ψ,h,R,A,B的实际测量值;
将观测方程写成矩阵形式,有
ym=Hyyc+by+v    (3)
式中,
为观测向量的计算值,
Figure FDA00001121745700000313
为观测向量的实际测量值,
Figure FDA00001121745700000314
为观测向量的测量偏差矩阵,
Figure FDA00001121745700000315
为观测向量的系统偏差向量,
Figure FDA00001121745700000316
为观测噪声向量,
Figure FDA00001121745700000317
Figure FDA00001121745700000318
根据(1)式,系统的状态方程写为
Figure FDA00001121745700000319
式中,x为9维状态向量,f为9维函数向量,b1为12维状态偏差向量,Γ(x)为过程噪声的系数矩阵,w为零均值高斯白噪声序列,方差为Q;
观测方程写为
y=к(x,ui,b2)+v    (5)
式中, 
Figure FDA00001121745700000320
为10维观测向量,b2为17维观测偏差向量,к为10维输出函数向量,v为零均值高斯白噪声序列,方差为R; 
将(4)式和(5)式按泰勒级数展开,并取一次项,得雷达测量误差的标定模型为
Figure FDA0000112174570000041
式中,x(k)为目标kT时刻的状态向量,
b1(k)为kT时刻的状态偏差向量,
Γ(k)为kT时刻过程噪声的系数矩阵,
w(k)为kT时刻的过程噪声向量,
y(k)为kT时刻的观测向量,
b2(k)为kT时刻的观测偏差向量,
v(k)为kT时刻的观测噪声向量,
Figure FDA0000112174570000042
Figure FDA0000112174570000043
Figure FDA0000112174570000044
Ru(k)=f[x(k|k),b1(k),k]-A(k)x(k|k)-B(k)b1(k)
Ry(k)=к[x(k+1/k),b2(k),k+1]-H(k+1)x(k+1|k)-D(k+1)b2(k)
Figure FDA0000112174570000046
Figure FDA0000112174570000051
Figure FDA0000112174570000052
Figure FDA0000112174570000054
Figure FDA0000112174570000055
x(k/k)为目标kT时刻状态的滤波值,
x(k/k-1)为目标kT时刻状态的一步预测值,
ui(k)为kT时刻的输入,
nxm,nym,nzm,pm,qm,rm分别为nx,ny,nz,p,q,r的实际测量值,
Figure FDA0000112174570000056
Figure FDA0000112174570000061
Figure FDA0000112174570000062
Figure FDA0000112174570000063
Figure FDA0000112174570000064
Figure FDA0000112174570000065
Figure FDA0000112174570000066
Figure FDA0000112174570000067
Figure FDA0000112174570000068
Figure FDA0000112174570000069
Figure FDA00001121745700000611
Figure FDA00001121745700000612
Figure FDA00001121745700000614
Figure FDA00001121745700000615
Figure FDA00001121745700000617
Figure FDA00001121745700000619
Figure FDA00001121745700000620
Figure FDA00001121745700000622
Figure FDA00001121745700000623
Figure FDA00001121745700000624
Figure FDA00001121745700000625
Figure FDA00001121745700000626
Figure FDA0000112174570000071
Figure FDA0000112174570000072
Figure FDA0000112174570000073
Figure FDA0000112174570000074
Figure FDA0000112174570000075
Figure FDA0000112174570000076
Figure FDA0000112174570000077
Figure FDA0000112174570000078
Figure FDA0000112174570000079
Figure FDA00001121745700000710
Figure FDA00001121745700000711
Figure FDA00001121745700000712
Figure FDA00001121745700000714
Figure FDA00001121745700000715
Figure FDA00001121745700000716
Figure FDA00001121745700000717
Figure FDA00001121745700000718
Figure FDA00001121745700000719
Figure FDA00001121745700000720
Figure FDA00001121745700000721
Figure FDA00001121745700000722
Figure FDA00001121745700000723
Figure FDA00001121745700000724
Figure FDA00001121745700000726
Figure FDA00001121745700000727
Figure FDA00001121745700000728
Figure FDA00001121745700000729
Figure FDA00001121745700000730
Figure FDA00001121745700000731
Figure FDA00001121745700000733
Figure FDA0000112174570000081
Figure FDA0000112174570000082
Figure FDA0000112174570000083
pc=(I+λp)pm+bp
qc=(I+λq)qm+bq
rc=(I+λr)rm+br
pc,qc,rc为p,q,r的计算值。 
CN 201110379944 2011-11-25 2011-11-25 建立雷达测量误差标定模型的方法 Expired - Fee Related CN102508217B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110379944 CN102508217B (zh) 2011-11-25 2011-11-25 建立雷达测量误差标定模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110379944 CN102508217B (zh) 2011-11-25 2011-11-25 建立雷达测量误差标定模型的方法

Publications (2)

Publication Number Publication Date
CN102508217A true CN102508217A (zh) 2012-06-20
CN102508217B CN102508217B (zh) 2013-06-19

