CN102482676A - 来源于生物质聚合物的脂肪酸脂产物 - Google Patents

来源于生物质聚合物的脂肪酸脂产物 Download PDF

Info

Publication number
CN102482676A
CN102482676A CN2010800194079A CN201080019407A CN102482676A CN 102482676 A CN102482676 A CN 102482676A CN 2010800194079 A CN2010800194079 A CN 2010800194079A CN 201080019407 A CN201080019407 A CN 201080019407A CN 102482676 A CN102482676 A CN 102482676A
Authority
CN
China
Prior art keywords
host cell
cell
described method
acyl
catalyst structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800194079A
Other languages
English (en)
Inventor
J·D·科斯林
Y·康
E·J·斯蒂恩
G·博金斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN102482676A publication Critical patent/CN102482676A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明提供了合并的生物加工方法和宿主细胞。所述宿主细胞能够使生物质聚合物直接转化或者通过光照转化成生物柴油等效物和其他脂肪酸衍生物。具体地,本发明提供了一种由生物质聚合物制备生物柴油等效物和其他脂肪酸衍生物的方法,包括提供经基因工程化的宿主细胞,在含有碳源的培养基中培养宿主细胞,使得细胞中的重组核酸表达,以及从培养物中提取生物柴油等效物和其他脂肪酸衍生物。

