CN102496648A - Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector - Google Patents

Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector Download PDF

Info

Publication number
CN102496648A
CN102496648A CN201110382697XA CN201110382697A CN102496648A CN 102496648 A CN102496648 A CN 102496648A CN 201110382697X A CN201110382697X A CN 201110382697XA CN 201110382697 A CN201110382697 A CN 201110382697A CN 102496648 A CN102496648 A CN 102496648A
Authority
CN
China
Prior art keywords
metal
semiconductor
single photon
type semiconductor
built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201110382697XA
Other languages
Chinese (zh)
Inventor
闫锋
吴福伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201110382697XA priority Critical patent/CN102496648A/en
Publication of CN102496648A publication Critical patent/CN102496648A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种内置负反馈金属-半导体-金属紫外光单光子探测器,每个探测器从下至上包括衬底,衬底上可以生长缓冲层,衬底或缓冲层上是n型半导体,n型半导体上面是叉指状薄膜电阻,阳极电极淀积在薄膜电阻上形成阳极电极,最上层是叉指状电极,阴极电极与n型半导体形成肖特基结,阳极电极淀积在薄膜电阻上。本发明所述内置负反馈金属-半导体-金属结构紫外光单光子探测器克服了p-n和p-i-n结构紫外光单光子探测器复杂的工艺流程带来的工艺控制困难、成本昂贵的问题。

Figure 201110382697

A built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector, each detector includes a substrate from bottom to top, a buffer layer can be grown on the substrate, an n-type semiconductor is on the substrate or buffer layer, and the n-type semiconductor The upper layer is an interdigitated thin film resistor. The anode electrode is deposited on the thin film resistor to form an anode electrode. The uppermost layer is an interdigitated electrode. The cathode electrode forms a Schottky junction with the n-type semiconductor, and the anode electrode is deposited on the thin film resistor. The ultraviolet single photon detector with built-in negative feedback metal-semiconductor-metal structure of the present invention overcomes the problems of difficult process control and high cost caused by the complex process flow of the pn and pin structure ultraviolet single photon detectors.

Figure 201110382697

Description

内置负反馈金属-半导体-金属结构紫外光单光子探测器Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector

技术领域 technical field

本发明涉及一种新型基于金属-半导体-金属结构紫外光单光子探测器极其制作方法,同时该结构还适用于其他波段金属-半导体-金属结构单光子探测器。The invention relates to a novel metal-semiconductor-metal structure ultraviolet single-photon detector and its manufacturing method, and the structure is also applicable to metal-semiconductor-metal structure single-photon detectors in other bands.

背景技术 Background technique

紫外光特别是日盲紫外波段的探测在空间探测以及军事方面有着极其重要的应用。目前,紫外波段的光子计数系统应用的是光电倍增管(PMT),但是光电倍增管体积大、易碎、工作电压高且价格昂贵,所以体积小、价格便宜的固态紫外探测器就有非常重要的优势。The detection of ultraviolet light, especially the solar-blind ultraviolet band, has extremely important applications in space detection and military affairs. At present, the photon counting system in the ultraviolet band uses a photomultiplier tube (PMT), but the photomultiplier tube is large in size, fragile, high in operating voltage and expensive, so a solid-state ultraviolet detector with a small size and cheap price is very important. The advantages.

目前能够得到的固态紫外光波段单光子探测器为p-n结构或p-i-n结构,这种探测器结构复杂,需要同时生长n型和p型半导体,缺陷密度极难控制,同时电极与半导体之间需要形成欧姆接触,工艺很难形成好的欧姆接触,过程控制困难,制备成本极高。The currently available solid-state single-photon detectors in the ultraviolet band are p-n structures or p-i-n structures. Ohmic contact, the process is difficult to form a good ohmic contact, process control is difficult, and the preparation cost is extremely high.

