CN102353378B - 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法 - Google Patents

一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法 Download PDF

Info

Publication number
CN102353378B
CN102353378B CN 201110266447 CN201110266447A CN102353378B CN 102353378 B CN102353378 B CN 102353378B CN 201110266447 CN201110266447 CN 201110266447 CN 201110266447 A CN201110266447 A CN 201110266447A CN 102353378 B CN102353378 B CN 102353378B
Authority
CN
China
Prior art keywords
state
error
matrix
information
federal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110266447
Other languages
English (en)
Other versions
CN102353378A (zh
Inventor
陈计辉
熊智
王融
张丹
刘建业
张旭
张承
刘伟霞
姚小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN 201110266447 priority Critical patent/CN102353378B/zh
Publication of CN102353378A publication Critical patent/CN102353378A/zh
Application granted granted Critical
Publication of CN102353378B publication Critical patent/CN102353378B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种矢量形式信息分配系数的自适应联邦滤波方法,该方法在分析GPS、天文(CNS)和SAR三种导航传感器的工作环境和工作特性基础上,建立地理系下惯性导航系统与各导航传感器的线性化量测方程,构建滤波子系统;然后分别对滤波子系统进行卡尔曼滤波,结合子系统估计误差协方差阵特征值和子系统可观测矩阵奇异值,设计完成了一种矢量信息分配系数计算方案,针对矢量分配系数会导致协方差阵不对称问题,设计了新的信息分配方程;最后采用联邦滤波方法对惯性导航的误差状态进行了最优估计。本发明导航精度高,能充分发挥多传感器组合导航系统对动态环境下惯性导航系统误差状态量的估计作用。