Family

ID=46220323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110379944 Expired - Fee Related CN102508217B (zh) 2011-11-25 2011-11-25 建立雷达测量误差标定模型的方法

Country Status (1)

Country Link
CN (1) CN102508217B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675770A (zh) * 2012-09-24 2014-03-26 中国航天科工集团第二研究院二〇七所 一种基于rcs不确定度的模型校验方法
CN105116391A (zh) * 2015-08-05 2015-12-02 中国人民解放军海军航空工程学院 面向海用雷达误差标定的有效目标序列集联合分析方法
CN106168662A (zh) * 2016-07-26 2016-11-30 中国人民解放军海军航空工程学院 基于极大似然估计的被动传感器的误差配准方法及装置
CN109444836A (zh) * 2018-12-28 2019-03-08 中国人民解放军63891部队 基于实测数据的雷达仿真模型校正方法
CN110837095A (zh) * 2019-11-22 2020-02-25 中国人民解放军63636部队 基于小型无人机及rtk的遥测设备方位零位偏差标定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221688A (zh) * 2011-03-24 2011-10-19 中国船舶重工集团公司第七○九研究所 一种雷达系统误差估计方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221688A (zh) * 2011-03-24 2011-10-19 中国船舶重工集团公司第七○九研究所 一种雷达系统误差估计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
沈光浩: "精密测量雷达测角系统误差修正", 《现代雷达》 *
章大勇等: "机载激光雷达系统标定方法", 《光学精密工程》 *
胡波等: "雷达系统误差的测量和修正方法", 《雷达与对抗》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675770A (zh) * 2012-09-24 2014-03-26 中国航天科工集团第二研究院二〇七所 一种基于rcs不确定度的模型校验方法
CN103675770B (zh) * 2012-09-24 2016-03-02 中国航天科工集团第二研究院二O七所 一种基于rcs不确定度的模型校验方法
CN105116391A (zh) * 2015-08-05 2015-12-02 中国人民解放军海军航空工程学院 面向海用雷达误差标定的有效目标序列集联合分析方法
CN106168662A (zh) * 2016-07-26 2016-11-30 中国人民解放军海军航空工程学院 基于极大似然估计的被动传感器的误差配准方法及装置
CN109444836A (zh) * 2018-12-28 2019-03-08 中国人民解放军63891部队 基于实测数据的雷达仿真模型校正方法
CN109444836B (zh) * 2018-12-28 2023-02-28 中国人民解放军63891部队 基于实测数据的雷达仿真模型校正方法
CN110837095A (zh) * 2019-11-22 2020-02-25 中国人民解放军63636部队 基于小型无人机及rtk的遥测设备方位零位偏差标定方法
CN110837095B (zh) * 2019-11-22 2021-07-27 中国人民解放军63636部队 基于小型无人机及rtk的遥测设备方位零位偏差标定方法

Also Published As

Publication number Publication date
CN102508217B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CN109211276B (zh) 基于gpr与改进的srckf的sins初始对准方法
CN106052688B (zh) 基于地形轮廓匹配的惯性导航系统速度累积误差修正方法
CN103630137B (zh) 一种用于导航系统的姿态及航向角的校正方法
CN103363993B (zh) 一种基于无迹卡尔曼滤波的飞机角速率信号重构方法
CN103913181B (zh) 一种基于参数辨识的机载分布式pos传递对准方法
CN101221238B (zh) 基于高斯均值移动配准的动态偏差估计方法
CN102353378B (zh) 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法
CN102508217B (zh) 建立雷达测量误差标定模型的方法
CN101131311B (zh) 一种智能化机载导弹动基座对准及标定方法
CN104019828A (zh) 高动态环境下惯性导航系统杆臂效应误差在线标定方法
CN103822633A (zh) 一种基于二阶量测更新的低成本姿态估计方法
CN103940433B (zh) 一种基于改进的自适应平方根ukf算法的卫星姿态确定方法
CN103439731A (zh) 基于无迹卡尔曼滤波的gps/ins组合导航方法
CN102749633A (zh) 一种卫星导航接收机的动态定位解算方法
CN102426018A (zh) 基于混合地形轮廓匹配tercom算法和粒子滤波的地形辅助导航方法
CN102654406A (zh) 基于非线性预测滤波与求容积卡尔曼滤波相结合的动基座初始对准方法
CN114777812B (zh) 一种水下组合导航系统行进间对准与姿态估计方法
CN103424127B (zh) 一种速度加比力匹配传递对准方法
CN106597428B (zh) 一种海面目标航向航速估算方法
CN103776449A (zh) 一种提高鲁棒性的动基座初始对准方法
CN105241456A (zh) 巡飞弹高精度组合导航方法
CN102162733A (zh) 一种基于svm的auv舰位推算导航误差实时修正方法
CN109724626A (zh) 一种针对极区传递对准动态挠曲杆臂效应的模型补偿方法
CN104359496A (zh) 基于垂线偏差补偿的高精度姿态修正方法
CN111220151B (zh) 载体系下考虑温度模型的惯性和里程计组合导航方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619

Termination date: 20211125