Description

来源于生物质聚合物的脂肪酸脂产物
相关申请的交叉引用
本申请要求享有2009年5月1号提交的第61/174,960号美国临时申请的权益,其作为整体通过引用并入本文。
技术领域
本文公开的内容涉及由纤维素类生物质产生脂肪酸酯和其他脂肪酸衍生物的方法和组合物。
背景技术
脂肪酸合成对于许多药学上和工业上的重要化合物的生产十分关键,包括ω-3脂肪酸(EPA和DHA)、油类、生物柴油、脂肪醇和蜡。生物柴油是优于汽油、乙醇和“较高级”链醇(包括丁醇)的燃料,由于其无毒、不溶于水、能量密集并且不会产生石油衍生的柴油的主要污染物(SOx、NOx、重金属和芳香族化合物),因而已被大量生产。但是,与种植植物油作物、提取油类和对其进行改进以用作燃料相关的环境和经济成本巨大(Hill等,2006)。因此,对由微生物生产油类的兴趣浓厚,大量研究集中于积累大量脂类的那些微生物。目前,由这些有机体产生油类需要使用昂贵的提取方法,仍然需要由能够产生脂类但是无需使用昂贵的提取方法的微生物生产油类。
尽管大肠杆菌(E.coli)没有积累脂质的固有能力(与脂质积累微生物例如产油酵母、藻类相比而言),已知其能够分泌低水平的脂肪酸,这种特性消除了通常与由脂质积累作物或者微生物产生乙醇、丁醇、较高级链醇和生物柴油相关的产物提取成本(Hall和Rat ledge 1977;Brown 1969;Knights等,1970;Jiang和Cronan 1994)。利用大肠杆菌产生这些分子比生产基于脂肪酸之生物燃料的传统方法具有优势,所述传统方法依赖于生物催化的严格条件并且产生无用的副产物(例如甘油)。但是,由于产物具有毒性并且效价低,前面阐述的大肠杆菌生产生物燃料的能力达不到工业相关所需的生产水平(Atsumi等,2008;Fischer et al.2008)。
已经显示大肠杆菌能够通过利用内源产生的乙醇使外源加入的脂肪酸酯化,从而产生脂肪酸乙酯(FAEE)(Kalscheuer等,2006)。然而由于脂肪酸的高成本,该方法将是经济上不可行的。而且,其他小组已经证实,通过外源性添加乙醇到生长培养基而改善天然E.coli脂肪酸生物合成和β-氧化途径,会产生FAEE(WO 2007/136762,WO 2008/119082,WO2009/009391)。然而,需要在不添加外源性底物的情况下使能够制备生物柴油等效物的E.coli细胞保持工程化。
尽管由糖类生产第二代生物燃料(例如FAEE)比由糖类生产乙醇具有优势,从大量可获得的生物质储备物中获得这种糖类提供甚至更大的进步。不幸地是,从纤维素类生物质中获得糖类需要使用昂贵的酶,以从预处理的纤维素和半纤维素中释放糖类。
因此,进一步需要合并的生物加工过程,其中细胞由投入的纤维素类生物质制备生物柴油等效物和其他脂肪酸衍生的化化学物质,而无需加入外源底物或者酶。
发明概述
本文中描述的是合并的生物加工方法和宿主细胞。所述宿主细胞能够制备生物柴油等效物和其他脂肪酸衍生物。在特定的实施方案中,宿主细胞能够使植物生物质降解,并利用其作为唯一碳源,制备生物柴油等效物和其他脂肪酸衍生物。
因此,一个方面包括一种由碳源制备脂肪酸乙酯的方法,包括提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶和丙酮酸脱羧酶的一种或多种重组核酸,在培养基中培养所述宿主细胞以形成培养物,使得一种或多种重组核酸在细胞中表达,其中所述培养基含有宿主细胞的碳源,以及从培养物中提取脂肪酸乙酯。
另一个方面进一步包括一种由生物质聚合物制备脂肪酸乙酯的方法,包括首先提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由宿主细胞分泌,接着在培养基中培养所述宿主细胞以形成培养物,使得一种或多种重组核酸在细胞中表达,其中所述培养基含有生物质聚合物作为宿主细胞的碳源,然后从培养物中提取脂肪酸乙酯。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在某些实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是来自大肠杆菌的ltesA,脂酰-coA合成酶是来自大肠杆菌的fadD,醇脱氢酶是来自运动发酵单胞菌(Zymomonas mobilis)的adhB,丙酮酸脱羧酶是来自运动发酵单胞菌的pdc,或者酰基转移酶是来自不动细菌属(Acinetobacter)菌株ADP1的蜡酯合酶atfA。在某些实施方案中,生物质聚合物是半纤维素。在某些实施方案中,半纤维素是木聚糖。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在进一步的实施方案中,木聚糖酶是来自卵形拟杆菌(Bacteroides ovatus)的xsa或者来自纤维弧菌(Cellvibriojaponicus)的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌(Clostridium stercorarium)的xyn10B。在某些实施方案中,生物质聚合物是纤维素。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌(Bacillus sp.)D04的cel。在某些实施方案中,培养基不含游离的脂肪酸或者醇。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
本发明的另一个方面包括一种经基因修饰的宿主细胞,其含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶和丙酮酸脱羧酶的一种或多种重组核酸。
本发明的另一个方面包括一种经基因修饰的宿主细胞,其含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在进一步的实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是大肠杆菌的ltesA,脂酰-coA合成酶是大肠杆菌的fadD,醇脱氢酶是运动发酵单胞菌的adhB,丙酮酸脱羧酶是运动发酵单胞菌的pdc,或者酰基转移酶是不动细菌属菌株ADP1的蜡酯合酶atfA。在某些实施方案中,宿主细胞还含有编码天然分泌的蛋白的重组核酸,其中所述分泌蛋白与一种或多种生物质聚合物降解酶融合。在进一步的实施方案中,天然分泌的蛋白是大肠杆菌的OsmY。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在一个进一步的实施方案中,木聚糖酶是卵形拟杆菌的xsa或者纤维弧菌的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌的xyn10B。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌D04的cel。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
在另一个方面中,本发明包括一种由生物质聚合物制备脂肪醇的方法,其包括提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、形成脂肪醇的脂酰-coA还原酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由宿主细胞分泌,在培养基中培养所述宿主细胞以形成培养物,使得一种或多种重组核酸在细胞中表达,其中所述培养基含有生物质聚合物作为宿主细胞的碳源,以及从培养物中提取脂肪醇。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在某些实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是大肠杆菌的ltesA,脂酰-coA合成酶是大肠杆菌的fadD,或者形成脂肪醇的脂酰-coA还原酶是小鼠(Mus musculus)的mfar1。在某些实施方案中,生物质聚合物是半纤维素。在某些实施方案中,半纤维素是木聚糖。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在一个进一步的实施方案中,木聚糖酶是卵形拟杆菌的xsa或者纤维弧菌的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌的xyn10B。在某些实施方案中,生物质聚合物是纤维素。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌D04的cel。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
在另一个方面中,本发明包括一种经基因修饰的宿主细胞,含有编码硫酯酶、脂酰-coA合成酶、形成脂肪醇的脂酰-coA还原酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在某些实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是大肠杆菌的ltesA,脂酰-coA合成酶是大肠杆菌的fadD,或者形成脂肪醇的脂酰-coA还原酶是小鼠的mfar1。在某些实施方案中,宿主细胞还含有编码天然分泌的蛋白的重组核酸,其中所述分泌蛋白与一种或多种生物质聚合物降解酶融合。在进一步的实施方案中,天然分泌的蛋白是大肠杆菌的OsmY。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在一个进一步的实施方案中,木聚糖酶是卵形拟杆菌的xsa或者纤维弧菌的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌的xyn10B。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌D04的cel。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
在另一个方面中,本发明包括一种由生物质聚合物制备脂肪醛的方法,包括提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、脂酰-coA还原酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由宿主细胞分泌,在培养基中培养所述宿主细胞以形成培养物,使得一种或多种重组核酸在细胞中表达,其中所述培养基含有生物质聚合物作为宿主细胞的碳源,以及从培养物中提取脂肪醛。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在某些实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是大肠杆菌的ltesA,脂酰-coA合成酶是大肠杆菌的fadD,或者脂酰-coA还原酶是不动杆菌(Acinetobacter baylyi)的acr1。在某些实施方案中,生物质聚合物是半纤维素。在某些实施方案中,半纤维素是木聚糖。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在一个进一步的实施方案中,木聚糖酶是卵形拟杆菌的xsa或者纤维弧菌的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌的xyn10B。在某些实施方案中,生物质聚合物是纤维素。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌D04的cel。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
在另一个方面中,本发明包括一种经基因修饰的宿主细胞,含有编码硫酯酶、脂酰-coA合成酶、脂酰-coA还原酶和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。在某些实施方案中,宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。在某些实施方案中,宿主细胞被修饰为使得脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。在其他实施方案中,宿主细胞是细菌细胞、真菌细胞、藻青菌细胞、植物细胞、动物细胞或者人体细胞。在进一步的实施方案中,宿主细胞是大肠杆菌细胞或者酵母细胞。在某些实施方案中,以下一种或多种是准确的:硫酯酶是大肠杆菌的ltesA,脂酰-coA合成酶是大肠杆菌的fadD,或者脂酰-coA还原酶是不动杆菌的acr1。在某些实施方案中,宿主细胞还含有编码天然分泌的蛋白的重组核酸,其中所述分泌蛋白与一种或多种生物质聚合物降解酶融合。在进一步的实施方案中,天然分泌的蛋白是大肠杆菌的OsmY。在某些实施方案中,一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。在一个进一步的实施方案中,木聚糖酶是卵形拟杆菌的xsa或者纤维弧菌的Gly43F。在另一个实施方案中,木聚糖内切酶催化结构域是来源于粪堆梭菌的xyn10B。在进一步的实施方案中,一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。在进一步的实施方案中,以下一种或多种是准确的:纤维二糖水解酶催化结构域是来源于纤维弧菌的cel6A,β-葡萄糖苷酶是纤维弧菌的cel3B,或者纤维素酶催化结构域是来源于芽孢杆菌D04的cel。在某些实施方案中,生物质聚合物是甘露聚糖。在进一步的实施方案中,一种或多种生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。在进一步的实施方案中,以下一种或多种是准确的:甘露聚糖内切酶是纤维弧菌的Man26A,甘露聚糖外切酶是纤维弧菌的Man5D,或者α-半乳糖苷酶是纤维弧菌的Aga27A。
在另一个方面中,本发明包括利用甘露聚糖的方法和宿主细胞,其中生物质聚合物是甘露聚糖并且生物质聚合物降解酶是甘露聚糖内切酶、甘露聚糖外切酶和α-半乳糖苷酶。一个进一步的实施方案包括由甘露聚糖制备脂肪酸乙酯、脂肪醇或者脂肪醛的方法和宿主细胞。