Description

一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法
技术领域
发明涉及一种矢量形式信息分配系数的自适应联邦滤波方法,属于飞行器组合导航技术领域,可应用于高空长时间飞行的航空飞行器导航参数的确定,用于提高导航系统的导航精度。 
背景技术
随着航空航天技术的发展,对导航与制导系统的性能要求越来越高,组合导航系统已成为当前重要的导航系统方案。在导航多传感器信息融合领域,分散化滤波技术日益受到人们重视,Carlson提出的分散化联邦滤波器得到越来越广泛的应用。信息分配是联邦滤波器研究和设计中的关键,直接影响联邦滤波器的精度和容错性等性能。 
Carlson最先提出的信息分配原则是固定比例的,通常根据正常工作子系统的个数进行固定平均分配。考虑到在实际的高动态导航环境中,各子滤波器的性能和估计质量都是不断变化的,为进一步提高联邦滤波器的性能,国内外学者提出了多种动态的信息分配方法,主要包括基于估计协方差特征值法、基于协方差阵Fronenius范数方法、基于可观测矩阵条件数法等,这些动态信息分配方法从一定程度上实现了对系统状态的实时跟踪,滤波效果较固定比例的分配方法有所改善。 
经分析不难发现,以上研究的信息分配系数均为标量形式。即把状态变量作为一个整体考虑来进行信息反馈,其实质是把状态变量的每个分量的特性看作是相同的,具有完全相同的估计精度和收敛速度。但这种观点是不合理的,根据实际情况知,每个传感器功能特性和精度的不同使得每个局部滤波器建立的状态方程和量测方程是不同的,而状态方程的特性又决定了状态的每个分量具有不同的可观测度和收敛速度,在基于惯性导航的组合模式中,平台的方位误差角收敛速度明显低于其它的状态分量。再者,不同的传感器其输出特性也是不同的,如SAR图像匹配仅能输出经度、纬度信息,大气数据系统仅能提供高度及地向速度信息,从而导致不同的状态分量具有不同的估计精度。 
因此,现有标量形式信息分配系数的联邦滤波方法难以具体实时跟踪反映每个状态变量的变化特性,导航精度不高,不能充分满足动态长航时飞行器对导航精度的要求。 
发明内容
本发明所要解决的技术问题是克服标量形式信息分配系数的联邦滤波不能充分具体反映 每个状态量变化特性的缺陷,提供一种矢量形式信息分配系数的自适应联邦滤波方法。 
本发明为解决上述技术问题采用以下技术方案: 
本发明基于系统误差协方差阵特征值和系统可观测矩阵奇异值的矢量形式信息分配系数的联邦滤波方法,包括以下步骤: 
(1)通过建立惯性导航系统INS的误差状态量方程,得到对惯性导航系统误差状态量的数学描述,惯性导航系统误差状态量X定义为: 
X = [ φ N , φ E , φ D , δv N , δv E , δv D , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z ] T ,
其中:φN,φE,φD分别表示惯性导航系统误差状态量中的北向平台误差角状态量、东向平台误差角状态量和地向平台误差角状态量;δvN,δvE,δvD分别表示惯性导航系统误差状态量中的北向速度误差状态量、东向速度误差状态量和地向速度误差状态量;δL,δλ,δh分别表示惯性导航系统误差状态量中的纬度误差状态量、经度误差状态量和高度误差状态量;εbx,εby,εbz分别表示惯性导航系统误差状态量中的X轴、Y轴、Z轴方向陀螺常值漂移误差状态量;εrx,εry,εrz分别表示惯性导航系统误差状态量中的X轴、Y轴、Z轴方向陀螺一阶马尔可夫漂移误差状态量; 分别表示惯性导航系统误差状态量中的X轴、Y轴和Z轴方向加速度计零偏,上标T为转置; 
(2)建立地理系下各子系统的量测方程,包括GPS/INS量测方程、CNS/INS量测方程和SAR/INS量测方程; 
(3)将步骤(2)所述的各子系统的量测方程中子系统误差状态量进行KF滤波,将子系统KF滤波结果送入联邦滤波器; 
