CN102470249B - 馈通组件及相关方法 - Google Patents

馈通组件及相关方法 Download PDF

Info

Publication number
CN102470249B
CN102470249B CN201080036053.9A CN201080036053A CN102470249B CN 102470249 B CN102470249 B CN 102470249B CN 201080036053 A CN201080036053 A CN 201080036053A CN 102470249 B CN102470249 B CN 102470249B
Authority
CN
China
Prior art keywords
feedthrough assembly
glass
approximately
sealing body
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080036053.9A
Other languages
English (en)
Other versions
CN102470249A (zh
Inventor
W·J·泰勒
B·C·蒂申多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of CN102470249A publication Critical patent/CN102470249A/zh
Application granted granted Critical
Publication of CN102470249B publication Critical patent/CN102470249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/02Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing by fusing glass directly to metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/056Transvascular endocardial electrode systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections
    • A61N1/3754Feedthroughs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种馈通组件,它包含套圈、绝缘结构、至少一个终端引脚以及将绝缘结构牢固地固定在套圈内的玻璃封接体。所述绝缘结构具有顶部、底部和内径部分。所述内径部分限定至少一个从绝缘结构顶部延伸到底部的孔。所述至少一个终端引脚从所述至少一个孔中延伸通过。所述玻璃封接体包含约30%的B2O3;约30%至约40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过约20%;约5%的La2O3;约10%的SiO2;以及约15%的Al2O3,其中所有百分数都是摩尔百分数。

Description

馈通组件及相关方法
技术领域
本发明一般涉及用于可植入医疗器件(IMD)的馈通组件(feedthroughassembly)的制作,更具体地,涉及所述馈通组件内的绝缘玻璃。
背景技术
本节提供与本发明相关但未必构成现有技术的背景信息。
许多器件[例如可植入医疗器件(IMD)、电化学装置(例如电池、电容器或传感器)]都是气密性密封的,以防液体接触器件内的电子部件。典型的馈通组件由导电元件(例如导线或引脚)、套圈(ferrule)或套筒件、绝缘件(例如玻璃、陶瓷)和封接体组成。馈通装置包括美国专利第6855456号和第5175067号以及美国专利申请公开第2006/0247714号所述的馈通装置,这些专利或专利申请均为Taylor等所有。套圈或套筒件包含用来接纳绝缘件的孔。封接体可置于套圈或套筒件与绝缘件之间。绝缘件包括用Ta-23玻璃和Cabal-12玻璃形成的绝缘件,如Taylor等的美国专利第5306581号所述。示例性馈通组件可插入例如电池外壳里,使得导电元件的一部分延伸到外壳内,与电池元件相连,而导电元件的另一部分延伸到外壳外,与其它电子部件相连。