在另一个方面中,本发明包括制备脂肪酸酯的方法和宿主细胞。在一个实施方案中,本发明包括由生物质聚合物制备脂肪酸乙酯的方法和宿主细胞。在一个实施方案中,宿主细胞含有编码硫酯酶、脂酰-coA合成酶、形成脂肪醇的脂酰-coA还原酶和酰基转移酶的一种或多种重组核酸。
在一个方面中,本发明包括由光照制备脂肪酸乙酯、脂肪醇或者脂肪醛的方法。在一个实施方案中,对能够利用光照作为碳源的有机体进行基因工程化,以使其含有本发明其他方面中如上面所描述的产生脂肪酸乙酯、脂肪醇或者脂肪醛的酶途径。在另一个实施方案中,对本发明上述方面的宿主细胞进一步进行基因工程化,以使其含有使宿主细胞能够利用光照作为碳源并且能够由光照直接产生脂肪酸乙酯、脂肪醇或者脂肪醛的酶途径。
附图简述
图1显示由半纤维素或者葡萄糖产生脂肪酸衍生的化分子的工程途径并且描述了本研究中使用的合成操纵子(图1A)。通过去除形成乙酸盐的反应使天然大肠杆菌代谢途径流(黑色箭头线)增加,从而提高游离脂肪酸和酰基-CoA的产量(去除的是pta、ackA和poxB)。通过β-氧化作用去除脂肪酸和脂酰-CoA的分解代谢,使流量进一步增加。由非天然途径(灰色箭头线)产生多种大肠杆菌非天然产物,包括脂肪酸乙酯、醇和醛。醇和醛可以由脂酰-CoA直接产生(分别利用mFar1或者acr1),而酯需要引入产生乙醇的途径(由pdc和adhB编码)。最终,通过表达并分泌木聚糖内切酶Xyn10B和一种来源于粪堆梭菌的木聚糖酶,以使我们的生产生物燃料的大肠杆菌能够利用半纤维素作为碳源,完成对合并的生物加工过程的阐述。标示了过量表达的基因或者操纵子,三角形表示lacUV5启动子。图1B显示脂肪酸乙酯途径的示例,图1C显示脂肪醇途径的示例,图1D显示脂肪醛途径的示例,图1E显示脂肪酸酯/蜡酯途径的示例。缩写:Pyr-丙酮酸;AcAld-乙醛;EtOH-乙醇。
图2显示由工程化的大肠杆菌菌株产生的总游离脂肪酸。标示了过量表达和敲除的基因。WT:野生型DH1;LT:硫酯酶;LT-ΔfadD:ΔfadD,LtesA;LT-ΔfadE:ΔfadE,LtesA;LT-ΔfadD-ΔACE:Δpta,ΔpoxB,ΔackA,ΔfadD,LtesA。
图3显示由多种菌株产生的生物柴油等效物。HE-LAAP:ΔfadE,LtesA,atfA,pdc,adhB;faa2:ΔfadE,LtesA,atfA,pdc,adhB,faa2;HE-atf”:ΔfadE,LtesA,atfA,pdc,adhB,fadDm2;A1A:ΔfadE,LtesA,atfA,pdc,adhB,fadDm1;A2A:ΔfadE,LtesA,2个拷贝的atfA,pdc,adhB,fadDm1。
图4显示由菌株KS5和KS11产生的脂肪醇。检测出了C12至C18脂肪醇。KS5:ΔfadE,mFar1;KS11:ΔfadE,acr1。
图5显示木聚糖利用菌株的生长(图5A和5B)。在图5A中,将编码木聚糖内切酶或者β-木糖苷酶的基因各自转化到大肠杆菌中或者一个质粒上,以测试对木聚糖的利用。在图5B中,蓝色菱形GB-X是质粒pGB-X在BL21背景中表达的木聚糖酶xynB;绿色三角形GB-XX是质粒pGB-XX在BL21背景中表达的木聚糖酶xynB和木聚糖内切酶xsa。两种菌株均生长于0.2%木聚糖M9基础培养基中。图5C显示产生的FAEE:HE-XH:DH1,ΔfadE,表达xynB、xsa、LtesA、atfA、pdc和adhB,生长于0.2%木糖中;PE2-XX:DH1,ΔfadE,Δpta,ΔpoxB,ΔackA,表达xynB、xsa、LtesA、atfA、pdc和adhB,生长于0.2%木糖和2%木聚糖中。
图6显示Ltes-A表达菌株中游离脂肪酸链长度的分布。
图7显示重组大肠杆菌在羧甲基纤维素中的生长。
图8显示重组大肠杆菌共培养物在半乳甘露聚糖中的生长。
图9显示由大肠杆菌产生的脂肪酸酯。图9A显示产生的十四酸十六烷基酯。图9B显示产生的十六酸十六烷基酯。图9C显示产生的十六酸十八烷基酯。
图10显示含有携带OsmY-XynB和OsmY-Xsa的质粒的大肠杆菌以及含有携带OsmY-XynB和无标签的Xsa的质粒的大肠杆菌在含有木聚糖作为唯一碳源的培养基中生长的比较。
图11显示表达纤维素酶和β-葡萄糖苷酶的大肠杆菌在再生非晶形纤维素(RAC)中的生长。对照大肠杆菌不表达纤维素酶。
图12显示表达OsmY-XynB和Gly43F的大肠杆菌在含有木聚糖或者木糖作为唯一碳源的培养基中的生长。
发明详述
本文公开的内容涉及合并的生物加工方法和宿主细胞。在特定的实施方案中,宿主细胞能够产生生物柴油等效物和其他脂肪酸衍生物。在其他实施方案中,宿主细胞具有使生物质聚合物直接转化或者通过光照转化成生物柴油等效物和其他脂肪酸衍生物的能力。在一个方面中,本发明提供了一种由生物质聚合物生产生物柴油等效物和其他脂肪酸衍生物的方法,其包括提供一种经基因工程化的宿主细胞,在含有碳源的培养基中培养所述宿主细胞,使得细胞中的重组核酸表达,以及从培养物中提取生物柴油等效物和其他脂肪酸衍生物。
本发明的宿主细胞
本文中交叉使用“宿主细胞”和“宿主微生物”,其是指能够通过插入重组DNA或者RNA而被转化的生物活细胞。这种重组DNA或者RNA可以处于表达载体中。因此,本文中描述的宿主微生物或者细胞可以是原核有机体(例如真细菌王国的有机体(organism of the kingdom Eubacteria))。本领域普通技术人员将领会的是,原核细胞没有膜围绕的核,而真核细胞具有膜围绕的核。
本发明中可以使用任何原核或者真核宿主细胞,只要其经核酸序列转化后保持活力。在优选的实施方案中,宿主微生物是细菌,在一些实施方案中,细菌是大肠杆菌。在其他实施方案中,细菌是藻青菌。细菌宿主细胞的额外示例包括但不限于属于埃希氏菌、肠杆菌、固氮菌、欧文氏菌、芽孢杆菌、假单胞菌、克雷白氏杆菌、变形杆菌、沙门氏菌、沙雷氏菌、志贺氏菌、根瘤菌、透明颤菌、聚球藻、集胞藻、副球菌分类等级的那些菌种。优选必要核酸序列的转化、随后蛋白(即酶)的表达或者得到的中间物不会对宿主细胞产生不利影响。
适宜的真核细胞包括但不限于真菌、植物、昆虫或者哺乳动物细胞。适宜的真菌细胞是酵母细胞,例如酵母属的酵母细胞。在一些实施方案中,真核细胞来源于藻类,例如莱茵衣藻(Chlamydomonas reinhardtii)、斜生栅藻(Scenedesmus obliquus)、普通小球藻(Chlorella vulgaris)或者杜氏盐藻(Dunaliella salina)。
本发明的宿主细胞经基因修饰,其中重组核酸已经引入宿主细胞中,并且自然界不存在经基因修饰的宿主细胞。适宜的宿主细胞是能够表达一种或多种核酸构建体的宿主细胞,所述核酸构建体编码能够催化期望的生物合成反应的一种或多种酶。在优选的实施方案中,一种或多种酶包括但不限于硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶、一种或多种生物质聚合物降解酶、形成脂肪醇的脂酰-coA还原酶或者脂酰-coA还原酶。在优选的实施方案中,一种或多种酶能够催化产生生物柴油等效物和其他脂肪酸衍生物的反应。
本文中使用的“重组核酸”或者“异源核酸”是指核酸聚合物,其中以下的至少一个是准确的:(a)核酸序列对于特定的宿主微生物是外来的(即在宿主微生物中不能天然找到);(b)在特定的宿主微生物中可以天然找到其序列,但是以非天然(例如多于预期)量存在;或者(c)核酸序列包含天然相互无关联的两个或者多个子序列。例如,对于情况(c),重组核酸序列将具有来源于无关联基因的两个或者多个序列,其排列形成新的功能性核酸。具体地,本发明描述了将表达载体引入宿主细胞,其中所述表达载体含有编码在宿主细胞中通常不能找到的酶的核酸序列,或者含有编码在细胞中通常能够找到但是处于不同调控序列控制下的酶的核酸。对于宿主细胞的基因组而言,编码酶的核酸序列是重组的。
在一些实施方案中,宿主细胞天然产生制备脂肪酸衍生的化合物的任何前体。编码期望酶的这些基因可以是宿主细胞异源性的,或者这些基因可以是宿主细胞内源性的但是与异源启动子和/或控制区可操作连接,以使宿主细胞中基因的表达量较高。在其他实施方案中,宿主细胞不能天然产生期望的脂肪酸分子,其包含能够表达产生那些分子所必需的一种或多种基因的异源核酸构建体。
本文中对于核酸分子或者多肽以及特定的细胞或微生物使用的“内源性”是指细胞中的核酸序列或者肽,其不必利用重组工程技术引入细胞中,例如当细胞初始从自然界分离时存在于细胞中的基因。
能够催化期望反应的每种期望酶可以是宿主细胞天然的或者异源性的。当酶是宿主细胞天然的酶时,可选地对宿主细胞进行基因修饰,以调节酶的表达。这种修饰可以包括对宿主细胞中编码酶的染色体基因进行修饰,或者将编码酶基因的核酸构建体引入宿主细胞中。修饰的一个作用是调节宿主细胞中酶的表达,例如与未修饰宿主细胞中酶的表达相比,宿主细胞中酶的表达量增加。可选地,对酶表达的修饰可以使与未修饰细胞中酶的表达量相比,酶的表达量减少。例如,宿主细胞可以含有编码脂酰-coA脱氢酶的天然核酸。在本发明的一些方面中,可以对宿主细胞进行基因修饰,以使编码脂酰-coA脱氢酶的表达相对于未修饰宿主细胞中的表达水平减弱或者降低。
基因修饰包括任何类型的修饰,具体地包括通过重组技术和/或经典突变进行的修饰。如本文中所使用,导致基因的表达、基因功能或者基因产物(即基因所编码的蛋白)的功能减弱的基因修饰可以被称为失活(完全或者部分)、缺失、干扰、阻断、沉默或者下调,或者基因表达量减少。例如,导致基因所编码的蛋白功能降低的基因修饰可以是由于基因的完全缺失(即基因不存在,因而蛋白不存在)、导致蛋白不完整或者不翻译(例如蛋白不表达)的基因突变,或者使蛋白天然功能降低或者丧失(例如所表达蛋白的酶活性或者作用降低或者无)的基因突变。更具体地,所涉及本文中讨论的使酶的作用或者活性降低一般是指本发明微生物中导致酶的表达和/或功能性(生物学活性)降低的任何基因修饰,其包括酶活性降低(例如特异性)、对酶的抑制或者降解增加,以及酶的表达减弱或者消失。例如,可以通过阻断或者减少酶的产生、降低酶活性或者抑制酶活性,,使得本发明的酶的作用或者活性降低。还可以联合进行这些修饰中的一些修饰。阻断或者减少酶的产生可以包括使编码酶的基因处于需要培养基中存在一种诱导化合物的启动子控制下。通过设定条件以使培养基中的诱导物开始耗尽,可以关闭编码酶的基因(因而酶合成)的表达。阻断或者降低酶活性还可以包括利用与第4,743,546号美国专利中所描述类似的切除技术方法。为了利用该方法,将编码目的酶的基因克隆到特异的基因序列之间,使得能够将基因从基因组中特异地、受控地切除。可以通过例如如第4,743,546号美国专利中改变培养物的培养温度或者通过一些其他物理或者营养信号来促进切除。
“基因工程化”或者“基因修饰”是指产生原核或者真核宿主细胞的任何重组DNA或者RNA方法,所述宿主细胞表达升高水平、较低水平或者突变形式的蛋白。换言之,宿主细胞已经利用重组多聚核苷酸分子进行了转染、转经或者转导,因而已经发生改变,引起细胞改变期望蛋白的表达。用于对宿主细胞进行基因工程化的方法和载体是本领域熟知的,例如多种技术描述于Current Protocols in Molecular Biology,Ausubel等,eds.(Wiley&Sons,New York,1988,每季度更新)中。基因工程技术包括但不限于表达载体、定向同源重组和基因活化(参见例如第5,272,071号美国专利),以及通过工程化转录因子反式激活(参见例如Segal等,1999,ProcNatl Acad Sci USA 96(6):2758-63)。
使基因表达或者功能增强的基因修饰可以被称为基因的扩增、过量产生、过量表达、活化、增强、增加或者上调。更具体地,所涉及本文中讨论的酶或者其他蛋白的作用(或者活性)增强一般是指所述微生物中导致酶或者蛋白的表达和/或功能性(生物学活性)增强的任何基因修饰,其包括酶活性(例如特异性或者体内酶促活性)较高、对酶的抑制或者降解减少以及酶的过量表达。例如,可以使基因拷贝数增加,可以通过利用提供高于天然启动子的表达水平的启动子,使得表达水平增加,或者可以通过基因工程或者经典突变使基因发生改变从而增强酶的生物学活性。还可以联合进行这些修饰中的一些修饰。
一般来讲,根据本发明,突变体或者经修饰酶特定特性的增强或者降低是相对于来源于相同有机体(来源于相同来源或者亲本序列)的野生型酶的相同特性而言,其在相同或者等效条件下测定或者确定。类似地,经基因修饰的微生物的特性(例如蛋白的表达和/或生物学活性,或者产物的产量)的增强或者降低是相对于在相同或者等效条件下相同物种(优选相同菌株)野生型微生物的相同特性而言。这种条件包括测定蛋白活性(例如表达或者生物学活性)或者微生物的其他特性的测定或者培养条件(例如培养基组分、温度、pH值等),以及所使用的测定类型、被测的宿主微生物等。如上面所讨论,等效条件是类似但不必相同(例如可以允许条件的保守性改变)的条件,与相同条件相比,其基本不会改变对微生物生长或者酶的表达或生物学活性的作用。
优选与野生型微生物中野生型蛋白的活性相比,经基因修饰的宿主细胞(具有使特定蛋白(例如酶)的活性增强或者降低的基因修饰)在蛋白活性(例如表达、产生和/或生物学活性)上分别增强或者降低至少大约5%,更优选至少大约10%,更优选至少大约15%,更优选至少大约20%,更优选至少大约25%,更优选至少大约30%,更优选至少大约35%,更优选至少大约40%,更优选至少大约45%,更优选至少大约50%,更优选至少大约55%,更优选至少大约60%,更优选至少大约65%,更优选至少大约70%,更优选至少大约75%,更优选至少大约80%,更优选至少大约85%,更优选至少大约90%,更优选至少大约95%,或者5%和100%之间的任何整数百分数(例如6%、7%、8%等)。当将分离的经修饰核酸分子或者蛋白的活性直接与分离的野生型核酸分子或者蛋白的活性进行比较时(例如如果将体内与体外相比较),优选具有相同差异。
在本发明的另一个方面中,与野生型微生物中野生型蛋白的活性相比,经基因修饰的宿主细胞(具有使特定蛋白(例如酶)的活性增强或者降低的基因修饰)在蛋白活性(例如表达、产生和/或生物学活性)上分别增强或者降低至少大约2倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,更优选至少大约5倍,或者从至少大约2倍开始的任何整数倍(例如3倍、4倍、5倍、6倍等)。
本发明的酶和编码酶的构建体