(4)根据各导航子系统的协方差矩阵以及可观测性矩阵,求取一种矢量形式的联邦滤波信息分配系数,使每个子系统的每个状态变量得到不同的信息分配系数,根据该矢量形式的联邦滤波信息分配系数,建立系统的过程信息在各子滤波器之间的分配原则; 
(5)联邦滤波器对步骤(3)中子系统送来的滤波结果进行数据融合,输出全局最优估计值,从而对惯性导航系统的导航误差进行修正。 
本发明采用以上技术方案与现有技术相比,具有以下技术效果: 
本发明克服了现有技术无法实时具体反映状态变量特性的不足,构建了一种适用于动态长时间飞行航空飞行器的组合导航系统联邦滤波方法,它具有以下优点: 
(1)根据每个滤波子系统每个状态变量的估计精度分别自适应进行分配系数调整; 
(2)根据每个滤波子系统每个状态变量的可观测性分别自适应进行分配系数调整; 
(3)根据矢量形式信息分配系数建立的过程信息在各子滤波器之间的分配原则,确保系 统的误差协方差阵为对称阵,从而有效改善联邦滤波器的稳定性和精度。 
附图说明
图1为本发明的矢量信息分配系数联邦滤波的一种实施例子的流程图; 
图2为仿真的一条飞行航迹; 
图3为本发明的导航经度误差与传统滤波导航经度误差的仿真对比图; 
图4为本发明的导航纬度误差与传统滤波导航纬度误差的仿真对比图; 
图5为本发明的导航高度误差与传统滤波导航高度误差的仿真对比图。 
具体实施方式
下面结合附图对本发明的技术方案做进一步的详细说明: 
如图1所示,本发明的原理是:从地理系导航的角度入手,依据系统状态方程和各子系统的线性化量测方程,构成滤波子系统,从各滤波子系统中提取估计协方差矩阵Pi和可观测性矩阵Qi,综合两者信息求取矢量形式的信息分配系数Bi,从而进一步完成信息分配、最优融合等步骤,实现对组合导航误差状态量的最优估计。具体实施方法如下: 
一、建立惯性导航系统的误差状态量方程 
选择导航坐标系为北东地地理水平坐标系(OnXnYnZn),采用线性卡尔曼滤波器进行组合,系统的状态方程为惯性导航系统的误差状态量方程,通过对惯性导航系统的性能及误差源的分析,可以获得惯导系统的误差状态量方程为: 
X · ( t ) = F ( t ) X ( t ) + G ( t ) W ( t ) - - - ( 1 )
式中, X = [ φ N , φ E , φ D , δv N , δv E , δv D , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z ] T
其中φN,φE,φD为平台误差角;δvN,δvE,δvD为速度误差;δL,δλ,δh为纬度、经度和高度误差;εbx,εby,εbz,εrx,εry,εrz分别为陀螺常值漂移误差和一阶马尔可夫漂移误差; 
Figure BDA0000090142530000033
为加速度计零偏,上标T为转置。 
二、建立地理系下各子系统的量测方程 
①GPS/INS量测方程 
Z GPS ( t ) = v nINS - v nGPS v eINS - v eGPS v dINS - v dGPS ( L INS - L GPS ) R n ( λ INS - λ GPS ) R e cos L h INS - h GPS = 0 3 × 3 diag 1 1 1 0 3 × 3 0 3 × 9 0 3 × 3 0 3 × 3 diag R n R e cos L 1 0 3 × 9 X ( t ) + M nGPS M eGPS M dGPS M nGPS N eGPS N dGPS - - - ( 2 )
式中,vnINS veINS vdINS表示为惯性导航系统的北、东、地方向速度,vnGPS,veGPS,vdGPS表示为GPS接收机的北、东、地方向速度,LINS,λINS,hINS表示为惯性导航系统的纬度、经度、高度测量值,LGPS,λGPS,hGPS表示为GPS接收机的纬度、经度、高度测量值,Rn,Re分别表示北向、东向地球曲率半径,L表示航迹纬度值,MnGPS、MeGPS、MdGPS表示为GPS接收机的北、东、地方向的测速误差,NnGPS,NeGPS,NdGPS为GPS接收机沿北、东、地方向的位置测量误差,均考虑为白噪声。 