而金属-半导体-金属(MSM)结构探测器(physics of semiconductor devices,third edition,S.M.Sze,Wiley Interscience)没有p型半导体,电容小,且易于制造,故MSM结构紫外光探测器有着很高的应用价值。如图1A所示为典型的MSM结构探测器剖面图,MSM 100结构探测器是由衬底101,n型半导体102和叉指状电极103和104构成,其正面电极结构如图1B所示,电极103-1,103-2…,103-N组成叉指状阴极电极,电极104-1,104-2…,104-N组成叉指状阳极电极。图1C是MSM100结构探测器的等效电路结构图,MSM 100由两个背靠背的肖特基二极管组成,当加上工作电压时,叉指状电极之间形成耗尽层,光子在耗尽区被吸收产生光电子,光电子迁移或漂移运动被叉指状电极收集产生电信号,从而可以探测光信号,基于MSM结构的紫外光雪崩管也在2011年被报道,(F.Xie,IEEE ELECTRONDEVICE LETTERS,VOL.32,NO.9,SEPTEMBER 2011)。但是传统的MSM结构探测器需要外接复杂的熄灭电路来实现单光子探测,增加了系统设计的成本。Metal-semiconductor-metal (MSM) structure detectors (physics of semiconductor devices, third edition, S.M.Sze, Wiley Interscience) have no p-type semiconductor, small capacitance, and are easy to manufacture, so the MSM structure ultraviolet light detector has a high Value. As shown in Figure 1A, it is a typical MSM structure detector section view, MSM 100 structure detector is made up of substrate 101, n-type semiconductor 102 and interdigitated electrodes 103 and 104, and its front electrode structure is as shown in Figure 1B, The electrodes 103-1, 103-2..., 103-N form interdigitated cathode electrodes, and the electrodes 104-1, 104-2..., 104-N form interdigitated anode electrodes. Figure 1C is the equivalent circuit structure diagram of the MSM100 structure detector. The MSM 100 is composed of two back-to-back Schottky diodes. When the operating voltage is applied, a depletion layer is formed between the interdigitated electrodes, and photons in the depletion region It is absorbed to generate photoelectrons, and photoelectron migration or drift motion is collected by interdigitated electrodes to generate electrical signals, so that optical signals can be detected. The ultraviolet avalanche tube based on the MSM structure was also reported in 2011, (F.Xie, IEEE ELECTRONDEVICE LETTERS, VOL.32, NO.9, SEPTEMBER 2011). However, the traditional MSM structure detector needs an external complex quenching circuit to realize single photon detection, which increases the cost of system design.

发明内容 Contents of the invention

本发明目的是:提出一种新型的基于MSM结构内置负反馈紫外光单光子探测器结构以及其制造方法。The purpose of the present invention is to propose a novel MSM-based structure with built-in negative feedback ultraviolet light single photon detector structure and its manufacturing method.

本发明技术方案是:基于MSM结构内置负反馈紫外光单光子探测器结构,包括衬底、n型半导体、薄膜电阻和叉指状电极;优选的是,所述结构紫外光单光子探测器从下至上一次包括衬底,n型半导体,阴极电极与n型半导体构成肖特基结,薄膜电阻淀积在n型半导体上,而阳极电极生长在薄膜电阻上。The technical solution of the present invention is: a built-in negative feedback ultraviolet single photon detector structure based on the MSM structure, including a substrate, an n-type semiconductor, a thin film resistor and an interdigitated electrode; preferably, the ultraviolet single photon detector of the structure is obtained from From bottom to top, it includes the substrate, the n-type semiconductor, the cathode electrode and the n-type semiconductor to form a Schottky junction, the thin-film resistor is deposited on the n-type semiconductor, and the anode electrode is grown on the thin-film resistor.

所述MSM结构紫外光单光子探测器的制备方法包括如下步骤:The preparation method of the MSM structure ultraviolet single photon detector comprises the following steps:

(1)在衬底上形成n型半导体,也可以之前生长多层缓冲层,再生长n型半导体;(1) Form an n-type semiconductor on the substrate, or grow a multi-layer buffer layer before, and then grow an n-type semiconductor;

(2)在n型半导体上生长薄膜电阻并刻蚀,使之形成叉指状阳极电极的形状;(2) Grow and etch a thin film resistor on the n-type semiconductor to form the shape of an interdigitated anode electrode;

(3)淀积电极形成叉指状阴极电极和阳极电极。(3) Deposit electrodes to form interdigitated cathode electrodes and anode electrodes.

如图2E所示,所述内置负反馈MSM结构紫外光单光子探测器结构包括衬底201,n型半导体202,阴极电极204淀积在n型半导体上形成肖特基接触,薄膜电阻203-1,203-2…,203-N淀积在n型半导体上形成叉指状电阻,阳极电极205-1,205-2…,205-N淀积在薄膜电阻203上形成阳极电极205,叉指状阴极204、薄膜电阻203和阳极电极205如图2F所示。其中电极204和205可以为透明金属材料。As shown in FIG. 2E, the built-in negative feedback MSM structure ultraviolet single photon detector structure includes a substrate 201, an n-type semiconductor 202, a cathode electrode 204 deposited on the n-type semiconductor to form a Schottky contact, and a thin film resistor 203- 1, 203-2..., 203-N are deposited on the n-type semiconductor to form an interdigitated resistor, and the anode electrodes 205-1, 205-2..., 205-N are deposited on the thin film resistor 203 to form an anode electrode 205, fork Finger cathode 204, thin film resistor 203 and anode electrode 205 are shown in FIG. 2F. Wherein the electrodes 204 and 205 may be transparent metal materials.