本发明的酶包括宿主细胞中直接或者间接制备生物柴油等效物或者其他脂肪酸衍生物的途径中涉及的任何酶。本发明的酶可以例如催化产生进一步反应的中间产物或者底物,所述进一步反应在宿主细胞中产生生物柴油等效物或者其他脂肪酸衍生物。在一些实施方案中,本发明的酶是分泌酶。本发明的酶包括但不限于硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶、形成脂肪醇的脂酰-coA还原酶、脂酰-coA还原酶或者酰基-coA脱氢酶,以及一种或多种生物质聚合物降解酶,例如木聚糖酶、木聚糖内切酶、纤维二糖水解酶、β-葡萄糖苷酶、纤维素酶、甘露聚糖内切酶、甘露聚糖外切酶或者α-半乳糖苷酶。
硫酯酶包括特异地在硫醇基团处显示酯酶活性(在水存在下使酯分解为酸和醇)的任何酶。例如,硫酯酶可以是大肠杆菌的ltesA(GenBank登录号AAC73596)。其他硫酯酶包括但不限于列于下面表1中的那些酶。
表1
Figure BDA0000104489720000161
脂酰-coA合成酶包括催化酰基-CoA+n丙二酰基-CoA+2n NADH+2n NADPH+4n H+
Figure BDA0000104489720000162
长链酰基-CoA+n CoA+n CO2+2n NAD++2nNADP+化学反应的任何酶。该酶也被称为脂酰-coA连接酶。例如,脂酰-coA合成酶可以是大肠杆菌的fadD(GenBank登录号AP_002424)。在其他实施方案中,脂酰-coA合成酶可以是酿酒酵母(S.cerevisiae)的faa1(登录号NP_014962.1)、faa2(登录号NP_010931.1)、faa3(登录号NP_012257.1)或者faa4(登录号NP_013974.1)。
酰基转移酶包括作用于酰基基团的任何类型的转移酶。例如酰基转移酶或以是不动细菌属菌株ADP1的蜡酯合酶atfA(GenBank登录号AF529086)。在另一个实施方案中,酰基转移酶可以是酿酒酵母的dgat。
醇脱氢酶包括促进酶和醛或者酮之间相互转化同时使NAD+还原成NADH的任何酶。例如,醇脱氢酶可以是运动发酵单胞菌的adhB。
丙酮酸脱羧酶包括催化丙酮酸脱羧基成为乙醛和二氧化碳的任何同源四聚体酶。例如,丙酮酸脱羧酶可以是运动发酵单胞菌的pde。
形成脂肪醇的脂酰-coA还原酶是使脂酰-coA还原成脂肪醇的任何酶。例如,形成脂肪醇的脂酰-coA还原酶可以是小鼠的mFar1。在其他实施方案中,其可以是家蚕(Bombyx mori)的BmFAR(GenBank登录号BAC79425)、小鼠的mFAR2或者人的hFAR。
脂酰-coA还原酶是催化化学反应的任何酶。例如,脂酰-coA还原酶可以是不动细菌属菌株ADP1的acr1(GenBank登录号YP_047869)。在其他实施方案中,脂酰-coA还原酶可以是大肠杆菌的yqhD(GenBank登录号AP_003562)。
酰基-coA脱氢酶是其反应使得在酰基-CoA硫酯底物的C2和C3之间引入反式双键的任何酶。例如,酰基-coA脱氢酶可以是大肠杆菌的fadE。
生物质聚合物降解酶包括能够使任意生物质聚合物降解的任何酶。本文中描述的“生物质聚合物”是生物材料中含有的任何聚合物。生物材料可以是活的或者死的。生物质聚合物包括例如纤维素、木聚糖、半纤维素、木质素、甘露聚糖和通常能够在生物质中找到的其他材料。生物质聚合物来源的非限定性示例包括禾本类(例如柳枝稷、芒属(Miscanthus))、稻谷壳、甘蔗渣、棉花、黄麻、大麻、亚麻、竹、剑麻、马尼拉麻、稻草、树叶、剪下的草、玉米秸秆、玉米棒、酒槽、豆科植物、高粱、甘蔗、甜菜浆、木片、锯末和生物质作用(例如海甘蓝(Crambe))。
生物质聚合物降解酶可以包括但不限于木聚糖酶(例如卵形拟杆菌的xsa或者纤维弧菌的Gly43F)、木聚糖内切酶催化结构域(例如来源于粪堆梭菌的xyn10B)、纤维二糖水解酶催化结构域(例如来源于纤维弧菌的cel6A)、β-葡萄糖苷酶(例如纤维弧菌的cel3B)、纤维素酶催化结构域(例如来源于芽孢杆菌D04的cel)、甘露聚糖内切酶(例如纤维弧菌的Man26A)、甘露聚糖外切酶(例如纤维弧菌的Man5D)或者α-半乳糖苷酶(例如纤维弧菌的Aga27A)。
本发明的酶的额外示例可以不限于在Kalscheuer,
Figure BDA0000104489720000171
和Steinbüchel MicroBiology(2006)152 2529-2539、Ingram等Appl EnvironMicroBiol(1987)53 2420-2425、WO 2008/100251、WO 2008/119082、WO2007/136762和WO 2009/009391中找到。
本文中描述的酶可以用其同源酶容易地替代。本文中使用的“同源酶”是指具有与本说明书或者所引用参考文献中任何一种酶具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%或者至少99%一致性的多肽序列的酶。同源酶保留被认为是酶保守性的氨基酸残基。同源酶的非保守性氨基酸残基可以置换为或者发现是不同的氨基酸,或者发生氨基酸插入或者缺失,只要其对同源酶的酶活性无影响或者影响不大。同源酶具有与本说明书或者所引用参考文献中任何一种酶的酶活性基本相同的酶活性,因为其将催化相同的反应。该酶的特异性可以增强或者降低。同源酶可以天然找到或者是其工程化突变体。本文中描述的该酶还可以替换为异构酶,其可以具有不同的氨基酸序列但是催化相同的化学反应。
本发明的核酸构建体包含编码一种或多种本发明酶的核酸序列。本发明酶的核酸与启动子以及可选地控制序列处于可操作连接,以使本发明的酶在在适宜条件下培养的宿主细胞中表达。启动子和控制序列是每种宿主细胞物种特异性的。在一些实施方案中,表达载体包含核酸构建体。设计并且制备核酸构建体和表达载体的方法是本领域技术人员熟知的。
本文中使用的术语“核酸序列”、“核酸的序列”及其变体应当是属于多聚脱氧核糖核苷酸(含有2-脱氧-D-核糖)、多聚核糖核苷酸(含有D-核糖)、嘌呤或者嘧啶碱基N-糖苷的任何其他类型的多聚核苷酸,以及含有非核苷酸骨架的其他聚合物(只要聚合物含有如DNA和RNA中发现的核苷碱基,其构型允许碱基配对和碱基堆积)。因此,这些术语包括已知类型的核酸序列修饰,例如一个或者多个天然核苷酸置换为其类似物;核苷酸间修饰,例如具有不带电荷的键(例如膦酸甲酯、磷酸三脂、氨基磷酸酯、氨基甲酸酯等)、具有带负电荷的键(例如磷硫酰、二硫代磷酸脂等)、具有带正电荷的键(例如氨烷基氨基磷酸酯、氨烷基磷酸三酯)、含有悬挂基团(例如蛋白(包括核酸酶、毒素、抗体、信号肽、多聚L-赖氨酸等)、具有嵌入剂(例如吖啶、补骨脂素等)和含有螯合剂(例如金属、放射性金属、硼、氧化性金属等)。本文中使用的核苷酸和多聚核苷酸符号是由IUPAC-IUB Commission of Biochemical Nomenclature(Biochem.9:4022,1970)建议的那些符号。
编码对象酶的核酸序列通过本领域技术人员已知的任何适宜方法制备,包括例如直接化学合成或者克隆。对于直接化学合成,形成核酸聚合物通常包括在正在延长的核苷酸链的5’末端-羟基基团处依次加入3’封闭和5’封闭的核苷酸单体,其中通过正在延长链的5’末端-羟基基团对所加入单体的3’位进行亲核攻击来完成加入,通常是磷的衍生物,例如磷酸三酯、亚磷酰胺等。这种方法是本领域普通技术人员已知的,其描述于相关文章和文献中(例如Matteuci等,(1980)Tet.Lett.521:719;第4,500,707号、第5,436,327号和第5,700,637号美国专利中)。另外,期望的序列可以通过下列方式从天然源来分离:使用合适的限制酶分裂DNA,使用凝胶电泳法来分离片段,此后通过本领域技术人员已知的技术从凝胶中回收期望的核酸序列,例如使用聚合酶链式反应(PCR;e.g.,U.S.Pat.No.4,683,195)。
可以将编码期望酶的每个核酸序列融合入表达载体中。“表达载体”或者“载体”是指转导、转化或者感染宿主细胞,使得细胞表达细胞非天然性核酸和/或蛋白或者以非天然性方式表达核酸和/或蛋白的化合物和/或组合物。“表达载体”含有将要由宿主微生物表达的核酸序列(通常是RNA或者DNA)。可选地,表达载体还包含帮助核酸进入宿主细胞内的材料,例如病毒、脂质体、蛋白涂层等。涉及用于本发明中的表达载体包括核酸序列以及可选地任何优选或者所需操纵元件可以插入其中的那些表达载体。此外,表达载体必须能够转移至宿主微生物中并在其中复制。优选表达载体是质粒,具体地是具有已经清楚记载的限制性位点并且含有核酸序列转录优选或者所需的操纵元件的质粒。这种质粒以及其他表达载体是本领域普通技术人员熟知的。
可以通过已知方法融合单个核酸序列,所述方法包括例如使用限制性酶(例如BamHI、EcoRI、Hhal、Xhol、Xmal等)切割表达载体(例如质粒)中的特异性位点。限制性酶产生单链末端,其可以与核酸序列退火,所述核酸序列具有或者合成以具有与被切割表达载体的末端互补的末端序列。利用合适的酶进行退火,例如DNA连接酶。本领域普通技术人员将领会的是,表达载体和期望的核酸序列通常均被相同的酶切割,因而保证了表达载体的末端与核酸序列的末端是相互互补的。此外,可以利用DNA接头来帮助核酸序列连接入表达载体中。
还可以通过利用本领域普通技术人员已知的方法(例如第4,683,195号美国专利)使一系列单个核酸序列联合。例如,可以最初在各自的PCR中产生每个期望的核酸序列。其后设计特异性引物以使PCR产物的末端含有互补序列。当将PCR产物混合、变性和重新退火时,3’末端具有配对序列的链重叠,并且可以作为互相的引物。用DNA聚合酶使该重叠部分延伸,产生初始序列被“剪接”到一起的分子。通过这种方法,可以将一系列单个核酸序列“剪接”到一起并随后同时转导入宿主细胞中。因此使多个核酸序列中的每个均能够表达。
接着将单个核酸序列或者“剪接”的核酸序列融合到表达载体中。本发明中将核酸序列融合到表达载体中的过程不受限制。本领域普通技术人员熟悉将核酸序列融合到表达载体中的必要步骤。通常表达载体含有期望核酸序列,其前面是一个或者多个调控区以及核糖体结合位点,例如长度为3-9个核苷酸并且位于大肠杆菌起始密码子上游3-11个核苷酸处的核苷酸序列(参见Shine等,(1975)Nature 254:34 and Steitz,Biological Regulationand Development:Gene Expression(ed.R.F.Goldberger),vol.1,p.349,1979,Plenum Publishing,NY)。
调控区包括例如含有启动子和操纵子的那些区域。启动子与期望核酸序列可操作连接,从而通过RNA聚合酶起始核酸序列的转录。操纵子是与启动子相邻的核酸序列,其含有阻遏子可以结合的蛋白结合结构域。不存在阻遏蛋白时,通过启动子起始转录。当存在时,操纵子蛋白结合结构域特异性阻遏蛋白与操纵子结合,从而抑制转录。用这种方法,基于所使用的具体调控区和相应阻遏蛋白的存在或者缺失,来达到对转录的控制。示例包括乳糖启动子(当与乳糖接触时,Lad阻遏蛋白改变构象,从而阻止Lad阻遏蛋白与操纵子相结合)、色氨酸启动子(当与色氨酸结合时,TrpR阻遏蛋白具有不与操纵子结合的构象)。另一个示例是tac启动子(参见deBoer等,(1983)Proc Natl Acad Sci USA,80:21-25)。本领域普通技术人员将领会的是,这本发明可以使用这些和其他表达载体,并且本发明在该方面不受限制。
尽管可以使用任何适宜的表达载体融合期望序列,易于利用的载体包括但不限于:质粒(例如pSC101、pBR322、pBBR1MCS-3、pUR、pEX、pMR100、pCR4、pBAD24、pUC19)和细菌噬菌体(例如M13噬菌体和λ噬菌体)。当然,这些表达载体仅适用于特定的宿主细胞。但是,本领域普通技术人员通过常规实验可以容易地确定任何一种特定的表达载体是否适用于任何一种特定的宿主细胞。例如,可以将表达载体引入宿主细胞,接着对宿主细胞的活力和载体中所含序列的表达进行监测。此外,可以参考描述表达载体和其对于任何一种特定宿主细胞的适宜性的相关文章和参考文献。
制备并培养本发明的宿主细胞的方法
本发明的表达载体必须引入或者转移至宿主细胞中。将表达载体转移至宿主细胞中的方法是本领域普通技术人员熟知的。例如,用表达载体转化大肠杆菌的一种方法涉及氯化钙处理,其中通过钙沉淀物将表达载体引入。还可以依照类似步骤使用其他盐,例如磷酸钙。此外,还可以利用电穿孔(即利用电流来增加细胞对核酸序列的通透性)转染宿主微生物。此外,核酸序列的微注射能够转染宿主微生物。还可以使用其他方法,例如脂质复合物、脂质体和树枝状聚合物。本领域普通技术人员可以利用这些或者其他方法用期望序列转染宿主细胞。
可以利用多种方法鉴定经转染的宿主细胞。例如,可以利用适宜稀释将可以经转染的宿主细胞分离成单个细胞,并随后单独培养并测定期望核酸序列的表达。此外,当使用质粒时,常用的做法涉及基于抗微生物抗性对细胞进行筛选,所述抗性由有意包含入表达载体的基因赋予,例如amp、gpt、neo和hyg基因。
用至少一种表达载体转化宿主细胞。当仅使用单一的表达载体时(不加入中间物),载体将含有所有必需的核酸序列。
一旦已经用表达载体转化宿主细胞,使宿主细胞生长。本发明的方法包括培养宿主细胞以使细胞中的重组核酸表达。对于微生物宿主,该过程需在在适宜的培养基中培养细胞。通常细胞在合适的培养基中于35℃生长。本发明的优选生长培养基是常用的商业制备培养基,例如Luria Bertani(LB)肉汤、沙氏葡萄糖(SD)肉汤或者酵母培养基(YM)肉汤。还可以使用其他限定或者合成培养基,并且特定宿主细胞生长的合适培养基将是微生物学或者发酵科学领域技术人员已知的。
根据本发明的一些方面,培养基含有宿主细胞的碳源。这种“碳源”一般是指适于用作原核或者简单真核细胞生长源的底物或者化合物。碳源可以以多种形式存在,包括但不限于聚合物、碳水化合物、酸、醇、醛、酮、氨基酸、肽等。这些包括例如多种单糖(例如葡萄糖、木糖和阿拉伯糖)、二糖(例如蔗糖)、寡糖、多糖、生物质聚合物(例如纤维素和半纤维素)、饱和或者不饱和脂肪酸、琥珀酸盐、乳酸盐、乙酸盐、乙醇等,或者其混合物。碳源还可以是光合作用的产物,包括但不限于葡萄糖。