②CNS/INS量测方程 
Z GNS ( t ) = γ rINS - γ rCNS θ pINS - θ pCNS ψ hINS - ψ hCNS = A 3 × 3 0 3 × 3 0 3 × 3 0 3 × 9 3 × 18 X ( t ) + O rCNS O pCNS O hCNS - - - ( 3 )
其中 A 3 × 3 = - 1 cos θ cos ψ sin ψ 0 - sin ψ cos θ cos ψ cos θ 0 cos ψ sin θ sin ψ sin θ cos θ , θ、ψ表示为飞行器的真实俯仰角和航向角。式中γrINS,θpINS,ψhINS分别表示惯性导航系统的横滚、俯仰、航向角,γrCNS,θpCNS,ψhCNS分别表示天文星敏感器的横滚、俯仰、航向角,OrCNS、OpCNS、OhCNS表示为天文星敏感器对横滚角、俯仰角与航向角在地理系下的等效测量误差,均考虑为白噪声。 
③SAR/INS量测方程 
Z SAR ( t ) = ( L INS - L SAR ) R n ( λ INS - λ SAR ) R e cos L = 0 2 × 3 0 2 × 3 B 2 × 3 0 2 × 9 3 × 18 X ( t ) + N nSAR N eSAR - - - ( 4 )
其中 B 2 × 3 = R n 0 0 0 R e cos L 0 , 式(4)中LINS,λINS分别表示惯性导航系统的纬度、经度测量值,LSAR,λSAR分别表示SAR景象匹配导航的纬度、经度测量值,NnSAR,NeSAR为SAR景象匹配导航沿北、东方向的位置测量误差。 
三、子系统KF(Kalman Filter)滤波,估计子系统的误差状态量 
状态方程和量测方程的离散化及卡尔曼滤波器 
当采用线性卡尔曼滤波器时,需要对上面连续形式的系统状态方程(1)和量测方程(2)、(3)、(4)进行离散化,从而获得离散形式的系统方程。其离散化形式如下: 
X k = Φ k , k - 1 X k - 1 + Γ k - 1 W k - 1 Z k = H k X k + V k
式中 Φ k , k - 1 = Σ m = 0 ∞ [ F ( t k ) T ] m / m ! , Γ k - 1 = { Σ m = 1 ∞ [ 1 m ! ( F ( t k ) T ) m - 1 ] } G ( t k ) T d , Td为迭代周期。 
从而可以获得系统的线性化卡尔曼滤波器方程如下: 
X ^ k | k - 1 = Φ k , k - 1 X ^ k - 1
X ^ k = X ^ k | k - 1 + K k Z k - H k X ^ k | k - 1
P k | k - 1 = Φ k , k - 1 P k - 1 Φ k , k - 1 T + Γ k - 1 Q k - 1 Γ k - 1 T
K k = P k | k - 1 H k T ( H k P k | k - 1 H k T + R k ) - 1
P k = ( I - K k H k ) P k | k - 1 ( I - K k H k ) T + K k R k K k T
上式中, 表示k-1时刻的状态对k时刻的状态的最优估计值,又称一步预测估值,Φk,k-1表示k-1时刻到k时刻的状态转移矩阵, 表示k-1时刻的系统状态估计值, 
Figure BDA00000901425300000510
表示k时刻的系统状态估计值,Kk表示增益矩阵,Zk表示k时刻的观测矢量,Hk表示k时刻的观测系数矩阵,Pk|k-1表示最优预测估计误差协方差阵,Pk-1表示k-1时刻的系统误差协方差阵,Qk-1表示k-1时刻的噪声方差矩阵,Γk-1表示k时刻的噪声矢量对k+1时刻状态矢量影响的噪声系数矩阵,Rk表示k时刻的量测方差矩阵,Pk表示k时刻的系统误差协方差阵,I为单位矩阵。 
四、矢量形式信息分配系数求取及信息分配 