所述紫外光单光子探测器MSM 200的工艺流程包括:The technological process of the ultraviolet single photon detector MSM 200 includes:

步骤1,如图2A所示,在衬底上淀积缓冲层,减小衬底与n型半导体之间的晶格适配,从而减小缺陷密度,形成衬底201;Step 1, as shown in FIG. 2A , depositing a buffer layer on the substrate to reduce the lattice fit between the substrate and the n-type semiconductor, thereby reducing the defect density, and forming a substrate 201;

步骤2,如图2B所示,在衬底201上淀积n型半导体202,;Step 2, as shown in FIG. 2B, depositing an n-type semiconductor 202 on the substrate 201;

步骤3,如图2C所示,在n型半导体202上淀积薄膜电阻203;Step 3, as shown in FIG. 2C, depositing a thin film resistor 203 on the n-type semiconductor 202;

步骤4,如图2D所示,刻蚀薄膜电阻203,形成叉指状电阻203-1,203-2;Step 4, as shown in FIG. 2D, etching the thin film resistor 203 to form interdigitated resistors 203-1, 203-2;

步骤5,如图2E所示,淀积形成阳极电极205-1,205-2和阴极电极204-1,205-2,阴极电极和n型半导体形成肖特基接触,阳极电极淀积在薄膜电阻上。Step 5, as shown in FIG. 2E, deposit and form anode electrodes 205-1, 205-2 and cathode electrodes 204-1, 205-2, the cathode electrodes and n-type semiconductors form Schottky contacts, and the anode electrodes are deposited on the film on the resistor.

所述紫外光单光子探测器MSM 200等效电路图如图2F,其在工作时,MSM200中阴极与n型半导体形成的肖特基结反偏,且工作电压超过其击穿电压,使探测器工作在盖革模式(Geiger Mode)【D.Renker,Nuclear Instruments andMethods in Physics Research A 567(2006)48-56】下,这时在探测器MSM 200阴极204和阳极205间形成耗尽层,耗尽层中电场强度极高,当无光时,这时探测器MSM 200中肖特基结处于反偏状态,肖特基结等效与一个电容,工作电压主要分配在肖特基上结上,若有光子到达探测器MSM 200中耗尽层中,光子被吸收产生电子空穴对,电子和空穴在耗尽层中倍增产生更多的电子和空穴,反偏的肖特基结发生雪崩,从而一个光子信号转化为电信号并被放大,该过程可以看成是电容的放电过程,这时工作电压有很一部分电压分配到薄膜电阻203上,从而肖特基结上的电压降低,雪崩被熄灭,薄膜电阻203有着负反馈的作用。一旦MSM 200中反偏肖特基结上的电压降低,雪崩过程被熄灭,这时肖特基结重新充电,电压增加,从而能够探测下一个光信号。The equivalent circuit diagram of the ultraviolet single photon detector MSM 200 is shown in Figure 2F. When it is working, the Schottky junction formed by the cathode and n-type semiconductor in the MSM200 is reverse-biased, and the operating voltage exceeds its breakdown voltage, making the detector Working in Geiger Mode (Geiger Mode) [D.Renker, Nuclear Instruments and Methods in Physics Research A 567 (2006) 48-56], at this time a depletion layer is formed between the cathode 204 and the anode 205 of the detector MSM 200, depletion The electric field intensity in the depletion layer is extremely high. When there is no light, the Schottky junction in the detector MSM 200 is in the reverse bias state. The Schottky junction is equivalent to a capacitor, and the working voltage is mainly distributed on the Schottky upper junction. , if a photon reaches the depletion layer of the detector MSM 200, the photon is absorbed to generate electron-hole pairs, and the electrons and holes multiply in the depletion layer to generate more electrons and holes, and the reverse-biased Schottky junction An avalanche occurs, so that a photon signal is converted into an electrical signal and amplified. This process can be regarded as the discharge process of the capacitor. At this time, a large part of the operating voltage is distributed to the thin film resistor 203, so that the voltage on the Schottky junction decreases. , the avalanche is extinguished, and the thin film resistor 203 has a negative feedback effect. Once the voltage across the reverse-biased Schottky junction in the MSM 200 decreases, the avalanche process is extinguished, at which point the Schottky junction is recharged and the voltage increases, enabling detection of the next optical signal.

