CN102493021A - 一种纤维素纳米晶增强phbv纳米纤维的制备方法 - Google Patents

一种纤维素纳米晶增强phbv纳米纤维的制备方法 Download PDF

Info

Publication number
CN102493021A
CN102493021A CN2011104012112A CN201110401211A CN102493021A CN 102493021 A CN102493021 A CN 102493021A CN 2011104012112 A CN2011104012112 A CN 2011104012112A CN 201110401211 A CN201110401211 A CN 201110401211A CN 102493021 A CN102493021 A CN 102493021A
Authority
CN
China
Prior art keywords
phbv
nanofiber
cncs
preparation
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104012112A
Other languages
English (en)
Other versions
CN102493021B (zh
Inventor
秦宗益
余厚咏
刘彦男
周哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201110401211.2A priority Critical patent/CN102493021B/zh
Publication of CN102493021A publication Critical patent/CN102493021A/zh
Application granted granted Critical
Publication of CN102493021B publication Critical patent/CN102493021B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种纤维素纳米晶增强PHBV纳米纤维的制备方法,包括:(1)将纤维素纳米晶CNCs的有机溶剂A溶液在搅拌条件下加入聚羟基丁酸戊酸酯PHBV的有机溶剂B溶液中,得混合液;(2)将上述混合液升温至40-70℃,充分搅拌,得到透明均一的静电纺原液;(3)将上述原液进行静电纺丝,并在室温下真空干燥,得PHBV/CNCs纳米纤维或纤维膜。本发明制备过程简单、可控、快捷、高效,所得的纳米纤维或纤维膜为全生物降解产品,生物可降解与生物相容性好,产品孔隙率高且孔径可调,形状可任意裁剪,并具有较高的力学性能、热学性能和适宜的亲水性能等优点。