基于子系统协方差矩阵特征值的矢量系数Ai的求解 
子系统协方差矩阵Pi按特征值分解为: 
P i = L i Λ i L i T
式中,Λi=diag{λi1,λi2,Λ,λin},λi1,λi2,L,λin为Pi的特征值,n为Pi阵的阶数。 
对Xi的每一个分量xij(表示第i个局部滤波器状态估计中的第j个分量)独立进行信息分配系数计算,信息分配系数为: 
α ij = 1 / λ ij 1 / λ 1 j + 1 / λ 2 j + L + 1 / λ Nj - - - ( 6 )
i=1,2,L,N;j=1,2,L,n 
式中,λij为状态变量xij对应的特征值,N为子系统个数。 
Xi对应的信息分配系数为矩阵形式: 
A i = α i 1 α i 2 O α in = diag α i 1 α i 2 L α in - - - ( 7 )
基于子系统可观测矩阵奇异值的矢量系数Υi的求解。 
设某时间段动态系统的可观测性矩阵为Q(Q∈Rp×q),对Q进行奇异值分解,得 
Q=USVT                  (8) 
式中:U=[u1 u2 L up],V=[v1 v2 L vq]都是正交矩阵; S = Λ r × r 0 0 0 ,
Λr×r=diag(σ1,σ2,L,σr),其中r,σi(i=1,2,L,r)分别为矩阵Q的秩和奇异值。对矩阵V进行分析,得到σi为与其对应的右奇异向量V中取得最大绝对值的状态变量所对应的奇异值。若σi的值较大,则相应的系统状态变量具有较好的观测性,可以获得较高精度的估计;若σi的值较小,则相应的系统状态变量可能会出现奇异,落入不可观测区间。 
对每个子系统的可观测性矩阵分别进行奇异值分解,进一步对Xi的每一个分量xij(表示第i个局部滤波器状态估计中的第j个分量)独立进行信息分配系数计算,信息分配系数为: 
γ ij = σ ij σ 1 j + σ 2 j + L σ 3 j σ ij ≠ 0 0 σ ij = 0 - - - ( 9 )
i=1,2,L,N;j=1,2,L,n 
式中,σij为状态变量xij对应的奇异值,N为子系统个数。 
则Xi对应的信息分配系数为矩阵形式: 
Figure BDA0000090142530000064
融合子系统协方差矩阵特征值和可观测矩阵奇异值的矢量系数Υi的求解 
Figure BDA0000090142530000065
即 
B i = β i 1 β i 2 O β in = diag β i 1 β i 2 L β in β ij = 1 2 × ( α ij + γ ij ) - - - ( 12 )
信息分配系数满足信息守恒原理: 
Σ i = 1 N B i = I 18 × 18 - - - ( 13 )
主滤波器信息分配: 
根据矢量形式信息分配系数将系统的过程信息在各子滤波器之间的进行分配,表达式如下: 
P i - 1 ( k ) = B i P g - 1 ( k ) B i Q i - 1 ( k ) = B i Q g - 1 ( k ) B iQ ( i = 1,2 , L , N ) X ^ i = X ^ g ( k ) - - - ( 14 )
五、联邦主滤波器信息融合 
将各子滤波器估计信息进行融合,得到全局最优估计。 
融合算法为: 
P g = ( Σ i = 1 n P i - 1 ) - 1 X ^ g = P g ( Σ i = 1 n P i - 1 X ^ i ) - - - ( 15 )
图2为仿真的一条飞行航迹,包括滑跑、加速、上升、滚转、转弯等机动方式。 
经过仿真得到,对相同的状态变量,不同的子系统获得了不同的信息分配系数;对同一个子系统,不同的状态变量也得到了不同的信息分配系数;分配系数曲线均随时间动态变化。该种矢量信息分配方案能够实时具体反映每个状态量的变化特性。 
图3~图5的仿真结果表明,该方法能够根据导航子系统中各个状态变量的精度特性和可观测特性进行实时自适应调节,滤波精度高,对飞行环境变化有更强的适应性。 