制作馈通组件可能需要用到成形配重物(forming weight),这使生产变得复杂,而且在一些情况下限制了馈通装置的最小尺寸。此外,一些绝缘件易与水溶液如体液反应。与体液的反应会腐蚀绝缘件,使性能随时间减退。人们希望开发用于IMD的改进的馈通装置。
发明内容
本节提供本发明内容的总体概述,而不是综合揭示本发明的全部范围或所有特征。
本发明提供了玻璃绝缘件和玻璃预成形体,它们包含约30%的B2O3;约30%至约40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过约20%;约5%的La2O3;约10%的SiO2;以及约15%的Al2O3,其中所有百分数都是摩尔百分数。这些绝缘件和预成形体用于馈通组件和形成馈通组件的方法。
根据本发明的多个实施方式,馈通组件包含套圈、绝缘结构和将绝缘结构牢固地固定在套圈内的玻璃封接体。所述玻璃封接体包含约30%的B2O3;约30%至约40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过约20%;约5%的La2O3;约10%的SiO2;以及约15%的Al2O3,其中所有百分数都是摩尔百分数。
根据本发明的多个实施方式,制造馈通组件的方法包括提供套圈和将绝缘结构插在套圈内。所述方法还包括形成将绝缘结构牢固地固定在套圈内的玻璃封接体。所述玻璃封接体包含约30%的B2O3;约30%至约40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过约20%;约5%的La2O3;约10%的SiO2;以及约15%的Al2O3,其中所有百分数都是摩尔百分数。
根据本发明的多个实施方式,馈通组件包含套圈、绝缘结构、至少一个终端引脚和将所述至少一个终端引脚牢固地固定在绝缘结构上的玻璃封接体。所述绝缘结构具有顶部、底部和内径部分。所述内径部分限定至少一个从绝缘结构顶部延伸到底部的孔。所述至少一个终端引脚从所述至少一个孔中延伸通过。所述玻璃封接体包含约30%的B2O3;约30%至约40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过约20%;约5%的La2O3;约10%的SiO2;以及约15%的Al2O3,其中所有百分数都是摩尔百分数。
本文所用的“一个”和“一种”表示存在“至少一个(一种)”所指对象;在可能的情况下存在多个所指对象。用“约”修饰数值时,它表示计算或测量中允许数值存在些许不精确性(接近准确值;大致或合理地靠近该数值;差不多)。若出于某种原因,在本领域不能按照此普通含义理解“约”字带来的不精确性,则本文所用的“约”字至少表示由测量或使用这种参数的普通方法所引起的变化。此外,对范围的披露包括披露所有单个数值以及在整个范围内进一步划分的范围。
从本文提供的描述中将能明显看出其它的适用领域。本概述中的描述和具体例子仅用于说明的目的,而不是为了限制本发明的范围。
附图说明
下面将参考附图,更完整地描述示例性实施方式。
图1显示了一种可植入医疗器件的示意图;
图2是包含馈通组件的MEMS封装件的分解示意图;
图3和4分别是根据本发明的多个实施方式的单极(单引脚)馈通组件的等轴测图和截面图;
图5-7说明了根据本发明的多个实施方式制造示例性馈通组件的方法。
具体实施方式
本发明的一个实施方式包括微型机电系统(MEMS)封装件中的馈通组件。导电气密性馈通装置将MEMS器件的内部空腔与MEMS封装件外部的另一个电子部件或器件(例如引线互连器)连接起来。MEMS封装件是气密性的和隔离的,不跟体液接触,其气密性和隔离程度可高于通过环氧树脂连接到硅基片上的封装件。
图1显示了医疗器件系统10中的功能单元20。功能单元20包含集成电路(IC)上面或里面的馈通组件(未示出)、包含电子部件(例如晶体管、逻辑门、开关)的基片或者单独的基片。功能单元20可用在医疗器件12外面任何位置,可电连接到一个或多个导体18上。例如,功能单元20可用作采用了馈通组件的传感器(例如压力传感器)。