Description

一种纤维素纳米晶增强PHBV纳米纤维的制备方法
技术领域
本发明属于PHBV纳米纤维的制备领域,特别涉及一种纤维素纳米晶增强PHBV纳米纤维的制备方法。
背景技术
静电纺丝法生产的纳米纤维独特的结构特性,如高比表面积、低纤网克重和高孔隙率等,使其在医疗卫生产品等领域拥有巨大的市场潜力。如在做细胞工程支架材料时,纳米纤维的作用是提供传导性能和结构支撑,并改进支架的多孔性;在药品封装中使用,可控制活性组分的传输。纳米纤维材料还是烧伤病人理想的包扎绷带。纳米纤维可用于人造血管、药物输送材料等中,还广泛应用于揩布、纸巾等个人护理产品中。特别是生物可降解聚合物的融入,使聚合物纳米纤维最先成为医用领域的选择,其在组织支架、软组织修补、矫形植入、创伤处理以及药液控释等方面的开发与应用倍受关注。将生物可降解聚合物纳米纤维用做组织工程材料,可以提供一系列优良特性如机械性能、生物相容性、促进细胞生长和细胞基质交换的性能等,其研究开发已延伸到了骨、肌腱、韧带、皮肤、血管、神经等组织的再生。
聚羟基丁酸戊酸酯(PHBV)是以淀粉为原料,运用发酵工程技术生产出的生物材料。作为一种生物聚酯,它由细菌生产,在土壤或堆肥条件下能被细菌消化,并完全分解为二氧化碳、水和生物质,只需70天就可以100%降解。PHBV在诸如医用材料、薄膜材料、一次性用品、包装材料等方面有着广阔的应用前景。静电纺丝技术所得的PHBV纳米纤维(CN1313348A;CN1800474A;CN101927033A),具有类似组织细胞间质的纳米结构,良好的生物相容性、生物可吸收性与生物可降解,使其在组织支架材料占有一席之地。然而,静电纺成形,牵伸速率低,高分子取向不完善,断裂强力、杨氏模量偏低。对于骨或韧带组织支架应用时,材料要求:足够的强度支撑组织,耐热性好、抗热变形温度高能够保持自身结构稳定性。但是由于纯PHBV纳米纤维力学性能差、抗热变形温度较低、疏水性强等,限制其在上述组织支架材料的应用。
以PHBV为基体,以淀粉等各类无机物纤维素纤维为增强体或填充物,可以制得性能各异的生物可降解的复合材料,以满足不同场合的使用要求。为了改善PHBV作为支架材料的缺陷,研究者将一些无机矿化物离子(可溶性磷酸盐玻璃、羟基磷灰石、磷酸三钙)、有机化合物(胶原)与PHBV复合制成复合型的纳米纤维(Vince Beachley,Xuejun Wen.Polymernanofibrous structures:Fabrication,biofunctionalization,and cell interactions.Progress in polymerscience 2010;35:868-892)。研究发现可溶性磷酸盐玻璃虽提高力学性能,但引起较强的组织反应、软组织增生及新骨生长受抑制;羟基磷灰石带有大量亲水性的羟基有利于PHBV与之结合及新骨组织长入,但存在降解难的问题。最近,研究者用等离子方法将生物可降解的胶原有机化合物涂覆在PHBV纳米纤维膜表面上,大大地改善纳米纤维表面的亲水性能,细胞可以很好地在纤维膜表面黏附、生长、分化、增殖,不足的是胶原的加入,并不能很好改善PHBV纳米纤维的其他性能,如力学性能、热学性能等。(Jafar Ai,Saeed Heidari K,FatemehGhorbani,Fahimeh Ejazi,Esmaeil Biazar,Azadeh Asefnejad,Khalil Pourshamsian,and MohamadMontazeri.Fabrication of coated-collagen electrospun PHBV nanofiber film by plasma method andits cellular study.Journal of Nanomaterials 2011;8:1-8)。综上,要想将PHBV纳米纤维用于骨或韧带支架材料应用时,对PHBV纳米纤维改性的添加物除了保证本身具有良好的生物可降解性、与人体组织细胞的生物相容性好之外,能够大幅度提高纯纳米纤维的力学性能和改善其疏水性也是所期盼的。
纤维素纳米晶由于其生物可降解性、生物相容性好、带丰富亲水性的羟基、高强度(杨氏模量高达150GPa)、尺寸小等优异特性,其在生物医用、食品、化妆品领域有广泛的应用(CN101481424A)。最近,研究进一步表明纤维素纳米晶的植入不但对人体组织无害,而且人体组织细胞可以在纤维素纳米晶表面很好地黏附和生长(Khaled A.Mahmoud,Jimmy A.Mena,Keith B.Male,Sabahudin Hrapovic,Amine Kamen,and John H.T.Luong.Effect of surfacecharge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals.ACSAppl Mater Interfaces 2010;2:2924-2932)。
发明内容
本发明所要解决的技术问题是提供一种纤维素纳米晶增强PHBV纳米纤维的制备方法,该方法过程步骤少,制备简单快捷,易于控制,可操作性强,可用于工业化批量生产。
本发明的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,包括:
(1)将纤维素纳米晶CNCs的有机溶剂A溶液在搅拌条件下加入聚羟基丁酸戊酸酯PHBV的有机溶剂B溶液中,得混合液;其中,PHBV与CNCs在混合液中的总质量分数为7-25wt%,PHBV与CNCs的质量比为4-99∶1,有机溶剂A与B的质量比为1∶7-9;
(2)将上述混合液升温至40-70℃,充分搅拌,得到透明均一的静电纺原液;
(3)将上述原液进行静电纺丝,并在室温下真空干燥,得PHBV/CNCs纳米纤维或纤维膜。
所述步骤(1)中的纤维素纳米晶CNCs呈棒状或椭圆状,直径为10-200nm,长径比为10-200。
所述步骤(1)中的有机溶剂A为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃或乙醇。
所述步骤(1)中的聚羟基丁酸戊酸酯PHBV的数均分子量为2.0×104-8.0×105,分子量分布为1.2-5.0,聚羟基丁酸戊酸酯中HV含量为1.0-35.0mol%。
所述步骤(1)中的有机溶剂B为二氯甲烷、1,2-氯乙烷、氯仿或二乙二醇二甲醚。
所述步骤(3)中的静电纺丝工艺为:针管内径为0.7mm,电压为10-18kV,接受距离为10-20cm,流动速率为1.0-5.0mL/h,采用旋转滚筒收集高度取向的纳米纤维或纤维膜,采用平板电极收集微孔结构的纳米纤维或纤维膜。
所述步骤(3)中的真空干燥时间为12-24h。
所述步骤(3)中得到的PHBV/CNCs纳米纤维的直径为30nm-2000nm;其直径随纳米晶含量的增加而减少,其孔径结构可通过纺丝液的浓度、溶剂体系和纺丝工艺进行调节。
有益效果
(1)本发明可在常规静电纺丝装置上实施,不需要特别昂贵的设备,可制备出高度取向或孔隙率可调的纳米纤维或纤维膜;原料均为生物可降解材料,所需要的化学药品种类少且成本低廉。制备过程步骤少,制备简单快捷,易于控制,可操作性强,可用于工业化批量生产;