Claims (1)

1.一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法,其特征在于包括以下步骤:
(1)通过建立惯性导航系统INS的误差状态量方程,得到对惯性导航系统误差状态量的数学描述,惯性导航系统误差状态量X定义为:
X = [ φ N , φ E , φ D , δv N , δv E , δv D , δL , δλ , δh , ϵ bx , ϵ by , ϵ bz , ϵ rx , ϵ ry , ϵ rz , ▿ x , ▿ y , ▿ z ] T ,
其中:φNED分别表示惯性导航系统误差状态量中的北向平台误差角状态量、东向平台误差角状态量和地向平台误差角状态量;δvN,δvE,δvD分别表示惯性导航系统误差状态量中的北向速度误差状态量、东向速度误差状态量和地向速度误差状态量;δL,δλ,δh分别表示惯性导航系统误差状态量中的纬度误差状态量、经度误差状态量和高度误差状态量;εbxbybz分别表示惯性导航系统误差状态量中的X轴、Y轴、Z轴方向陀螺常值漂移误差状态量;εrxryrz分别表示惯性导航系统误差状态量中的X轴、Y轴、Z轴方向陀螺一阶马尔可夫漂移误差状态量;
Figure FDA00003219102500013
分别表示惯性导航系统误差状态量中的X轴、Y轴和Z轴方向加速度计零偏,上标T为转置;
(2)建立地理系下各子系统的量测方程,包括GPS/INS量测方程、CNS/INS量测方程和SAR/INS量测方程;
(3)将步骤(2)所述的各子系统的量测方程中子系统误差状态量进行KF滤波,将子系统KF滤波结果送入联邦滤波器;
(4)根据各导航子系统的协方差矩阵以及可观测性矩阵,求取一种矢量形式的联邦滤波信息分配系数,使每个子系统的每个状态变量得到不同的信息分配系数,根据该矢量形式的联邦滤波信息分配系数,建立系统的过程信息在各子滤波器之间的分配原则;
其中,求取一种矢量形式的联邦滤波信息分配系数的具体步骤如下:
基于子系统协方差矩阵的特征值求取矢量信息分配系数Αi,基于子系统可观测矩阵奇异值求取矢量信息分配系数γi,然后融合Αi、γi信息得到联邦滤波信息分配系数Βi,具体步骤为:
1)Αi的求解
将子系统协方差矩阵Pi按特征值分解为:
P i = L i Λ i L i T
式中,Λi=diag{λi1i2,…,λin},λi1i2,…,λin为Pi的特征值,n为Pi阵的阶数,Li为矩阵Pi进行特征值分解后得到的矩阵,上标T为转置;
对第i个局部滤波器的误差状态量Xi的每一个状态分量xij,xij表示第i个局部滤波器误差状态估计中的第j个分量,独立进行信息分配系数计算,得到信息分配系数为:
α ij = 1 / λ ij 1 / λ 1 j + 1 / λ 2 j + · · · + 1 / λ Nj
i=1,2,…,N;j=1,2,…,n
式中,λij为状态变量xij对应的特征值,N为子系统个数;
Xi对应的信息分配系数为矩阵形式:
Figure FDA00003219102500022
2)γi的求解
设某时间段动态系统的可观测性矩阵为Q,Q∈Rp×q,对Q进行奇异值分解,得到
Q=USVT
式中:U=[u1  u2  …  up],为p×p阶正交矩阵,称为Q的左奇异矩阵,u1、u2…up分别为左奇异列向量,V=[v1  v2  …  vq],为q×q阶正交矩阵,称为Q的右奇异矩阵,v1、v2…vq分别为右奇异列向量; S = Λ r × r 0 0 0 , Λr×r=diag(σ12,…,σr),其中r、σi分别为矩阵Q的秩和奇异值,i=1,2,…,r;
对矩阵V进行分析,得到σi为与其对应的右奇异向量vi中取得最大绝对值的状态变量所对应的奇异值:
对每个子系统的可观测性矩阵分别进行奇异值分解,进一步对Xi的每一个分量xij独立进行信息分配系数计算,得到信息分配系数为:
γ ij = σ ij σ 1 j + σ 2 j + · · · σ 3 j σ ij ≠ 0 0 σ ij ≡ 0
i=1,2,…,N;j=1,2,…,n
式中,σij为状态变量xij对应的奇异值,N为子系统个数;
则Xi对应的信息分配系数为矩阵形式:
3)Βi的求解
B i = 1 2 × ( A i + γ i )
Figure FDA00003219102500033
同时,联邦滤波信息分配系数满足信息守恒原理:
Σ i = 1 N B i = I 18 × 18 ;
所述的根据该矢量形式的联邦滤波信息分配系数,建立系统的过程信息在各子滤波器之间的分配原则,表达式如下:
P i - 1 ( k ) = B i P g - 1 ( k ) B i Q i - 1 ( k ) = B iQ Q g - 1 ( k ) B iQ X ^ i ( k ) = X ^ g ( k ) ( i = 1,2 , . . . , N )
式中,
Figure FDA00003219102500036
表示k时刻i子滤波器的状态估计信息量,
Figure FDA00003219102500037
表示k时刻联邦滤波器的总的状态估计信息量,表示k时刻i子滤波器的过程噪声信息量,
Figure FDA00003219102500039
表示k时刻联邦滤波器的总的过程噪声信息量,表示k时刻i子滤波器的状态估计值,
Figure FDA000032191025000311
表示k时刻联邦滤波器的状态估计值,Βi表示总的状态估计信息量的信息分配系数,ΒiQ为Βi中后9个对角线元素,表示总的过程噪声信息量的分配系数;
(5)联邦滤波器对步骤(3)中子系统送来的滤波结果进行数据融合,输出全局最优估计值,从而对惯性导航系统的导航误差进行修正;
其中所述融合的方法为:
P g = ( Σ i = 1 n P i - 1 ) - 1 X ^ g = P g ( Σ i = 1 n P i - 1 X ^ i )
式中,Ρg表示联邦滤波后的误差协方差阵,Ρi表示i子滤波器误差协方差阵,
Figure FDA00003219102500042
表示联邦滤波器的状态估计值,表示i子滤波器的状态估计值,上标“-1”表示求逆。
CN 201110266447 2011-09-09 2011-09-09 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法 Expired - Fee Related CN102353378B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110266447 CN102353378B (zh) 2011-09-09 2011-09-09 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110266447 CN102353378B (zh) 2011-09-09 2011-09-09 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法