除了合适碳源之外,发酵培养基必须含有适宜的矿物质、盐、辅助因子、缓冲液和其他组分,这些物质是本领域技术人员已知的,其适于培养物生长并且促进产生脂肪酸衍生的化分子所必需的酶促途径。反应可以在有氧或者厌氧条件下进行,其中有氧、缺氧或者厌氧条件优选基于微生物的需要。随着宿主细胞生长和/或繁殖,产生FAEE、脂肪醇、脂肪醛和其他脂肪酸衍生物所必需的酶表达。
本发明的生物柴油等效物和其他脂肪酸衍生物
本发明提供了生物柴油等效物和其他脂肪酸衍生物的生产。生物柴油等效物和其他脂肪酸衍生物包括但不限于脂肪酸乙酯、脂肪酸酯、蜡酯、脂肪醇和脂肪醛。
本发明提供了通过本发明的方法产生的分离的脂肪酸衍生的化合物。分离脂肪酸衍生的化合物包括分离宿主细胞的至少一部分或全部、及其部分,从其中制备脂肪酸衍生的化合物,这来自分离的脂肪酸衍生的化合物。分离的脂肪酸衍生的化合物可以不含或者基本不含由至少部分或者所有宿主细胞及其组分形成的杂质。当残余杂质的性质不会干扰脂肪酸衍生的化合物作为燃料(例如燃烧反应中的燃料)的用途时,分离的脂肪酸衍生的化合物基本不含杂质。
本发明还提供了一种可燃烧的组合物,其包含分离的脂肪酸衍生的化合物和细胞组分,其中所述细胞组分基本不会干扰组合物的燃烧。细胞组分包括整个细胞或者其部分。细胞组分来源于产生脂肪酸衍生的化合物的宿主细胞。
本发明的脂肪酸衍生的化合物可以作为能量的化学来源用作燃料,所述燃料可以用作石油衍生的化燃料、乙醇等的替代物。本发明的脂肪酸衍生的化合物还可以用于合成大量用作可再生型燃料的烷烃、醇和酯。此外,脂肪酸衍生的化合物还可以用作治疗物或者高价值油的前体,例如可可脂等效物。
还将理解的是,虽然已经结合本发明优选的特定实施方案对本发明进行了描述,但是前面的描述意在说明而不能限制本发明的范围。在本发明范围内的其他方面、优势和修饰对于本发明所属技术领域的技术人员而言将是清楚的。
已经对本发明进行描述后,提供下面的实施例以说明方式而非限定方式来说明本发明。
实施例
实施例1-通过胞质硫酯酶的表达解除对脂肪酸的生物合成的抑制
大肠杆菌中的脂肪酸生物合成(如图1中显示)受到经典产物抑制的负调控,其中产物,即与酰基载体蛋白(ACP)结合的脂酰链,抑制脂肪酸合成酶产生新的脂肪酸(Jiang和Cronan 1994;Magnuson et al.1993)。因此,细胞不会产生多于构建膜和分裂所需的脂肪。接着脂肪酸通过PlsB或者PlsC从ACP中释放,继续形成膜脂质。尽管胞质硫酯酶的表达能够通过切割硫酯酶键以及产生holo-ACP和游离脂肪酸,解除对脂酰-ACP的抑制,但是所显示的效价极低(ng/L)(Jiang和Cronan 1994)。
通过使通常在外周质中发现的天然大肠杆菌硫酯酶ltesA在胞质中表达,使产生的游离脂肪酸与先前水平相比增加1012倍至500倍(图2)。尽管检测出了某个范围的游离脂肪酸(C8至C18),LfesA对C14脂酰ACP最有特异性(图6)。
为了进一步增加游离脂肪酸的有效产生,去除与β-氧化相关的竞争途径。脂肪酸降解的前两个酶促步骤需要FadD和FadE,因此将这两个基因敲除,并使ltesA在胞质中表达。产物效价明显增加4至4倍,达到~5mM(图2)。通过去除形成乙酸盐的反应(由poxB、pta和ackA编码)的进一步优化尝试使得产生3mM的游离脂肪酸,表明去除该竞争途径不会极大地帮助过量产生脂肪酸(图2)。最佳菌株LT-ΔfadE由2%葡萄糖产生理论极限值的大约15%的脂肪酸(图2)。
实施例2-来源于脂肪酸的重要分子的产生
尽管脂肪酸本身具有重要价值,可以对其进行修饰,以制备其他重要的分子,包括生物柴油等效物(脂肪酸乙酯(FAEE))、长链醇和长链醛,二者均可以用作生物燃料的高价值专业化学品。
FAEE的产生
目前每年生产超过5百万吨生物柴油,其构成了~$4B的市场(REN21,2008)。以前已经显示大肠杆菌能够通过利用内源产生的乙醇使外源加入的脂肪酸酯化,从而产生生物柴油等效物(Kalscheuer等,2006),该过程由于脂肪酸成本高而在经济上不可行。已经显示产生的脂肪酸水平高达5mM,构建能够通过表达运动发酵单胞菌的pdc和adhB产生乙醇的菌株,所述pdc和adhB分别编码丙酮酸脱羧酶和醇脱氢酶。这些菌株显示24小时后产生~108mM的乙醇,这与以前的发现相近(Ingram等,1987)。联合进行产生游离脂肪酸(表达ltesA)、产生乙醇(表达pdc和adhB)和产生酯(通过表达蜡酯合酶atfA)的相关基因修饰使得产生0.14mM(37mg/L)的FAEE(菌株HE-LAAP;图3)。由于该菌株积累大量不能转化为期望产物的游离脂肪酸(数据未显示),细胞的内源性酰基-CoA连接酶(fadD)的能力有限是合理的。Faa2(酿酒酵母的酰基-CoA连接酶)的过量表达使FAEE的产量增加大约2.5倍,至0.37mM(96mg/L)(菌株HE-LAAP-faa2;图3)。通过过量表达fadD突变体(具有F61L和M3351两个突变位点)使得额外增加2倍,至0.63(161mg/L)(图3)。修复fadD中的一个突变使产量增加50%,至0.91mM(图3)。表达额外一个拷贝的atfA使得产生1.7mM(427mg/L)的FAEE(菌株HE-LAAP-fadDm2-atfA;图3),这是理论产量的13%。
表1.多种大肠杆菌菌株的乙醇产量
Figure BDA0000104489720000241
脂肪酸酯的产生
以与如上面所描述产生FAEE的类似方式产生脂肪酸酯或者蜡酯。使ltesA和fadD过量表达,并表达外源atfA。但是,不使用产生乙醇的途径中的外源基因。相反,表达mfar1以产生长链醇。接着AtfA可以利用这些较长链醇作为底物产生蜡酯(图1E)。产生了十四酸十六烷基酯、十六酸十六烷基酯和十六酸十八烷基酯(图9)。
脂肪醇和醛的产生
脂肪醇和醛的市场巨大,其主要用于肥皂、去污剂、化妆品添加剂、信息素和调味化合物中,以及潜在地用作生物燃料,其价值是大约$1500/吨(2004ICIS价格),每年生产大约2MT,创造$3B的市场(Ahmad 2006)。可以通过脂肪酸或FAME的氢化作用或者通过由石油化学品前体合成,从而产生脂肪醇,这两个过程均需要极端的反应条件,并且不遵守绿色化学的原则。以前已经描述了形成脂肪醇的脂酰-CoA还原酶(植物和哺乳动物来源)的表征和表达(Metz等,2000;Cheng和Russell 2004)。此处显示了由在fadE敲除菌株中表达mFar1(KS5)或者acr1(KS11)的经工程化大肠杆菌菌株产生C12至C18n-醇的脂肪醇(图1C和4)。
其后研究产生脂肪醛,因为其是能量最密集型燃料烷烃和烯烃的前体。产生烷烃/烯烃的生物合成途径需要已经部分纯化的脱羰基酶从脂肪醛中去除末端羰基基团(Wang和Kolattukudy 1995;Dennis和Kolattukudy1991)。通过在ltesA和fadD过量表达的fadE敲除菌株中表达acr1(KS11),产生脂肪醛(图1D)。为了阻止内源性大肠杆菌醇脱氢酶将脂肪醛转化为脂肪醇,敲除或者减少这些内源性脱氢酶基因的表达或者表达脱羰基酶以竞争醇的还原反应也是必需的。将对acr1;ΔfadE菌株背景中的大肠杆菌敲除文库进行筛选,以鉴定其缺失使得产生脂肪醛的基因。
实施例3-合并的生物加工过程:利用生物质聚合物生产生物柴油
尽管由糖类生产第二代生物燃料(例如FAEE)比由糖类生产乙醇具有优势,从大量可获得的生物质备选物中寻找这种糖类提供甚至更大的进步。不幸地是,从纤维素类生物质中寻找糖类需要使用昂贵的酶,以从预处理的纤维素和半纤维素中释放糖类。生产生物燃料的有机体产生糖基水解酶的合并的生物加工过程无需加入这些昂贵的酶并且因此减少了成本(Lynd等,2005)。
通过在大肠杆菌中表达编码粪堆梭菌木聚糖内切酶催化结构域(Xyn10B)和卵形拟杆菌木聚糖(Xsa)的基因,来完成合并的生物加工过程(Adelsberger等,2004;Whitehead和Hespell 1990)。半纤维素酶通过与OsmY蛋白融合而分泌,以将半纤维素水解为木糖,后者通过大肠杆菌天然代谢途径分解代谢(Qian等)。但是,不必要将两种酶均与OsmY融合。显示了用编码木聚糖降解酶转化的大肠杆菌单独或者同时在木聚糖中的生长(图5A和B)。这些基因以及生物柴油基因的表达使得产生FAEE(图5C)。还可以利用这种合并的生物加工方案由木聚糖或者其他生物质聚合物产生FAE。
发现Xsa蛋白上的OsmY对于在木糖寡糖中生长十分重要,将两个质粒转化到BL21细胞中,所述两个质粒均含有OsmY-XynB融合基因,其后连接Osm-Y-Xsa融合基因或者未融合的Xsa。基因处于丙酸盐启动子控制下。细胞在添加了200μg/mL羧苄青霉素的LB培养基中生长过夜至饱和。第二天,用50μL过夜生长物接种5mL新鲜的LB培养基,并于37℃生长。在指数生长期(OD值0.3-0.8)中,接种到5mL含有0.2%木聚糖作为唯一碳源(和200μg/mL羧苄青霉素)的M9培养基之前,通过加入丙酸钠至10mM,诱导细胞1-2.5小时,并于37℃振荡孵育。通过在600nm下监测培养物的散射情况,对生长进行测定(图10)。将显示这些重组大肠杆菌在经离子性液体处理的柳枝稷的半纤维素组分中的生长。
表达不同于Xsa的酶显示出在木聚糖中的生长加快。重组大肠杆菌菌株MG165在LB培养基中于37℃生长13小时,所述菌株MG165含有一种质粒,所述质粒具有与大肠杆菌基因OsmY融合并且处于大肠杆菌cspD启动子控制下的粪堆梭菌XynB,以及编码纤维弧菌Gly43F并且处于大肠杆菌cstA启动子控制下的基因。用20μL的13小时生长培养物接种800μL含有0.5%山毛榉材木聚糖或者0.5%木糖作为唯一碳源的MOPS-M9基础培养基,并在TECAN读板仪中于37℃孵育。通过OD值的增加观察细胞生长(图12)。重组大肠杆菌在木聚糖中的生长几乎与在木糖中的生长同样快。未观察到缺少OsmY-XynB基因或者Gly43F基因的细胞在木聚糖培养基中的生长。
显示了大肠杆菌在纤维素中的生长。对于纤维素的利用,用含有纤维弧菌的两种酶(不与OsmY融合表达的Cel3B(β-葡萄糖苷酶)和与OsmY融合的Cel6A(纤维二糖水解酶)催化结构域(JBact,vol 190,p.5455))以及芽孢杆菌D04纤维素酶的催化结构域的经密码子优化形式(J BiolChem,vol 270,p.26012)的质粒转化大肠杆菌。所有基因均处于lacUV5启动子的控制下。大肠杆菌在转移至含有0.2%羧甲基纤维素的M9培养基中之前在LB培养基中生长和诱导(图7)。
此外,表达纤维素酶和β-葡萄糖苷酶的大肠杆菌显示能够在磷溶胀纤维素(PASC)中生长。制备具有以下的质粒:纤维弧菌的β-葡萄糖苷酶基因cel3A,其处于在大肠杆菌MG1655基因组中发现的wrbA基因启动子的控制下;芽孢杆菌菌株D04的cel基因中发现的葡萄糖苷水解酶催化结构域的经密码子优化形式,其N末端与大肠杆菌的OsmY蛋白融合,处于在大肠杆菌MG1655基因组中发现的cspD基因启动子的控制下;低拷贝复制起点(SC101**);和氨苄青霉素抗性基因bla。将质粒转化到BL21细胞中,并使细胞在添加了100μg/mL羧苄青霉素的LB培养基中于37℃生长大约18小时。
用1mL过夜生长物接种含有100μg/mL羧苄青霉素并且不含碳源或者含有0.5%再生非晶形纤维素(RAC)(如Metabolic Engineering,vol 9,p.87,2007中的描述制备)的MOPS-M9培养基(7ml),所述过夜生长物含有上面所述质粒或者缺少纤维素酶或β-葡萄糖苷酶基因并且仅携带抗生素抗性的对照质粒。培养物于37℃振荡孵育。
不时地对培养物进行取样,并在LB培养基中稀释至10-6的浓度。将100μL该稀释液涂于不含抗生素的LB琼脂板上,并使板于37℃孵育过夜。对菌落进行计数。在纤维素存在下在产生纤维素酶的菌株中观察到显著生长(~2×),而没有纤维素产生或者没有碳源时几乎不生长或者不生长(图11)。将显示这些重组大肠杆菌在经离子性液体处理的柳枝稷的纤维素组分中的生长。
显示了大肠杆菌在甘露聚糖中的生长。对于甘露聚糖的利用,使用纤维弧菌的三种酶,即Man26A(甘露聚糖内切酶)、Man5D(甘露聚糖外切酶)和Aga27A(α-半乳糖苷酶,一种脱支酶)的催化结构域(J Bact,vol 190,p.5455)。所有催化结构域均与OsmY蛋白融合。催化结构域在多种微生物的共培养物中各自表达,所述多种微生物共同作用以将槐豆树脂降解成甘露糖和半乳糖(图8)。分泌单个酶的大肠杆菌的共增养物。在含有0.2%槐豆树胶(半乳甘露聚糖)的M9培养基中生长。可以用在一个质粒上的所有3种催化结构域转化大肠杆菌。
可以对大肠杆菌进行工程化,以表达使半纤维素和纤维素降解的酶(OsmY-XynB融合基因,其后连接OsmY-Xsa融合基因或者未融合的Xsa)以及不与OsmY融合的Cel3B(β-葡萄糖苷酶)和与OsmY融合的Cel6A(纤维二糖水解酶)催化结构域。这些大肠杆菌将显示能够同时利用经离子性液体处理的柳枝稷的纤维素和半纤维素组分。
可以对经工程化以利用纤维素和甘露聚糖的这些大肠杆菌进行进一步操作,以如实施例2中的描述产生脂肪酸乙酯、脂肪醇、脂肪醛和其他脂肪酸衍生的化合物,将纤维素和甘露聚糖直接转化成这些有价值的产物。此外,在一种微生物中联合木聚糖、纤维素和甘露聚糖降解途径将使一个细胞能够利用全部生物质作为碳源。
此处显示了脂肪酸生物合成途径的重要性和用途,其利用大肠杆菌在利用半纤维素作为给料的合并的生物过程中产生一类重要的化学品和生物燃料。高效价将使其能够转用至生产生物燃料或者化学品的工业过程中。重要的是,这些脂肪酸衍生的化分子对细胞无毒,而毒性对于已经被看作重要的第二代生物燃料但是困扰于效价低的较低能量低级醇是个难题(Atsumi等,2008;Steen等,2008)。除了表明产生高水平的生物燃料之外,还显示能够由半纤维素生产生物燃料,这是本领域迫切但仍未实现的目标。解除对脂肪酸生物合成的抑制、鉴定生产脂肪酸衍生物生物燃料的关键限速步骤以及在合并的生物加工过程中由廉价的、可再生的、植物来源的生物质生产这些生物燃料的方案开辟了在多种微生物中由可再生资源生产能量密集型第二代生物燃料的代谢工程领域。
实施例4-材料和方法
试剂
所有化学品购自Sigma-Aldrich(St.Louis,MO),其包括脂肪酸甲酯标准试剂、脂肪酸乙酯标准试剂、脂肪醛标准试剂和脂肪醇标准试剂。
菌株和质粒