(2)本发明制备的PHBV/CNC纳米纤维或纤维膜为全生物降解产品,生物可降解与生物相容性好,产品孔隙率高且孔径可调,形状可任意裁剪,而且表现出较好的力学性能、较高的热降解温度与适宜的亲水性能等优点。其中抗拉强度最大可达5.4Mpa,初始热降解温度增大了278.5℃,接触角最低可达降低了86°,并且其力学性能、热学性能与亲水性能都可以通过纤维素纳米晶的含量进行调控;纳米纤维孔径结构可通过纺丝液的浓度、溶剂体系和纺丝工艺进行调节。特别是这种高性能的PHBV/CNC纳米纤维或纤维膜在骨、韧带等组织工程支架材料、新型纳米药物载体、膜材料、过滤介质、生物制品、纳米增强材料等等领域展示出了良好的应用前景。
附图说明
图1PHBV/CNC纳米纤维或纤维膜的扫描电镜图(SEM);
图2PHBV/CNC纳米纤维或纤维膜的抗拉强度与CNC含量的函数关系图;
图3PHBV/CNC纳米纤维或纤维膜的初始热降解温度与CNC含量的函数关系图;
图4PHBV/CNC纳米纤维或纤维膜的接触角与CNC含量的函数关系图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
将分散在N,N-二甲基甲酰中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为4.5×104和4.8)的氯仿溶液中,其中PHBV与CNCs在混合液中的总质量分数为9wt%,PHBV与CNCs的质量比为99∶1,N,N-二甲基甲酰胺与氯仿的质量比为1∶7.6;随后将混合液升温到70℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为1.8mL/h、电压为12kV和接收距离为15cm的纺丝条件下进行静电纺丝,采用平板电极收集,将上述产物室温下真空干燥24h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜(SEM)观察获得其纤维直径为400nm(见图1);纳米纤维经微控电子万能试验机测得其抗拉强度为4.8Mpa(见图2),材料再经热失重分析仪(TGA)测试后获得其初始热降解温度高达268.2℃(见图3),接触角测试后得其接触角为134°(见图4)。
实施例2
将分散在N,N-二甲基乙酰胺中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为1.0×105和2.9)的二乙二醇二甲醚溶液中,其中PHBV与CNCs在混合液中的总质量分数为16wt%,PHBV与CNCs的质量比为5∶1,N,N-二甲基乙酰胺与二乙二醇二甲醚的质量比为1∶9;随后将混合液升温到60℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为1.5mL/h、电压为15kV和接收距离为18cm的纺丝条件下进行静电纺丝,采用旋转滚筒收集,将上述产物室温下真空干燥20h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜观察获得其纤维直径为128nm;材料经微控电子万能试验机测得其抗拉强度为5.1MPa,材料再经热失重分析仪测试后获得其初始热降解温度高达272.1℃,接触角测试后得其接触角为115°。
实施例3
将分散在四氢呋喃中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为2.5×105和2.4)的1,2-氯乙烷溶液中,其中PHBV与CNCs在混合液中的总质量分数为7wt%,PHBV与CNCs的质量比为49∶1,四氢呋喃与1,2-氯乙烷的质量比为1∶7.5;随后将混合液升温到58℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为1.0mL/h、电压为12kV和接收距离为14cm的纺丝条件下进行静电纺丝,采用旋转滚筒收集,将上述产物室温下真空干燥15h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜观察获得其纤维直径为875nm;材料经微控电子万能试验机测得其抗拉强度为4.3Mpa,材料再经热失重分析仪测试后获得其初始热降解温度高达258.8℃,接触角测试后得其接触角为125°。
实施例4
将分散在四氢呋喃中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为6.0×105和3.5)的二氯甲烷溶液中,其中PHBV与CNCs在混合液中的总质量分数为12wt%,PHBV与CNCs的质量比为18∶1,四氢呋喃与二氯甲烷的质量比为1∶8;随后将混合液升温到45℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为4.0mL/h、电压为16kV和接收距离为16cm的纺丝条件下进行静电纺丝,采用旋转滚筒收集,将上述产物室温下真空干燥12h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜观察获得其纤维直径为320nm;材料经微控电子万能试验机测得其抗拉强度为4.9Mpa,材料再经热失重分析仪测试后获得其初始热降解温度高达274.9℃,接触角测试后得其接触角为120°。
实施例5
将分散在N,N-二甲基乙酰胺中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为7.0×105和5.0)的二氯甲烷溶液中,其中PHBV与CNCs在混合液中的总质量分数为20wt%,PHBV与CNCs的质量比为70∶1,N,N-二甲基乙酰胺与二氯甲烷的质量比为1∶8.5;随后将混合液升温到62℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为1.8mL/h、电压为15kV和接收距离为17cm的纺丝条件下进行静电纺丝,采用旋转滚筒收集,将上述产物室温下真空干燥24h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜观察获得其纤维直径为52nm;材料经微控电子万能试验机测得其抗拉强度为5.0Mpa,材料再经热失重分析仪测试后获得其初始热降解温度高达260.5℃,接触角测试后得其接触角为129°。
实施例6
将分散在N,N-二甲基甲酰胺中的纤维素纳米晶分散液在搅拌条件下缓慢加入到聚羟基丁酸戊酸酯(数均分子量和分子量分布分别为8.0×105和3.0)的氯仿溶液中,其中PHBV与CNCs在混合液中的总质量分数为10wt%,PHBV与CNCs的质量比为4∶1,N,N-二甲基甲酰胺与氯仿的质量比为1∶7.1;随后将混合液升温到51℃,充分搅拌、溶胀,得到透明均一的静电纺原液;再将上述配制的纺丝液,在针管内径为0.7mm、流动速率为1.2mL/h、电压为15kV和接收距离为18cm的纺丝条件下进行静电纺丝,采用旋转滚筒收集,将上述产物室温下真空干燥20h,得到PHBV/CNCs纳米纤维或纤维膜;纳米纤维经扫描电镜观察获得其纤维直径为122nm;材料经微控电子万能试验机测得其抗拉强度为5.4Mpa,材料再经热失重分析仪测试后获得其初始热降解温度高达275.3℃,接触角测试后得其接触角为86°。