由于p-n结构或者p-i-n结构紫外光雪崩管工艺复杂,需要生长n型半导体和p型半导体,而GaN和AlGaN基材料很难控制缺陷密度,同时在p-n和p-i-n结构紫外光雪崩管中,电极与半导体之间需要形成欧姆接触,而这也是工艺中极难控制的一个工艺步骤。Due to the complex process of p-n structure or p-i-n structure ultraviolet avalanche tube, it is necessary to grow n-type semiconductor and p-type semiconductor, and it is difficult to control the defect density of GaN and AlGaN-based materials. Ohmic contact needs to be formed between them, and this is also a process step that is extremely difficult to control in the process.

而基于金属-半导体-金属结构的内置负反馈紫外光单光子探测器MSM 200中只需生长n型半导体,同时电极与半导体之间形成的是肖特基接触,故对电极工艺要求简单,成本低廉,且MSM结构电容小,所以MSM 200紫外光单光子探测器反应速度较快。且在MSM 200紫外光单光子探测器中,由于内置了薄膜电阻203,所以当MSM 200探测到一个光信号后,其引发的雪崩电流能够被薄膜电阻熄灭掉,从而能够探测下一个光信号,MSM 200单光子探测器具有内置负反馈的功能,不需要外部复杂的熄灭电路的辅助,从而降低了整个MSM 200单光子探测器系统的设计成本。However, the built-in negative feedback ultraviolet single photon detector MSM 200 based on the metal-semiconductor-metal structure only needs to grow an n-type semiconductor, and at the same time, a Schottky contact is formed between the electrode and the semiconductor, so the requirements for the electrode process are simple and the cost is low. Inexpensive, and the capacitance of the MSM structure is small, so the response speed of the MSM 200 UV single photon detector is relatively fast. And in the MSM 200 ultraviolet single photon detector, because of the built-in thin film resistor 203, when the MSM 200 detects a light signal, the avalanche current caused by it can be extinguished by the thin film resistor, so that the next light signal can be detected. The MSM 200 single photon detector has a built-in negative feedback function and does not require the assistance of an external complex extinguishing circuit, thereby reducing the design cost of the entire MSM 200 single photon detector system.

所述MSM 200紫外光单光子探测器工作在改革模式(Geiger Mode)下,其工作电压为10V-200V之间。The MSM 200 ultraviolet single photon detector works in Geiger Mode, and its working voltage is between 10V-200V.

所述MSM 200紫外光单光子探测器中,n型半导体由III-V族材料,II-VI族材料或IV-IV族材料制得。In the MSM 200 ultraviolet single photon detector, the n-type semiconductor is made of III-V group material, II-VI group material or IV-IV group material.

所述MSM 200紫外光单光子探测器制备工艺中,n型半导体和薄膜电阻可以用MOCVD工艺制备。In the preparation process of the MSM 200 ultraviolet single photon detector, n-type semiconductors and thin film resistors can be prepared by MOCVD process.

本发明的有益效果为:本发明所述内置负反馈金属-半导体-金属结构紫外光单光子探测器克服了p-n和p-i-n结构紫外光单光子探测器复杂的工艺流程带来的工艺控制困难、成本昂贵的问题。本发明所述内置负反馈金属-半导体-金属结构紫外光单光子探测器克服了传统的MSM结构探测器需要外接复杂熄灭电路的困难,简化了系统设计,降低了设计成本。The beneficial effects of the present invention are: the built-in negative feedback metal-semiconductor-metal structure ultraviolet single photon detector of the present invention overcomes the process control difficulty and cost caused by the complex process flow of p-n and p-i-n structure ultraviolet single photon detectors expensive problem. The ultraviolet single photon detector with built-in negative feedback metal-semiconductor-metal structure of the present invention overcomes the difficulty that traditional MSM structure detectors need to be externally connected with complex extinguishing circuits, simplifies system design, and reduces design cost.