所有研究中使用大肠杆菌DH1野生型菌株。如以前的描述敲除fadD、fadE、pta、poxB和ackA(Datsenko和Wanner 2000)。在构建本研究中使用的表达质时时,用大肠杆菌DH10B和DH5α进行转化和质粒扩增;用大肠杆菌fadDKO过量表达fadD。大肠杆菌天然基因克隆自DH1。合成mFAR1(小鼠,GenBank登录号BC007178)并对其进行密码子优化以在大肠杆菌中表达(Epoch Biolabs)。合成atfA(不动细菌属菌株ADP1)(EpochBiolabs)(Cheng and Russell 2004)。acr1(不动杆菌)由Chris Somerville(University of California,Berkeley)惠赠。pdc和adhB克隆自运动发酵单胞菌基因组DNA(ATCC 31821)。FAA2克隆自酿酒酵母(BY4742)基因组DNA。利用“不依赖于基因和连接反应的克隆”(“Sequence and LigationIndependent Cloning”,SLIC)方法(Li和Elledge 2007)构建质粒。所有基因在IPTG可诱导的LacUV5或者trc启动子控制下as indicated过量表达。对于构建菌株和质粒,在含有合适抗生素(50μg/L氨苄青霉素(Amp),20μg/L氯霉素(Cam),5μg/L四环素(Tet))的Luria-Bertani培养基中于37℃培养菌株。为了对脂肪酸衍生的化分子的产生水平进行表征,菌株在含有合适抗生素的M9基础培养基中生长,并在600nm波长下测得光度密为0.5-1时用500μMIPTG进行诱导。
表2
Figure BDA0000104489720000301
代谢物分析
通过加入500μL HCl和5mL乙酸乙酯,并加入10mg/L十九酸甲酯作为内部标准,从5mL培养物中提取总游离脂肪酸。将培养管涡旋振荡15秒,随后以200rpm振荡20分钟。分离有机层,并通过将另外5mL乙酸乙酯加入培养管中,进行第二次提取。接着通过加入200μL TMS-重氮甲烷、10μL HCl和90μL MeOH将游离脂肪酸转化成甲酯(Aldai et al.2005)。使反应进行2小时,接着应用于装配Triplus AS自动取样器和TR-WAXMS柱的Thermo Trace Ultra气相色谱(GC)仪(Thermo Scientific)上。GC程序如下:初始温度40℃保持1.2分钟,以30℃/min升高至220℃并保持3分钟。用Xcalibur软件进行最后的定量分析。
通过加入10%(体积/体积)乙酸乙酯并加入10mg/L十九酸甲酯,随后以200rpm振荡20分钟,从培养物中提取脂肪酸乙酯(FAEE)、脂肪醇和脂肪醛。在装配DB5柱且带有Agilent 5973 Network MSD的HP 6890系列GC仪(Thermo)对FAEE进行分析。GC程序与对FAMES进行定量的程序相同。用TR-Wax柱(Agilent)分离脂肪醇和醛。GC程序如下:初始温度70℃保持1分钟,以25℃/min升高至240℃并保持3分钟。
通过取出1mL培养物样品、以14k rpm离心5分钟并将上清液应用于装配Aminex HPX-87H离子交换柱的Agilent 1100系列HPLC仪(Biorad)上,对乙醇进行测定。溶剂(4mM H2SO4)流速为.6mL/min,并使柱保持于50℃。用Agilent 1100系列DAD和RID检测仪对所有代谢物进行检测。
参考文献
Adelsberger,H.,Hertel,C.,Glawischnig,E.,Zverlov,V.V.&Schwarz,W.H.Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan:reconstitution of the in vivo system from recombinant enzymes.Microbiology150,2257-66(2004).
Ahmad,W.R.a.S.The changing world of oleochemicals.Palm OilDevelopments,15-28(2006).
Ahmad,W.R.a.S.Palm oil and palm kernel oil as raw materials for basicoleochemicals and biodiesel.Eur J Lipid Sci Technol 109,433-439(2007).
Aldai,Noelia,B.E.M.A.I.N.D.J.T.K.O.Derivatization of fatty acidsand its application for conjugated linoleic acid studies in ruminant meat lipids.Journal of the Science of Food and Agriculture 85,1073-1083(2005).
Atsumi,S.,Hanai,T.&Liao,J.C.Non-fermentative pathways forsynthesis of branched-chain higher alcohols as biofuels.Nature 451,86-9(2008).
Bligh,E.G.a.D.,W.J.A rapid method of total lipid extraction andpurification.Can.J.Biochem.Physiol.19,156-159(1959).
Bolivar,F.Construction and characterization of new cloning vehicles.III.Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection ofEco RI generated recombinant DNA molecules.Gene 4,121-36(1978).
Brown AC,K.B.Hydrocarbon content and its relationship tophysiological state in the green alga Botryococcus braunii.Phytochemistry 8,543-547(1969).
Cheng,J.B.&Russell,D.W.Mammalian wax biosynthesis.I.Identification of two fatty acyl-Coenzyme A reductases with different substratespecificities and tissue distributions.J Biol Chem 279,37789-97(2004).
Datsenko,K.A.&Wanner,B.L.One-step inactivation of chromosomalgenes in Escherichia coli K-12 using PCR products.Proc Natl Acad Sci U S A97,6640-5(2000).
Dehesh,K.,Jones,A.,Knutzon,D.S.&Voelker,T.A.Production of highlevels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of ChFatB2,a thioesterase cDNA from Cuphea hookeriana.Plant J 9,167-72(1996).
Dennis,M.W.&Kolattukudy,P.E.Alkane biosynthesis bydecarbonylation of aldehyde catalyzed by a microsomal preparation fromBotryococcus braunii.Arch Biochem Biophys 287,268-75(1991).
Fischer,C.R.,Klein-Marcuschamer,D.&Stephanopoulos,G.Selectionand optimization of microbial hosts for biofuels production.Metab Eng 10,295-304(2008).
Hall,M.J.&Ratledge,C.Lipid Accumulation in an Oleaginous Yeast(Candida 107)Growing on Glucose Under Various Conditions in a One-andTwo-Stage Continuous Culture.Appl Environ Microbiol 33,577-584(1977).
Hill,J.,Nelson,E.,Tilman,D.,Polasky,S.&Tiffany,D.Environmental,economic,and energetic costs and benefits of biodiesel and ethanol biofuels.Proc Natl Acad Sci U S A 103,11206-10(2006).
Ingram,L.O.,Conway,T.,Clark,D.P.,Sewell,G.W.&Preston,J.F.Genetic engineering of ethanol production in Escherichia coli.Appl EnvironMicrobiol 53,2420-5(1987).
Jiang,P.&Cronan,J.E.,Jr.Inhibition of fatty acid synthesis inEscherichia coli in the absence of phospholipid synthesis and release ofinhibition by thioesterase action.J Bacteriol 176,2814-21(1994).
Kalscheuer,R.,Stolting,T.&Steinbuchel,A.Microdiesel:Escherichiacoli engineered for fuel production.Microbiology 152,2529-36(2006).
Knights BA,B.A.,Conway E,Middleditch BS.Hydrocarbons from thegreen form of the freshwater alga Botryococcus braunii.Phytochemistry 9,1317-1324(1970).
Kovach,M.E.,Phillips,R.W.,Elzer,P.H.,Roop,R.M.,2nd&Peterson,K.M.pBBR1MCS:a broad-host-range cloning vector.Biotechniques 16,800-2(1994).
Li,M.Z.&Elledge,S.J.Harnessing homologous recombination in vitroto generate recombinant DNA via SLIC.Nat Methods 4,251-6(2007).
Lu,X.,Vora,H.&Khosla,C.Overproduction of free fatty acids in E.coli:implications for biodiesel production.Metab Eng 10,333-9(2008).
Lynd,L.R.,van Zyl,W.H.,McBride,J.E.&Laser,M.Consolidatedbioprocessing of cellulosic biomass:an update.Curr Opin Biotechnol 16,577-83(2005).
Magnuson,K.,Jackowski,S.,Rock,C.O.&Cronan,J.E.,Jr.Regulationof fatty acid biosynthesis in Escherichia coli.Microbiol Rev 57,522-42(1993).
Metz,J.G.,Pollard,M.R.,Anderson,L.,Hayes,T.R.&Lassner,M.W.Purification of a jojoba embryo fatty acyl-coenzyme A reductase andexpression of its cDNA in high erucic acid rapeseed.Plant Physiol 122,635-44(2000).
Qian,Z.G.,Xia,X.X.,Choi,J.H.&Lee,S.Y.Proteome-basedidentification of fusion partner for high-level extracellular production ofrecombinant proteins in Escherichia coli.Biotechnol Bioeng 101,587-601(2008).
Steen,E.J.et al.Metabolic engineering of Saccharomyces cerevisiae forthe production of n-butanol.Microb Cell Fact 7,36(2008).
Wang,X.&Kolattukudy,P.E.Solubilization and purification ofaldehyde-generating fatty acyl-CoA reductase from green alga Botryococcusbraunii.FEBS Lett 370,15-8(1995).
Whitehead,T.R.&Hespell,R.B.The genes for three xylan-degradingactivities from Bacteroides ovatus are clustered in a 3.8-kilobase region.JBacteriol 172,2408-12(1990).
REN21.Renewables 2007 global status report.Worldwatch Institute,Washington DC(2008).