Claims (8)

1.一种纤维素纳米晶增强PHBV纳米纤维的制备方法,包括:
(1)将纤维素纳米晶CNCs的有机溶剂A溶液在搅拌条件下加入聚羟基丁酸戊酸酯PHBV的有机溶剂B溶液中,得混合液;其中,PHBV与CNCs在混合液中的总质量分数为7-25wt%,PHBV与CNCs的质量比为4-99∶1,有机溶剂A与B的质量比为1∶7-9;
(2)将上述混合液升温至40-70℃,充分搅拌,得到透明均一的静电纺原液;
(3)将上述原液进行静电纺丝,并在室温下真空干燥,得PHBV/CNCs纳米纤维或纤维膜。
2.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(1)中的纤维素纳米晶CNCs呈棒状或椭圆状,直径为10-200nm,长径比为10-200。
3.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(1)中的有机溶剂A为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、四氢呋喃或乙醇。
4.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(1)中的聚羟基丁酸戊酸酯PHBV的数均分子量为2.0×104-8.0×105,分子量分布为1.2-5.0,聚羟基丁酸戊酸酯中HV含量为1.0-35.0mol%。
5.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(1)中的有机溶剂B为二氯甲烷、1,2-氯乙烷、氯仿或二乙二醇二甲醚。
6.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(3)中的静电纺丝工艺为:针管内径为0.7mm,电压为10-18kV,接受距离为10-20cm,流动速率为1.0-5.0mL/h,采用旋转滚筒收集高度取向的纳米纤维或纤维膜,采用平板电极收集微孔结构的纳米纤维或纤维膜。
7.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(3)中的真空干燥时间为12-24h。
8.根据权利要求1所述的一种纤维素纳米晶增强PHBV纳米纤维的制备方法,其特征在于:所述步骤(3)中得到的PHBV/CNCs纳米纤维的直径为30nm-2000nm。
CN201110401211.2A 2011-12-06 2011-12-06 一种纤维素纳米晶增强phbv纳米纤维的制备方法 Expired - Fee Related CN102493021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110401211.2A CN102493021B (zh) 2011-12-06 2011-12-06 一种纤维素纳米晶增强phbv纳米纤维的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110401211.2A CN102493021B (zh) 2011-12-06 2011-12-06 一种纤维素纳米晶增强phbv纳米纤维的制备方法