附图说明 Description of drawings

图1A为典型的金属-半导体-金属紫外光探测器的剖面图;Fig. 1A is the sectional view of typical metal-semiconductor-metal ultraviolet photodetector;

图1B为典型的金属-半导体-金属紫外光探测器的正面电极结构图;Fig. 1B is a front electrode structure diagram of a typical metal-semiconductor-metal ultraviolet photodetector;

图1C是典型的金属-半导体-金属紫外光探测器等效电路图;Fig. 1C is a typical metal-semiconductor-metal ultraviolet photodetector equivalent circuit diagram;

图2A是内置负反馈金属-半导体-金属紫外光单光子探测器制备过程中衬底示意图;Fig. 2A is a schematic diagram of the substrate in the fabrication process of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector;

图2B是内置负反馈金属-半导体-金属紫外光单光子探测器制备过程中淀积n型半导体示意图;Fig. 2B is a schematic diagram of depositing n-type semiconductor during the preparation process of built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector;

图2C是内置负反馈金属-半导体-金属紫外光单光子探测器制备过程中淀积薄膜电阻示意图;Fig. 2C is a schematic diagram of deposited thin film resistance during the preparation process of built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector;

图2D是内置负反馈金属-半导体-金属紫外光单光子探测器制备过程中刻蚀薄膜电阻示意图;Figure 2D is a schematic diagram of etching thin film resistance during the fabrication process of built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector;

图2E是内置负反馈金属-半导体-金属紫外光单光子探测器制备过程中淀积形成电极示意图和探测器剖面图;Figure 2E is a schematic diagram of electrodes deposited and formed during the fabrication process of built-in negative feedback metal-semiconductor-metal ultraviolet single photon detectors and a cross-sectional view of the detectors;

图2F是内置负反馈金属-半导体-金属紫外光单光子探测器正面薄膜电阻和电极结构图;Fig. 2F is a structure diagram of the front thin film resistance and electrodes of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector;

图2G是内置负反馈金属-半导体-金属紫外光单光子探测器等效电路图。Fig. 2G is an equivalent circuit diagram of a built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector.

具体实施方案specific implementation plan

如图2E所示为本发明所述内置负反馈金属-半导体-金属紫外光单光子探测器剖面结构图,我们可以至下而上形成衬底201,衬底201可以是SiC,蓝宝石以及硅等材料,也可以是GaN基或AlGaN基等材料;n型半导体202,材料可以是GaN,AlGaN和SiC等材料,其中也有缓冲层,以减少晶格适配,降低位错密度,可以运用MOCVD外延生长;薄膜电阻203,薄膜电阻可以采用SiC,SixOy或未掺杂的GaN,AlGaN等材料,其电阻值约为几十KΩ到1MΩ,可以采用MOCVD的方法外延生长;阴极电极204和阳极电极205,阴极电极204与n型半导体形成肖特基结,电极可以采用透明或半透明材料。As shown in Figure 2E, it is a cross-sectional structure diagram of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector of the present invention, we can form the substrate 201 from bottom to top, and the substrate 201 can be SiC, sapphire and silicon, etc. The material can also be GaN-based or AlGaN-based materials; n-type semiconductor 202, the material can be GaN, AlGaN and SiC and other materials, which also has a buffer layer to reduce lattice adaptation and reduce dislocation density, and MOCVD epitaxy can be used Growth; thin film resistor 203, the thin film resistor can be SiC, Six O y or undoped GaN, AlGaN and other materials, its resistance value is about tens of KΩ to 1MΩ, and can be epitaxially grown by MOCVD; cathode electrode 204 and The anode electrode 205 and the cathode electrode 204 form a Schottky junction with the n-type semiconductor, and the electrodes can be made of transparent or translucent materials.

本发明所述内置负反馈金属-半导体-金属紫外光单光子探测器是基于金属-半导体-金属探测器结构,具有工艺简单,成本低廉等优点,若制成400μm×400μm尺寸负反馈金属-半导体-金属紫外光单光子探测器,其具体的工艺步骤为:The built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector of the present invention is based on the metal-semiconductor-metal detector structure, which has the advantages of simple process and low cost. - metal ultraviolet light single photon detector, its specific process steps are:

在衬底201上可以淀积缓冲层,以减少晶格适配,降低缺陷密度,衬底201上可以为SiC,蓝宝石以及硅等材料,也可以是GaN基或AlGaN基等材料,如图2A所示;A buffer layer can be deposited on the substrate 201 to reduce lattice adaptation and defect density. The substrate 201 can be made of materials such as SiC, sapphire and silicon, or GaN-based or AlGaN-based materials, as shown in Figure 2A shown;

在衬底201上淀积n型半导体202,可以是GaN,AlGaN基材料,也可以是SiC材料,其厚度为1-10μm,可以采用MOCVD方法生长n型半导体,如图2B所示;缓冲层是在GaN,AlGaN基材料在低温生长的相同层材料(参见本申请人专利申请。)Deposit an n-type semiconductor 202 on the substrate 201, which can be GaN, AlGaN-based material, or SiC material, and its thickness is 1-10 μm. The n-type semiconductor can be grown by MOCVD, as shown in FIG. 2B; buffer layer It is the same layer material grown at low temperature in GaN, AlGaN based material (see applicant's patent application.)