Publications (2)

Publication Number Publication Date
CN102353378A CN102353378A (zh) 2012-02-15
CN102353378B true CN102353378B (zh) 2013-08-21

Family

ID=45576995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110266447 Expired - Fee Related CN102353378B (zh) 2011-09-09 2011-09-09 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法

Country Status (1)

Country Link
CN (1) CN102353378B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608596B (zh) * 2012-02-29 2013-06-05 北京航空航天大学 一种用于机载惯性/多普勒雷达组合导航系统的信息融合方法
CN102654419B (zh) * 2012-04-26 2014-08-13 中冶南方工程技术有限公司 结晶器噪声信号辨识与分析方法
CN103344244B (zh) * 2013-07-09 2015-12-23 北京航空航天大学 火星大气进入段消除测量数据中系统误差的两步滤波方法
CN103323009B (zh) * 2013-07-10 2015-07-01 北京航空航天大学 火星大气进入段的非线性三步滤波方法
CN103644918A (zh) * 2013-12-02 2014-03-19 中国科学院空间科学与应用研究中心 卫星对月探测数据定位处理方法
CN104034329B (zh) * 2014-06-04 2017-01-04 南京航空航天大学 采用发射惯性系下的多组合导航处理装置的导航方法
CN104913781A (zh) * 2015-06-04 2015-09-16 南京航空航天大学 一种基于动态信息分配的非等间隔联邦滤波方法
CN106679693A (zh) * 2016-12-14 2017-05-17 南京航空航天大学 一种基于故障检测的矢量信息分配自适应联邦滤波方法
CN107167306B (zh) * 2017-05-27 2020-11-06 南京航空航天大学 基于阶次提取的旋转机械转子运行状态模态分析方法
CN108896036B (zh) * 2018-05-09 2021-01-22 中国人民解放军国防科技大学 一种基于新息估计的自适应联邦滤波方法
CN110487298A (zh) * 2019-08-15 2019-11-22 Oppo(重庆)智能科技有限公司 一种导航误差的校正方法及装置、设备和存储介质
CN111679680A (zh) * 2019-12-31 2020-09-18 华东理工大学 一种无人机自主着舰方法及系统
CN113514052A (zh) * 2021-06-10 2021-10-19 西安因诺航空科技有限公司 一种多机协同高精度有源目标定位方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841398A (en) * 1996-11-20 1998-11-24 Space Systems/Loral, Inc. Integrated navigation and communication satellite system
US7257512B1 (en) * 2006-04-07 2007-08-14 Honeywell International Inc. Methods and systems for vibropendulous error compensation of acceleration sensors
CN100575877C (zh) * 2007-12-12 2009-12-30 南京航空航天大学 基于多信息融合的航天器组合导航方法
CN101858748A (zh) * 2010-05-28 2010-10-13 南京航空航天大学 高空长航无人机的多传感器容错自主导航方法
CN101865693A (zh) * 2010-06-03 2010-10-20 天津职业技术师范大学 航空用多传感器组合导航系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400246B2 (en) * 2006-04-11 2008-07-15 Russell Mark Breeding Inertial Sensor Tracking System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5841398A (en) * 1996-11-20 1998-11-24 Space Systems/Loral, Inc. Integrated navigation and communication satellite system
US7257512B1 (en) * 2006-04-07 2007-08-14 Honeywell International Inc. Methods and systems for vibropendulous error compensation of acceleration sensors
CN100575877C (zh) * 2007-12-12 2009-12-30 南京航空航天大学 基于多信息融合的航天器组合导航方法
CN101858748A (zh) * 2010-05-28 2010-10-13 南京航空航天大学 高空长航无人机的多传感器容错自主导航方法
CN101865693A (zh) * 2010-06-03 2010-10-20 天津职业技术师范大学 航空用多传感器组合导航系统