医疗器件系统10包含医疗器件外壳12,该外壳具有连接器模块14,将医疗器件外壳12的各种内部电气部件电连接到医用引线16的近端15a,所述医用引线是例如一个或多个延伸到引线16的远端15b的导体18(例如线圈、导线)。医疗器件系统10可包含各种各样的医疗器件,所述医疗器件包含一个或多个医用引线16和连接到医用引线16上的电路。举例而言,医疗器件系统10可以是对心脏提供治疗刺激的可植入心脏起搏器或神经刺激器的形式。或者,医疗器件系统10可以是以下形式:可植入心律转变器、可植入除纤颤器、可植入心脏起搏器-心律转变器-除纤颤器(PCD)、可植入脉搏发生器或者单独监视患者身体状况的可植入医疗器件。
图2显示了用于医疗器件系统10的MEMS封装件100的一个实施方式。在一个实施方式中,MEMS封装件100可用在传感器当中或者用于传感器。例如,MEMS封装件100可与变换器相连,所述变换器将信号转换为电信号(即电压、电流)。
MEMS封装件100包含馈通组件110、第一基片111和第二基片128。馈通组件110可气密性地设置在第一基片111的孔106中,并与第二基片128相连。馈通组件110(例如玻璃-引脚-绝缘子封接体)包含气密性地装在绝缘件114(也称封接玻璃)中的导电元件112(例如引脚)。导电元件112可由导电材料如钽(Ta)、铌(Nb)、钛(Ti)、铂(Pt)、铱(Ir)和/或其合金形成。
绝缘件114可由玻璃形成。用于形成绝缘件114的典型玻璃包括硼铝型、硼铝硅酸盐型和/或硼硅酸盐型玻璃,它们的热膨胀系数范围宽,与生物稳定的导电元件112的材料大致匹配,所述导电元件的材料是例如Ta、Nb、铌-钛(Nb-Ti)合金、Pt、Pt合金、Ti、Ti合金和/或其它合适的材料。按一定方式选择用来形成绝缘件114的元素和/或化合物,以减少导电元件112的拉伸应力。例如,采用玻璃的绝缘件114的CTE值约等于导电元件110的CTE值,或者它们相差不超过15%。
绝缘件114可由玻璃预成形体形成。例如,在制备馈通组件110时,可使玻璃预成形体熔化,从而使熔融玻璃与导电元件112和孔106的内壁紧密接触,随后冷却,形成绝缘件114。玻璃预成形体的组成包含约30-40%的B2O3、约0-20%的CaO、约0-20%的MgO、约0-20%的SrO、约0-5%的La2O3、约5-10%的SiO2以及约10-20%的Al2O3,其中所有百分数都是摩尔百分数。在一些实施方式中,所述组成还包含高达约10%的MnO2,在一些情况下MnO2可约为15%。在一些实施方式中,全部或部分数量的CaO和/或MgO用对应量的SrO代替,其中SrO的量不超过约40%。例如,约10%的CaO和约5%的MgO可用约15%的SrO代替。不过,CaO和MgO的数量没有完全被SrO代替,且CaO、MgO和SrO的量均不超过30%。在一些实施方式中,所述组成包含约30%的B2O3、约20%的CaO、约20%的MgO、约5%的La2O3、约10%的SiO2和约15%的Al2O3
玻璃组合物的各组分有益于制备馈通组件110,并提供了具有有利性质的绝缘件114。具体地,La2O3为玻璃提供了良好的熔化流动性,有利于形成绝缘件114,因为与不含La2O3或La2O3含量较少的玻璃相比,可采用更低的温度。氧化镧还增大了玻璃的热膨胀系数(CTE)值。例如,含少量氧化镧或不含氧化镧的玻璃的CTE约为6.5,而本文所述的含氧化镧的玻璃的CTE约为8.0。增大的CTE值更接近于金属如铌(Nb)、钛(Ti)、铂(Pt)、铱(Ir)和/或它们的合金的CTE值。在形成和冷却馈通组件110的过程中,当将玻璃绝缘件置于套圈(未示出)或孔106内壁里的时候,相近的CTE值会改变加在玻璃绝缘件上的压力。这种改变会造成过大的张力,进而会造成玻璃绝缘件114内产生拉伸裂纹。采用本发明的组合物可减小形成这种拉伸裂纹的倾向。例如,本发明的组合物可提供比孔106内壁或套圈的金属约小10-15%的CTE。
组合物里的氧化锶还能降低加工温度。例如,如上所述,全部或部分数量的CaO和/或MgO可用对应量的SrO代替。这样就可调整玻璃组合物的加工温度,例如弥补加工一定量的二氧化硅所需的温度。
本发明的组合物还将SiO2的量大约限制在10%,因为此含量提供了长期耐久性,但不会明显提高加工温度。例如,大于或等于20%的SiO2会提高将玻璃加工到钛发生相变所需的温度,其中钛可以例如作为套圈的一部分用在导电元件112中,或者用在第一基片111中。这可能导致接近相应的金属或合金熔化温度的钛部件或其它金属部件在后面发生翘曲或者变形。因此,本发明的玻璃组合物将二氧化硅的含量保持在低水平,使加工温度较低,从而保持馈通组件110的钛部分的完整性。