Publications (2)

Publication Number Publication Date
CN102493021A true CN102493021A (zh) 2012-06-13
CN102493021B CN102493021B (zh) 2014-01-08

Family

ID=46184879

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110401211.2A Expired - Fee Related CN102493021B (zh) 2011-12-06 2011-12-06 一种纤维素纳米晶增强phbv纳米纤维的制备方法

Country Status (1)

Country Link
CN (1) CN102493021B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102772828A (zh) * 2012-07-10 2012-11-14 东华大学 一种自调节高载药纳米纤维药物缓释膜及其制备方法
CN104018235A (zh) * 2014-06-09 2014-09-03 浙江理工大学 一种兼具抗菌与光催化降解特性的氧化锌-纤维素钠米晶复合纤维膜的制备方法
CN104153120A (zh) * 2014-06-26 2014-11-19 浙江理工大学 一种负载纳米银-纤维素纳米晶杂化材料的抗菌医用敷料膜及其制备方法
CN105492669A (zh) * 2013-09-11 2016-04-13 日东纺绩株式会社 纤维素纳米纤维及其制造方法、使用了该纤维素纳米纤维的水分散体以及纤维增强复合材料
WO2017076374A1 (en) 2015-11-06 2017-05-11 Vysoké Učení Technické V Brně Polymer-made fibre preparation method
CN108102322A (zh) * 2017-12-18 2018-06-01 广州美瑞泰科生物工程技术有限公司 一种抗菌环保包装薄膜及其制备方法
CN108486684A (zh) * 2018-05-10 2018-09-04 宁波新斯维箱包有限公司 聚酯复合纤维及其制备方法
CN110128803A (zh) * 2019-04-24 2019-08-16 广东省医疗器械研究所 一种改性bcw/phbv复合材料的制备方法
CN112176452A (zh) * 2020-11-11 2021-01-05 苏州鑫极纺织有限公司 一种皮芯结构吸水纤维及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961974A (zh) * 2005-11-09 2007-05-16 中国科学院化学研究所 可生物降解及吸收的聚合物纳米纤维膜材料及其制备方法和用途
CN101967697A (zh) * 2010-10-20 2011-02-09 东华大学 生物可降解的固-固相变纳米纤维或纤维膜的制备方法
GB2474694A (en) * 2009-10-23 2011-04-27 Innovia Films Ltd Biodegradable cigarette filter tow