Claims (120)

1.一种由生物质聚合物制备脂肪酸乙酯的方法,包括:
a)提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由所述宿主细胞分泌,
b)在培养基中培养所述宿主细胞以形成培养物,使得所述一种或多种重组核酸在所述细胞中表达,其中所述培养基含有生物质聚合物作为所述宿主细胞的碳源,和
c)从所述培养物中提取脂肪酸乙酯。
2.权利要求1所述的方法,其中所述宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。
3.权利要求2所述的方法,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞的表达水平减弱。
4.权利要求1所述的方法,其中所述宿主细胞是细菌细胞。
5.权利要求4所述的方法,其中所述细菌细胞是大肠杆菌细胞。
6.权利要求1所述的方法,其中所述宿主细胞是真菌细胞。
7.权利要求6所述的方法,其中所述真菌细胞是酵母细胞。
8.权利要求1所述的方法,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
9.权利要求1所述的方法,其中所述硫酯酶是来自大肠杆菌的ltesA。
10.权利要求1所述的方法,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
11.权利要求1所述的方法,其中所述醇脱氢酶是来自运动发酵单胞菌(Zymomonas mobilis)的adhB。
12.权利要求1所述的方法,其中所述丙酮酸脱羧酶是来自运动发酵单胞菌的pdc。
13.权利要求1所述的方法,其中所述酰基转移酶是来自不动细菌属(Acinetobacter)菌株ADP1的蜡酯合酶atfA。
14.权利要求1所述的方法,其中所述生物质聚合物是半纤维素。
15.权利要求14所述的方法,其中所述半纤维素是木聚糖。
16.权利要求15所述的方法,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
17.权利要求16所述的方法,其中所述木聚糖酶是来自卵形拟杆菌(Bacteroides ovatus)的xsa。
18.权利要求16所述的方法,其中所述木聚糖内切酶催化结构域是来源于来自粪堆梭菌(Clostridium stercorarium)的xyn10B。
19.权利要求1所述的方法,其中所述生物质聚合物是纤维素。
20.权利要求19所述的方法,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
21.权利要求20所述的方法,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌(Cellvibrio japonicus)的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌(Bacillus sp.)D04的cel。
22.权利要求1所述的方法,其中所述培养基不含游离脂肪酸或者醇。
23.一种经基因修饰的宿主细胞,含有编码硫酯酶、脂酰-coA合成酶、酰基转移酶、醇脱氢酶、丙酮酸脱羧酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。
24.权利要求23所述的宿主细胞,其中所述宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。
25.权利要求24的宿主细胞,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
26.权利要求23所述的宿主细胞,其中所述宿主细胞是细菌细胞。
27.权利要求26的宿主细胞,其中所述细菌细胞是大肠杆菌细胞。
28.权利要求23所述的宿主细胞,其中所述宿主细胞是真菌细胞。
29.权利要求28的宿主细胞,其中所述真菌细胞是酵母细胞。
30.权利要求23所述的宿主细胞,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
31.权利要求23所述的宿主细胞,其中所述硫酯酶是来自大肠杆菌的ltesA。
32.权利要求23所述的宿主细胞,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
33.权利要求23所述的宿主细胞,其中所述醇脱氢酶是来自运动发酵单胞菌的adhB。
34.权利要求23所述的宿主细胞,其中所述丙酮酸脱羧酶是来自运动发酵单胞菌的pdc。
35.权利要求23所述的宿主细胞,其中所述酰基转移酶是来自不动细菌属菌株ADP1的蜡酯合酶atfA。
36.权利要求23所述的宿主细胞,进一步包含编码天然分泌的蛋白的重组核酸,其中所述分泌的蛋白与一种或多种生物质聚合物降解酶融合。
37.权利要求36的宿主细胞,其中所述天然分泌的蛋白是来自大肠杆菌的OsmY。
38.权利要求23所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
39.权利要求38所述的宿主细胞,其中所述木聚糖酶是来自卵形拟杆菌的xsa。
40.权利要求38所述的宿主细胞,其中所述含有木聚糖内切酶催化结构域的蛋白是来自粪堆梭菌的xyn10B。
41.权利要求23所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
42.权利要求41的宿主细胞,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌D04的cel。
43.一种由生物质聚合物制备脂肪醇的方法,包括:
a)提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、形成脂肪醇的脂酰-coA还原酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由所述宿主细胞分泌,
b)在培养基中培养所述宿主细胞以形成培养物,使得所述一种或多种重组核酸在所述细胞中表达,其中所述培养基含有生物质聚合物作为所述宿主细胞的碳源,和
c)从所述培养物中提取脂肪醇。
44.权利要求43所述的方法,其中所述宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。
45.权利要求44所述的方法,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
46.权利要求43所述的方法,其中所述宿主细胞是细菌细胞。
47.权利要求46所述的方法,其中所述细菌细胞是大肠杆菌细胞。
48.权利要求43所述的方法,其中所述宿主细胞是真菌细胞。
49.权利要求48所述的方法,其中所述真菌细胞是酵母细胞。
50.权利要求43所述的方法,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
51.权利要求43所述的方法,其中所述硫酯酶是来自大肠杆菌的ltesA。
52.权利要求43所述的方法,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
53.权利要求43所述的方法,其中所述形成脂肪醇的脂酰-coA还原酶是来自小鼠(Mus musculus)的mfar1。
54.权利要求43所述的方法,其中所述生物质聚合物是半纤维素。
55.权利要求54所述的方法,其中所述半纤维素是木聚糖。
56.权利要求55所述的方法,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
57.权利要求56所述的方法,其中所述木聚糖酶是来自卵形拟杆菌的xsa。
58.权利要求56所述的方法,其中所述含有木聚糖内切酶催化结构域的蛋白是来自粪堆梭菌的xyn10B。
59.权利要求43所述的方法,其中所述生物质聚合物是纤维素。
60.权利要求59所述的方法,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
61.权利要求60所述的方法,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌D04的cel。
62.一种经基因修饰的宿主细胞,含有编码硫酯酶、脂酰-coA合成酶、形成脂肪醇的脂酰-coA还原酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。
63.权利要求62所述的宿主细胞,其中所述宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。
64.权利要求63所述的宿主细胞,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
65.权利要求62所述的宿主细胞,其中所述宿主细胞是细菌细胞。
66.权利要求65所述的宿主细胞,其中所述细菌细胞是大肠杆菌细胞。
67.权利要求62所述的宿主细胞,其中所述宿主细胞是真菌细胞。
68.权利要求67所述的宿主细胞,其中所述真菌细胞是酵母细胞。
69.权利要求62所述的宿主细胞,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
70.权利要求62所述的宿主细胞,其中所述硫酯酶是来自大肠杆菌的ltesA。
71.权利要求62所述的宿主细胞,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
72.权利要求62所述的宿主细胞,其中所述形成脂肪醇的脂酰-coA还原酶是来自小鼠的mfar1。
73.权利要求62所述的宿主细胞,进一步包括编码天然分泌的蛋白的重组核酸,其中所述分泌的蛋白与一种或多种生物质聚合物降解酶融合。
74.权利要求73所述的宿主细胞,其中所述天然分泌的蛋白是来自大肠杆菌的OsmY。
75.权利要求62所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
76.权利要求75所述的宿主细胞,其中所述木聚糖酶是来自卵形拟杆菌的xsa。
77.权利要求75所述的宿主细胞,其中所述含有木聚糖内切酶催化结构域的蛋白是来自粪堆梭菌的xyn10B。
78.权利要求62所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
79.权利要求78所述的宿主细胞,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌D04的cel。
80.一种由生物质聚合物制备脂肪醛的方法,包括:
a)提供宿主细胞,其中所述宿主细胞含有编码硫酯酶、脂酰-coA合成酶、脂酰-coA还原酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶由所述宿主细胞分泌,
b)在培养基中培养所述宿主细胞以形成培养物,使得所述一种或多种重组核酸在所述细胞中表达,其中所述培养基含有生物质聚合物作为所述宿主细胞的碳源,和
c)从所述培养物中提取脂肪醛。
81.权利要求80所述的方法,其中所述宿主细胞含有编码脂酰-coA脱氢酶的内源性核酸。
82.权利要求81所述的方法,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
83.权利要求80所述的方法,其中所述宿主细胞含有编码一种或多种醇脱氢酶的内源性核酸。
84.权利要求83所述的方法,其中所述宿主细胞被修饰为使得所述一种或多种醇脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
85.权利要求80所述的方法,其中所述宿主细胞是细菌细胞。
86.权利要求85所述的方法,其中所述细菌细胞是大肠杆菌细胞。
87.权利要求80所述的方法,其中所述宿主细胞是真菌细胞。
88.权利要求87所述的方法,其中所述真菌细胞是酵母细胞。
89.权利要求80所述的方法,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
90.权利要求80所述的方法,其中所述硫酯酶是来自大肠杆菌的ltesA。
91.权利要求80所述的方法,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
92.权利要求80所述的方法,其中所述脂酰-coA还原酶是来自不动杆菌(Acinetobacter baylyi)的acr1。
93.权利要求80所述的方法,其中所述生物质聚合物是半纤维素。
94.权利要求93所述的方法,其中所述半纤维素是木聚糖。
95.权利要求94所述的方法,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
96.权利要求95所述的方法,其中所述木聚糖酶是来自卵形拟杆菌的xsa。
97.权利要求95所述的方法,其中所述编码木聚糖内切酶催化结构域的蛋白是来自粪堆梭菌的xyn10B。
98.权利要求80所述的方法,其中所述生物质聚合物是纤维素。
99.权利要求98所述的方法,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
100.权利要求99所述的方法,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌D04的cel。
101.一种经基因修饰的宿主细胞,含有编码硫酯酶、脂酰-coA合成酶、脂酰-coA还原酶、和一种或多种生物质聚合物降解酶的一种或多种重组核酸,其中所述一种或多种生物质聚合物降解酶是分泌酶。
102.权利要求101所述的宿主细胞,进一步含有编码脂酰-coA脱氢酶的内源性核酸。
103.权利要求102所述的宿主细胞,其中所述宿主细胞被修饰为使得所述脂酰-coA脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
104.权利要求101所述的宿主细胞,进一步含有编码一种或多种醇脱氢酶的内源性核酸。
105.权利要求104所述的宿主细胞,其中所述宿主细胞被修饰为使得所述一种或多种醇脱氢酶的表达相对于未修饰细胞中的表达水平减弱。
106.权利要求101所述的宿主细胞,其中所述宿主细胞是细菌细胞。
107.权利要求106所述的宿主细胞,其中所述细菌细胞是大肠杆菌细胞。
108.权利要求101所述的宿主细胞,其中所述宿主细胞是真菌细胞。
109.权利要求108所述的宿主细胞,其中所述真菌细胞是酵母细胞。
110.权利要求101所述的宿主细胞,其中所述宿主细胞是植物细胞、动物细胞或者人体细胞。
111.权利要求101所述的宿主细胞,其中所述硫酯酶是来自大肠杆菌的ltesA。
112.权利要求101所述的宿主细胞,其中所述脂酰-coA合成酶是来自大肠杆菌的fadD。
113.权利要求101所述的宿主细胞,其中所述脂酰-coA还原酶是来自不动杆菌的acr1。
114.权利要求101所述的宿主细胞,进一步包括编码天然分泌的蛋白的重组核酸,其中所述分泌的蛋白与一种或多种生物质聚合物降解酶融合。
115.权利要求114所述的宿主细胞,其中所述天然分泌的蛋白是来自大肠杆菌的OsmY。
116.权利要求101所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是木聚糖酶和含有木聚糖内切酶催化结构域的蛋白。
117.权利要求116所述的宿主细胞,其中所述木聚糖内切酶催化结构域是来自粪堆梭菌的xyn10B。
118.权利要求116所述的宿主细胞,其中所述木聚糖酶是来自卵形拟杆菌的xsa。
119.权利要求101所述的宿主细胞,其中所述一种或多种生物质聚合物降解酶是含有纤维二糖水解酶催化结构域的蛋白、β-葡萄糖苷酶和含有纤维素酶催化结构域的蛋白。
120.权利要求119所述的宿主细胞,其中所述纤维二糖水解酶催化结构域是来源于来自纤维弧菌的cel6A,所述β-葡萄糖苷酶是来自纤维弧菌的cel3B,并且所述纤维素酶催化结构域是来源于来自芽孢杆菌D04的cel。
CN2010800194079A 2009-05-01 2010-04-30 来源于生物质聚合物的脂肪酸脂产物 Pending CN102482676A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17496009P 2009-05-01 2009-05-01
US61/174,960 2009-05-01
PCT/US2010/033299 WO2010127318A2 (en) 2009-05-01 2010-04-30 Product of fatty acid esters from biomass polymers