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
一种容错联邦滤波算法在INS/GPS/Doppler组合导航系统中的应用;张崇猛等;《中国惯性技术学报》;19991231;第7卷(第4期);全文 *
动态捷联惯导/多卫星组合导航自适应联邦滤波算法研究;王春霞等;《信息与控制》;20080831;第37卷(第4期);全文 *
基于UKF的航天器多普勒/天文组合导航方法研究;宋伟等;《载人航天》;20071231(第3期);全文 *
基于分时融合反馈的联邦滤波算法研究;臧荣春等;《航天控制》;20110831;第29卷(第4期);全文 *
基于联邦滤波的惯性导航姿态组合算法;赖际舟等;《天津大学学报》;20060331;第39卷(第3期);全文 *
基于联邦滤波的远程AUV组合导航方法研究;郭建军等;《声学技术》;20110831;第30卷(第4期);全文 *
宋伟等.基于UKF的航天器多普勒/天文组合导航方法研究.《载人航天》.2007,(第3期),全文.
张崇猛等.一种容错联邦滤波算法在INS/GPS/Doppler组合导航系统中的应用.《中国惯性技术学报》.1999,第7卷(第4期),全文.
改进联邦滤波器在小卫星姿态确定中的应用;曹璐等;《飞行器测控学报》;20110228;第30卷(第1期);全文 *
曹璐等.改进联邦滤波器在小卫星姿态确定中的应用.《飞行器测控学报》.2011,第30卷(第1期),全文.
混合粒子联邦滤波在多信息组合导航系统中的应用;赖际舟等;《中国惯性技术学报》;20110228;第19卷(第1期);全文 *
王春霞等.动态捷联惯导/多卫星组合导航自适应联邦滤波算法研究.《信息与控制》.2008,第37卷(第4期),全文.
联邦滤波器理论及其在组合导航系统中的应用;赵琳等;《哈尔滨工程大学学报》;20001231;第21卷(第6期);全文 *
臧荣春等.基于分时融合反馈的联邦滤波算法研究.《航天控制》.2011,第29卷(第4期),全文.
赖际舟等.基于联邦滤波的惯性导航姿态组合算法.《天津大学学报》.2006,第39卷(第3期),全文.
赖际舟等.混合粒子联邦滤波在多信息组合导航系统中的应用.《中国惯性技术学报》.2011,第19卷(第1期),全文.
赵琳等.联邦滤波器理论及其在组合导航系统中的应用.《哈尔滨工程大学学报》.2000,第21卷(第6期),全文.
郭建军等.基于联邦滤波的远程AUV组合导航方法研究.《声学技术》.2011,第30卷(第4期),全文.

Also Published As

Publication number Publication date
CN102353378A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
CN102353378B (zh) 一种矢量形式信息分配系数的组合导航系统自适应联邦滤波方法
CN103913181B (zh) 一种基于参数辨识的机载分布式pos传递对准方法
Chang et al. Initial alignment by attitude estimation for strapdown inertial navigation systems
Mulder et al. Non-linear aircraft flight path reconstruction review and new advances
CN101949703B (zh) 一种捷联惯性/卫星组合导航滤波方法
Wu et al. Optimization-based alignment for inertial navigation systems: Theory and algorithm
Mu et al. A practical INS/GPS/DVL/PS integrated navigation algorithm and its application on Autonomous Underwater Vehicle
CN103323007B (zh) 一种基于时变量测噪声的鲁棒联邦滤波方法
Soken et al. UKF-based reconfigurable attitude parameters estimation and magnetometer calibration
CN102928858B (zh) 基于改进扩展卡尔曼滤波的gnss单点动态定位方法
CN102818567A (zh) 集合卡尔曼滤波-粒子滤波相结合的auv组合导航方法
CN102252677A (zh) 一种基于时间序列分析的变比例自适应联邦滤波方法
CN104215259A (zh) 一种基于地磁模量梯度和粒子滤波的惯导误差校正方法
CN106871928A (zh) 基于李群滤波的捷联惯性导航初始对准方法
CN104913781A (zh) 一种基于动态信息分配的非等间隔联邦滤波方法
CN103591965A (zh) 一种舰载旋转式捷联惯导系统在线标定的方法
CN109507706B (zh) 一种gps信号丢失的预测定位方法
Gebre-Egziabher et al. MAV attitude determination by vector matching
CN105091907A (zh) Sins/dvl组合中dvl方位安装误差估计方法
Xue et al. In-motion alignment algorithm for vehicle carried SINS based on odometer aiding
CN108303120B (zh) 一种机载分布式pos的实时传递对准的方法及装置
CN112146655A (zh) 一种BeiDou/SINS紧组合导航系统弹性模型设计方法
CN110779519A (zh) 一种具有全局收敛性的水下航行器单信标定位方法
CN104050389A (zh) 一种实时在线评估导航系统精确度和完好性的方法
Veremeenko et al. In-flight alignment of a strapdown inertial navigation system of an unmanned aerial vehicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821

Termination date: 20210909