在n型半导体202上淀积薄膜电阻203,可以是SiC,SixOy或未掺杂的GaN,AlGaN等材料,其电阻值约为几十KΩ到1MΩ,如图2C所示;Deposit a thin film resistor 203 on the n-type semiconductor 202, which can be SiC, Six O y or undoped GaN, AlGaN and other materials, and its resistance value is about tens of KΩ to 1MΩ, as shown in Figure 2C;

刻蚀薄膜电阻203成叉指状结构,其每个叉指宽度为10μm,间距为30μm,如图2D所示;Etching the thin film resistor 203 into an interdigitated structure, each of which has a width of 10 μm and a spacing of 30 μm, as shown in FIG. 2D ;

可以采用PECVD的方式生长电极,使阴极电极204处于叉指状薄膜电阻203中间,阴极电极204宽度为10μm,阴极电极与n型半导体形成肖特基接触,使阳极电极205生长在薄膜电阻203之上,电极宽度为10μm,如图2E所示,其叉指状电极和薄膜电阻如图2F所示。The electrode can be grown by PECVD, so that the cathode electrode 204 is in the middle of the interdigitated thin film resistor 203, the width of the cathode electrode 204 is 10 μm, and the cathode electrode forms a Schottky contact with the n-type semiconductor, so that the anode electrode 205 is grown between the thin film resistor 203 , the electrode width is 10 μm, as shown in Figure 2E, and its interdigitated electrodes and sheet resistance are shown in Figure 2F.

本发明所述内置负反馈金属-半导体-金属紫外光单光子探测器MSM 200工作在盖革模式(Geiger Mode)下,即加上负偏压,且所加电压超过探测器的击穿电压,其大小约为10V-20V,当无光时,探测器MSM 200不能发生雪崩击穿,这时在电极上测得电流很小;当有光时,探测器MSM 200发生雪崩击穿,在电极上检测到一个大电流,这个电流就是电信号,同时内置的薄膜电阻能够使雪崩熄灭,从而探测器MSM 200能够继续探测光信号,实施例对0.2-0.3微米波长的紫外光敏感。本发明紫外光单光子探测器构成阵列使用是常规的方法。The built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector MSM 200 of the present invention works in Geiger mode (Geiger Mode), that is, a negative bias is applied, and the applied voltage exceeds the breakdown voltage of the detector. Its magnitude is about 10V-20V. When there is no light, the detector MSM 200 cannot undergo avalanche breakdown, and the current measured on the electrode is very small; when there is light, the detector MSM 200 undergoes avalanche breakdown, and the electrode A large current is detected, which is an electrical signal, and the built-in thin-film resistor can extinguish the avalanche, so that the detector MSM 200 can continue to detect optical signals. The embodiment is sensitive to ultraviolet light with a wavelength of 0.2-0.3 microns. It is a conventional method to form an array of ultraviolet light single photon detectors of the present invention.

Claims (8)