Publications (1)

Publication Number Publication Date
CN102482676A true CN102482676A (zh) 2012-05-30

Family

ID=43032811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800194079A Pending CN102482676A (zh) 2009-05-01 2010-04-30 来源于生物质聚合物的脂肪酸脂产物

Country Status (5)

Country Link
US (2) US20120115195A1 (zh)
EP (1) EP2424989A2 (zh)
CN (1) CN102482676A (zh)
BR (1) BRPI1009980A2 (zh)
WO (1) WO2010127318A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813625A (zh) * 2013-08-27 2016-07-27 赢创德固赛有限公司 生产酰基氨基酸的方法
CN107075463A (zh) * 2014-05-23 2017-08-18 赢创德固赛有限公司 酰基氨基酸的生物合成生产

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100242345A1 (en) 2006-05-19 2010-09-30 LS9, Inc Production of fatty acids & derivatives thereof
US8110670B2 (en) 2006-05-19 2012-02-07 Ls9, Inc. Enhanced production of fatty acid derivatives
CN102027109B (zh) 2008-05-16 2016-01-06 Reg生命科学有限责任公司 产生碳氢化合物的方法和组合物
CN111808892A (zh) 2009-04-27 2020-10-23 基因组股份公司 脂肪酸酯的产生
US9096859B2 (en) 2011-01-26 2015-08-04 The Regents Of The University Of California Microbial conversion of plant biomass to advanced biofuels
US20140215904A1 (en) 2011-03-30 2014-08-07 Ls9, Inc. Compositions comprising and methods for producing beta-hydroxy fatty acid esters
US9399768B2 (en) 2011-07-27 2016-07-26 Iowa State University Research Foundation, Inc. Materials and methods for using an acyl-acyl carrier protein thioesterase and mutants and chimeras thereof in fatty acid synthesis
US8951762B2 (en) 2011-07-27 2015-02-10 Iowa State University Research Foundation, Inc. Materials and methods for using an acyl—acyl carrier protein thioesterase and mutants and chimeras thereof in fatty acid synthesis
DE102011110946A1 (de) 2011-08-15 2016-01-21 Evonik Degussa Gmbh Biotechnologisches Syntheseverfahren von omegafunktionalisierten Carbonsäuren und Carbonsäure-Estern aus einfachen Kohlenstoffquellen
DE102011110945A1 (de) 2011-08-15 2013-02-21 Evonik Degussa Gmbh Biotechnologisches Syntheseverfahren von organischen Verbindungen mit alkIL-Genprodukt
WO2013096092A1 (en) 2011-12-20 2013-06-27 Codexis, Inc. Production of saturated fatty alcohols from engineered microorganisms
JP6230594B2 (ja) 2012-04-02 2017-11-15 アールイージー ライフ サイエンシズ リミテッド ライアビリティ カンパニー Car酵素、および改良された脂肪アルコール産生方法
CA3162104A1 (en) 2012-04-02 2013-10-10 Genomatica, Inc. Improved production of fatty acid derivatives
DE102012207921A1 (de) 2012-05-11 2013-11-14 Evonik Industries Ag Mehrstufiges Syntheseverfahren mit Synthesegas
US9347076B2 (en) * 2012-06-21 2016-05-24 Lanzatech New Zealand Limited Recombinant microorganisms that make biodiesel
WO2014018982A1 (en) 2012-07-27 2014-01-30 The Regents Of The University Of California Systems and methods for enhancing gene expression
EP2735610A1 (en) * 2012-11-26 2014-05-28 Neste Oil Oyj Oleaginous bacterial cells and methods for producing lipids
CA2891353A1 (en) 2012-12-12 2014-06-19 REG Life Sciences, LLC Acp-mediated production of fatty acid derivatives
US9512447B2 (en) 2012-12-14 2016-12-06 Codexis, Inc. Modified native beta-ketoacyl-ACP synthases and engineered microorganisms
KR101746040B1 (ko) 2013-01-16 2017-06-13 알이지 라이프 사이언시스, 엘엘씨 개선된 특성들을 갖는 아실-acp 레덕타아제
US10913935B2 (en) 2013-03-15 2021-02-09 The Regents Of The University Of California Modified bacterium useful for producing an organic molecule
CN105378486B (zh) 2013-06-14 2024-05-14 基因组股份公司 生产omega-羟基化的脂肪酸衍生物的方法
WO2015157719A1 (en) 2014-04-10 2015-10-15 REG Life Sciences, LLC Semisynthetic routes to organic compounds
BR112016029235B1 (pt) 2014-06-16 2023-11-28 Genomatica, Inc Variante de polipeptídeo de fusão híbrida cyp153a-redutase, célula hospedeira recombinante, cultura de células, método de produção de um ácido graxo ômega-hidroxilado que possui um aumento na titulação e microorganismo recombinante
CA2955370A1 (en) 2014-07-18 2016-01-21 REG Life Sciences, LLC Microbial production of fatty diols
WO2017101987A1 (en) 2015-12-15 2017-06-22 REG Life Sciences, LLC Omega-hydroxylase-related fusion polypeptide variants with improved properties
WO2018178397A1 (en) 2017-03-30 2018-10-04 Rijksuniversiteit Groningen N-alkylated amino acids and oligopeptides, uses thereof and methods for providing them.
CN108103117A (zh) * 2017-12-29 2018-06-01 佛山科学技术学院 一种利用酵母菌发酵玉米芯生产生物柴油的方法及其制成的生物柴油
KR102116473B1 (ko) * 2018-01-31 2020-05-28 인하대학교 산학협력단 지방산을 생산하는 재조합 대장균 및 이를 이용한 바이오디젤의 제조방법
US11884620B2 (en) 2020-12-11 2024-01-30 The Regents Of The University Of California Use of polyamines in the pretreatment of biomass
US20240150800A1 (en) * 2022-11-04 2024-05-09 Viridos, Inc. Recombinant algae having high biomass and lipid productivity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151149A2 (en) * 2007-06-01 2008-12-11 Solazyme, Inc. Production of oil in microorganisms

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2529176T3 (es) * 2006-05-19 2015-02-17 Ls9, Inc. Producción de ácidos grasos y derivados de los mismos
BRPI0920650A2 (pt) * 2008-10-07 2019-08-27 Ls9 Inc métodos para produzir um aldeído graxo, microrganismo geneticamente modificado, aldeído graxo
CN102264910B (zh) * 2008-10-28 2015-08-26 Reg生命科学有限责任公司 用于产生脂肪醇的方法和组合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151149A2 (en) * 2007-06-01 2008-12-11 Solazyme, Inc. Production of oil in microorganisms

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANTONI D.ET AL: "Biofuels from microbes", 《APPL MICROBIOL BIOTECHNOL》, vol. 77, 22 September 2007 (2007-09-22), pages 23 - 35, XP019560693, DOI: 10.1007/s00253-007-1163-x *
KALSCHEUER R.ET AL: "Microdiesel: Escherichia coli engineered for fuel production", 《MICROBIOLOGY》, vol. 152, no. 9, 30 September 2006 (2006-09-30), XP007903430, DOI: 10.1099/mic.0.29028-0 *
STEEN EJ.ET AL: "Microbial production of fatty-acid-derived fuels and chemicals from plant biomass", 《NATURE》, vol. 463, 28 January 2010 (2010-01-28), XP055011271, DOI: 10.1038/nature08721 *
WEI DU ET AL: "Perspectives for biotechnological production of biodiesel and impacts", 《APPL MICROBIOL BIOTECHNOL》, vol. 79, 5 April 2008 (2008-04-05), pages 331 - 337, XP019623601 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813625A (zh) * 2013-08-27 2016-07-27 赢创德固赛有限公司 生产酰基氨基酸的方法
CN107075463A (zh) * 2014-05-23 2017-08-18 赢创德固赛有限公司 酰基氨基酸的生物合成生产

Also Published As

Publication number Publication date
EP2424989A2 (en) 2012-03-07
US20120115195A1 (en) 2012-05-10
BRPI1009980A2 (pt) 2015-08-25
WO2010127318A3 (en) 2011-04-21
US20140038248A1 (en) 2014-02-06
WO2010127318A2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
CN102482676A (zh) 来源于生物质聚合物的脂肪酸脂产物
Chintagunta et al. Biodiesel production from lignocellulosic biomass using oleaginous microbes: Prospects for integrated biofuel production
Arora et al. Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity
Zhao et al. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4
CN101802208B (zh) 通过提取式发酵减少原料中杂质的毒性作用
Elbahloul et al. Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p (Microdiesel) plasmid
Sutanto et al. Lipomyces starkeyi: Its current status as a potential oil producer
Shanmugam et al. Recent developments and strategies in genome engineering and integrated fermentation approaches for biobutanol production from microalgae
CN102712858A (zh) 在重组异养型微生物中制备特制油
Lin et al. Genetic engineering of microorganisms for biodiesel production
CN102459622A (zh) 脂肪酸酯的产生
CN113846129A (zh) 生物油及其制备与应用
EP2390341B1 (en) Process and microorganisms for production of lipids
Mekala et al. Current bioenergy researches: Strengths and future challenges
Toogood et al. Retooling microorganisms for the fermentative production of alcohols
US20160145660A1 (en) Production of microbial oils
Hoover et al. Bacterial production of free fatty acids from freshwater macroalgal cellulose
US8870980B2 (en) Process for producing enzymes
Roche et al. Engineering the filamentous fungus Neurospora crassa for lipid production from lignocellulosic biomass
Wang et al. Comparative glucose and xylose coutilization efficiencies of soil-isolated yeast strains identify Cutaneotrichosporon dermatis as a potential producer of lipid
US8993281B2 (en) Genetically modified Acinetobacter hosts for lipid production
Rahman et al. Escherichia coli as a fatty acid and biodiesel factory: current challenges and future directions
Takagi et al. Platform construction of molecular breeding for utilization of brown macroalgae
Vaishnavi et al. Marine biomass toward biofuel production
Younes Design and development of microbial platforms for sustainable oleochemicals and biorefinery applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120530