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1961974A (zh) * 2005-11-09 2007-05-16 中国科学院化学研究所 可生物降解及吸收的聚合物纳米纤维膜材料及其制备方法和用途
GB2474694A (en) * 2009-10-23 2011-04-27 Innovia Films Ltd Biodegradable cigarette filter tow
CN101967697A (zh) * 2010-10-20 2011-02-09 东华大学 生物可降解的固-固相变纳米纤维或纤维膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪为华: "PHBV基可生物降解复合材料研究现状", 《现代纺织技术》, no. 4, 31 December 2006 (2006-12-31), pages 54 - 58 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102772828A (zh) * 2012-07-10 2012-11-14 东华大学 一种自调节高载药纳米纤维药物缓释膜及其制备方法
CN105492669A (zh) * 2013-09-11 2016-04-13 日东纺绩株式会社 纤维素纳米纤维及其制造方法、使用了该纤维素纳米纤维的水分散体以及纤维增强复合材料
US9951192B2 (en) 2013-09-11 2018-04-24 Nitto Boseki Co., Ltd. Cellulose nanofibers, method for producing same, aqueous dispersion using cellulose nanofibers, and fiber-reinforced composite material
CN104018235A (zh) * 2014-06-09 2014-09-03 浙江理工大学 一种兼具抗菌与光催化降解特性的氧化锌-纤维素钠米晶复合纤维膜的制备方法
CN104018235B (zh) * 2014-06-09 2016-08-24 浙江理工大学 一种兼具抗菌与光催化降解特性的氧化锌-纤维素钠米晶复合纤维膜的制备方法
CN104153120A (zh) * 2014-06-26 2014-11-19 浙江理工大学 一种负载纳米银-纤维素纳米晶杂化材料的抗菌医用敷料膜及其制备方法
WO2017076374A1 (en) 2015-11-06 2017-05-11 Vysoké Učení Technické V Brně Polymer-made fibre preparation method
CN108102322A (zh) * 2017-12-18 2018-06-01 广州美瑞泰科生物工程技术有限公司 一种抗菌环保包装薄膜及其制备方法
CN108486684A (zh) * 2018-05-10 2018-09-04 宁波新斯维箱包有限公司 聚酯复合纤维及其制备方法
CN110128803A (zh) * 2019-04-24 2019-08-16 广东省医疗器械研究所 一种改性bcw/phbv复合材料的制备方法
CN112176452A (zh) * 2020-11-11 2021-01-05 苏州鑫极纺织有限公司 一种皮芯结构吸水纤维及其制备方法

Also Published As

Publication number Publication date
CN102493021B (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
CN102493021B (zh) 一种纤维素纳米晶增强phbv纳米纤维的制备方法
Ahmed et al. Bacterial cellulose micro-nano fibres for wound healing applications
Huang et al. Electrospun poly (butylene succinate)/cellulose nanocrystals bio-nanocomposite scaffolds for tissue engineering: Preparation, characterization and in vitro evaluation
Kim et al. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application
CN101502671B (zh) 丝素蛋白/p(lla-cl)复合纳米纤维组织修复支架的制备方法
Yang et al. Study on chitosan/polycaprolactone blending vascular scaffolds by electrospinning
CN109758611B (zh) 一种活性生物组织工程支架的溶喷制备方法
Qian et al. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields
CN107648669B (zh) 构建血管化组织工程骨膜的方法
CN109876186A (zh) 一种用于神经修复的生物医用可降解双层支架及其制备方法
CN103480042B (zh) 一种人工硬脊膜及其制备方法和使用方法
Li et al. Hierarchical porous bacterial cellulose scaffolds with natural biomimetic nanofibrous structure and a cartilage tissue-specific microenvironment for cartilage regeneration and repair
Liu et al. Biomedical applications of bacterial cellulose based composite hydrogels
Sun et al. Preparation and characterization of poly (3-hydroxybutyrate-co-4-hydroxybutyrate)/pullulan-gelatin electrospun nanofibers with shell-core structure
Zhang et al. The root-like chitosan nanofiber porous scaffold cross-linked by genipin with type I collagen and its osteoblast compatibility
CN109943974B (zh) 基于聚羟基脂肪酸酯/明胶电纺纳米纤维的神经导管材料的制备方法
CN109999222B (zh) 基于聚羟基脂肪酸酯/海藻酸钠电纺纳米纤维的神经导管材料的制备方法
CN100479869C (zh) 一种基因重组蜘蛛丝蛋白管状支架的制备方法
CN110859994B (zh) 一种改性柞蚕丝素蛋白3d打印支架及其制备方法
CN102631703A (zh) 一种三维非支撑骨修复补片及其制备方法
CN115487358B (zh) 一种用于软骨组织修复的凝胶复合支架及制备方法
CN102000363B (zh) 具有良好生物相容性CA/CS/CNTs复合纳米纤维的制备方法
CN111956865B (zh) 一种神经保护材料、复层神经修复导管及其制备方法
KR100588228B1 (ko) 친수화성 합성 및 천연 폴리에스터 나노섬유와, 천연폴리에스터를 이용한 상처 피복제 및 그 제조방법
CN106421894A (zh) 一种骨组织工程支架材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140108

Termination date: 20161206