1.一种内置负反馈金属-半导体-金属紫外光单光子探测器,其特征是每个探测器从下至上包括衬底,衬底上可以生长缓冲层,衬底或缓冲层上是n型半导体,n型半导体上面是叉指状薄膜电阻,阳极电极淀积在薄膜电阻上形成阳极电极,最上层是叉指状电极,阴极电极与n型半导体形成肖特基结,阳极电极淀积在薄膜电阻上。1. A built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector is characterized in that each detector includes a substrate from bottom to top, a buffer layer can be grown on the substrate, and the substrate or buffer layer is n-type Semiconductor, on the n-type semiconductor is an interdigitated thin film resistor, the anode electrode is deposited on the thin film resistor to form an anode electrode, the uppermost layer is an interdigitated electrode, the cathode electrode forms a Schottky junction with the n-type semiconductor, and the anode electrode is deposited on the on the thin film resistor. 2.如权利要求1所述的内置负反馈金属-半导体-金属紫外光单光子探测器,其特征是刻蚀薄膜电阻(203)成叉指状结构,其每个叉指宽度为10μm,间距为30μm;阴极电极处于叉指状薄膜电阻203中间,阴极电极宽度为10μm,阴极电极与n型半导体形成肖特基接触,使阳极电极205生长在薄膜电阻之上,电极宽度为10μm。2. The built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector as claimed in claim 1 is characterized in that the etching thin film resistor (203) becomes an interdigitated structure, and each interdigit width is 10 μm, and the spacing is 30 μm; the cathode electrode is in the middle of the interdigitated thin film resistor 203, and the width of the cathode electrode is 10 μm. The cathode electrode forms a Schottky contact with the n-type semiconductor, so that the anode electrode 205 grows on the thin film resistor, and the electrode width is 10 μm. 3.如权利要求1或2所述的内置负反馈金属-半导体-金属紫外光单光子探测器的衬底选用SiC,GaN,蓝宝石或者硅等材料。3. The substrate of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector as claimed in claim 1 or 2 is selected from materials such as SiC, GaN, sapphire or silicon. 4.如权利要求1或2所述的内置负反馈金属-半导体-金属紫外光单光子探测器的n型半导体可以是SiC,GaN,AlGaN基等材料。4. The n-type semiconductor of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon photon detector as claimed in claim 1 or 2 can be materials such as SiC, GaN, AlGaN bases. 5.如权利要求1或2所述的内置负反馈金属-半导体-金属紫外光单光子探测器工作在负偏压下,超过探测器的击穿电压,电压大小为10V-20V。5. The built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector as claimed in claim 1 or 2 works under negative bias voltage, which exceeds the breakdown voltage of the detector, and the voltage is 10V-20V. 6.如权利要求1至4之一所述的内置负反馈金属-半导体-金属紫外光单光子探测器机构适用于可见光、红外光等波段的探测,其n型半导体可以是InGaAs等其他III-V族或II-VI族材料。6. The built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector mechanism as described in one of claims 1 to 4 is suitable for the detection of visible light, infrared light and other wave bands, and its n-type semiconductor can be other III- Group V or II-VI materials. 7.根据权利要求1所述的内置负反馈金属-半导体-金属紫外光单光子探测器的制备步骤是:7. the preparation step of built-in negative feedback metal-semiconductor-metal ultraviolet light single photon detector according to claim 1 is: (1)在衬底上淀积缓冲层,降低晶格失配,减小缺陷密度;(1) Deposit a buffer layer on the substrate to reduce lattice mismatch and defect density; (2)在衬底上淀积n型半导体;(2) Deposit n-type semiconductor on the substrate; (3)在n型半导体上淀积薄膜电阻并刻蚀成叉指状;(3) Deposit thin film resistors on the n-type semiconductor and etch them into interdigitated shapes; (4)淀积叉指状电极,阴极电极与n型半导体形成肖特基结,阳极电极电极在薄膜电阻上。(4) Deposit interdigitated electrodes, the cathode electrode and the n-type semiconductor form a Schottky junction, and the anode electrode is on the thin film resistor. 8.根据权利要求1所述的内置负反馈金属-半导体-金属紫外光单光子探测器的制备步骤是:在n型半导体202上淀积薄膜电阻203,是SiC,SixOy或未掺杂的GaN,AlGaN材料,其电阻值约为几十KΩ到1MΩ。8. The preparation step of the built-in negative feedback metal-semiconductor-metal ultraviolet single photon detector according to claim 1 is: depositing a thin film resistor 203 on the n-type semiconductor 202, which is SiC, Six O y or undoped Doped GaN, AlGaN material, its resistance value is about tens of KΩ to 1MΩ.
CN201110382697XA 2011-11-28 2011-11-28 Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector Pending CN102496648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110382697XA CN102496648A (en) 2011-11-28 2011-11-28 Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110382697XA CN102496648A (en) 2011-11-28 2011-11-28 Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector

Publications (1)

Publication Number Publication Date
CN102496648A true CN102496648A (en) 2012-06-13

Family

ID=46188450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110382697XA Pending CN102496648A (en) 2011-11-28 2011-11-28 Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector

Country Status (1)

Country Link
CN (1) CN102496648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820367A (en) * 2012-09-11 2012-12-12 中山大学 Gallium nitride (GaN) base avalanche photodetector based on heterostructure absorption and multiplication layer separation
CN107546283A (en) * 2017-08-29 2018-01-05 重庆大学 The GaN ultraviolet photoelectric detections sensor and its application circuit module of buried type electrode
CN108461571A (en) * 2018-03-26 2018-08-28 厦门芯荣光电科技有限公司 8 × 8 two-dimensional array SiC UV photodetectors and preparation method thereof
CN108574022A (en) * 2017-03-14 2018-09-25 孙月静 A kind of aluminum gallium nitrogen based solar-blind ultraviolet detector and preparation method thereof
CN113380906A (en) * 2021-05-26 2021-09-10 浙江大学 Transparent ultraviolet photoelectric detector based on metal-semiconductor-metal structure
CN114566490A (en) * 2022-04-15 2022-05-31 中国电子科技集团公司第十研究所 MSM capacitor structure with vertical layout and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057507A1 (en) * 2001-09-26 2003-03-27 International Business Machines Corporation CMOS-compatible metal-semiconductor-metal photodetector
WO2004061979A1 (en) * 2002-12-13 2004-07-22 Thales Photoelectric detector with coplanar geometry
US20080283953A1 (en) * 2007-05-17 2008-11-20 Princeton Lightwave, Inc. Negative Feedback Avalanche Diode
CN101868862A (en) * 2007-11-21 2010-10-20 日本轻金属株式会社 Photodetector for ultraviolet rays and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030057507A1 (en) * 2001-09-26 2003-03-27 International Business Machines Corporation CMOS-compatible metal-semiconductor-metal photodetector
WO2004061979A1 (en) * 2002-12-13 2004-07-22 Thales Photoelectric detector with coplanar geometry
US20080283953A1 (en) * 2007-05-17 2008-11-20 Princeton Lightwave, Inc. Negative Feedback Avalanche Diode
CN101868862A (en) * 2007-11-21 2010-10-20 日本轻金属株式会社 Photodetector for ultraviolet rays and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820367A (en) * 2012-09-11 2012-12-12 中山大学 Gallium nitride (GaN) base avalanche photodetector based on heterostructure absorption and multiplication layer separation
CN108574022A (en) * 2017-03-14 2018-09-25 孙月静 A kind of aluminum gallium nitrogen based solar-blind ultraviolet detector and preparation method thereof
CN107546283A (en) * 2017-08-29 2018-01-05 重庆大学 The GaN ultraviolet photoelectric detections sensor and its application circuit module of buried type electrode
CN108461571A (en) * 2018-03-26 2018-08-28 厦门芯荣光电科技有限公司 8 × 8 two-dimensional array SiC UV photodetectors and preparation method thereof
CN113380906A (en) * 2021-05-26 2021-09-10 浙江大学 Transparent ultraviolet photoelectric detector based on metal-semiconductor-metal structure
CN114566490A (en) * 2022-04-15 2022-05-31 中国电子科技集团公司第十研究所 MSM capacitor structure with vertical layout and manufacturing method thereof
CN114566490B (en) * 2022-04-15 2023-06-27 中国电子科技集团公司第十研究所 Vertical layout MSM capacitor structure and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5523317B2 (en) Avalanche photodiode and avalanche irradiation detector
US9570647B2 (en) Avalanche photodiode detector
CN102496648A (en) Built-in Negative Feedback Metal-Semiconductor-Metal Structure UV Single Photon Detector
CN113921646B (en) Single-photon detector, manufacturing method thereof and single-photon detector array
CN111244203B (en) Based on Ga2O3Sunlight blind ultraviolet detector of/CuI heterojunction PN junction
CN107611195A (en) Absorbed layer varying doping InGaAs avalanche photodides and preparation method
US9455369B2 (en) Infra red detectors and methods of manufacturing infra red detectors using MOVPE
US8350290B2 (en) Light-receiving device and manufacturing method for a light-receiving device
CN105655437A (en) Ultraviolet avalanche photo-detector
CN108922931B (en) Gallium oxide-based ultraviolet detector and manufacturing method thereof
CN111916526A (en) Negative feedback type single photon avalanche photodiode and manufacturing method thereof
CN108878576B (en) A gallium oxide-based ultraviolet detector
CN102157600A (en) Interdigital ultraviolet enhanced selective silicon photoelectric diode and manufacture method thereof
WO2014101601A1 (en) Photoelectric detector and manufacturing method therefor, and radiation detector
CN116799092A (en) A gallium oxide-based sun-blind ultraviolet detector and its preparation method
US8143648B1 (en) Unipolar tunneling photodetector
CN105742387A (en) AlGaN gradient composition superlattice avalanche photodiode
CN104505421B (en) A kind of avalanche photodide with self-gravitation self-recovering function
CN106409965A (en) High speed saturated single line carrier ultraviolet photodiode and preparation method
CN114678439B (en) A 2DEG ultraviolet detector with symmetrical interdigitated structure and its preparation method
CN103247675B (en) Heterojunction triode with photoelectric conversion and amplification functions
CN107359220A (en) A kind of AlGaN ultraviolet detectors with two-dimensional electron gas denoising shading ring
JP2011171367A (en) Semiconductor light receiving element and semiconductor light receiving device
CN104505422B (en) A kind of self-gravitation self- recoverage avalanche photodide
WO2012129755A1 (en) Imaging array unit using ultra-violet avalanche photo diodes, application method thereof, and imaging array composed of the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120613