本发明的玻璃组合物还在绝缘件114与孔106内壁之间以及绝缘件114与导电元件112之间提供了有利的结合和密封。在其它的实施方式中,如下文所述,所述玻璃组合物提供了对套圈的结合和密封。本发明的玻璃组合物可用来代替Taylor等的美国专利第6855456号、第5306581号、第5175067号和第4940858号,美国专利申请公开第2006/0247714号,以及Lessar等的美国专利第5902326号所述的馈通装置中使用的玻璃绝缘件,所述文献的内容均通过参考完整结合于此。
导电元件112与第一基片111通过绝缘件114的绝缘材料(例如玻璃)气密性连接,所述绝缘材料流动并紧密接触导电元件112和孔106内壁。气密性封接材料的热膨胀系数(CTE)值可与MEMS封装件的所有部件匹配或接近匹配(例如CTE之差在10%以内)。在另一个实施方式中,对于MEMS封装件的所有部件,CTE之差可在5%以内。在另一个实施方式中,对于MEMS封装件的所有部件,CTE之差可在2.5%以内。在又一个实施方式中,第一基片111(例如外壳)所具有的CTE大于绝缘件114和导体112的CTE,从而形成压缩密封。
本发明还提供了形成馈通组件110的方法。可将玻璃预成形体置于导电元件112的一部分的周围。玻璃预成形体可包含本文所述的组合物。至少一部分玻璃预成形体可置于基片111的孔106内或者套筒件内。玻璃预成形体可软化或完全熔化,形成玻璃绝缘件114,所述玻璃绝缘件与导电元件112密封接合,且与基片111的孔106或套筒件密封接合。在一些实施方式中,软化或完全熔化玻璃预成形体以形成与导电元件112密封接合且与基片111的孔106或套筒件密封接合的玻璃绝缘件114的过程不需要使用一个或多个成形配重物。在一些实施方式中,熔化或完全熔化玻璃预成形体不会导致导电元件112发生相变,且不会导致基片111或套筒件发生相变,从而防止这些部件发生翘曲或变形。
第一基片111包含第一表面116a(也称陶瓷或玻璃外壳材料)、第二表面116b(例如硅材料)、长度X1、宽度X2、厚度X3和用来接纳馈通组件110的孔106。第一基片111包含气密性的馈通组件110和用于形成与第二基片128的电连接的金属化径迹(tracing)。在一个实施方式中,第一基片111包含陶瓷或玻璃,其热膨胀系数(CTE)值等于或大于馈通装置110(例如引脚/玻璃组件)的热膨胀系数值。
在一个实施方式中,第一基片111可由CTE值约等于或大于导电元件112和玻璃绝缘件114的CTE值的材料组成。第一基片111可包含陶瓷,例如CTE约为8.0的多晶氧化铝、CTE约为8.0的蓝宝石(例如单晶氧化铝)和CTE约为10的氧化锆。在另一个实施方式中,第一基片111或外壳可用玻璃代替陶瓷制成,且具有如下一般性质:(1)该玻璃的熔点高于绝缘件114的熔点;以及/或者(2)该玻璃的CTE值约等于或大于封接玻璃的CTE值。
第二基片128包含通孔122、金属化径迹120,并包含使MEMS封装件110起传感器基片如变换器的作用的电子部件;不过,技术人员应认识到,该基片可配置成包含任何类型的电路,如开关、信号处理器和/或其它任何与可植入医疗器件相关的合适电路形式。第二基片128具有大致与第一基片111相同或相近的尺寸。例如,厚度X4可与X3相同或大致相同。壁厚度X5在第二基片128的第一表面130上形成周界。第二基片128的第二表面(未示出)可与可植入医疗器件的外壳直接相邻。
然后,设置在第一基片111中的馈通组件110可通过接合剂118(如玻璃料接合剂)连接到第二基片128(也称硅MEMS基片)上。第一基片111与第二基片128的连接可通过使用玻璃料、Au-硅共晶材料或其它合适的材料118实现。第二基片128(硅)材料一般比制备玻璃绝缘件114的玻璃具有更高的熔点。导电元件110可通过金属径迹120电连接到第二基片128上。在一个实施方式中,金属径迹120可位于例如第二基片128中。
下表1给出了MEMS封装件100的各部件的尺寸;不过,技术人员应认识到,也可采用其它尺寸。
表1-MEMS封装件的各部件的示例性尺寸
  部件   尺寸毫米(mm)
  导电元件112的直径   0.40
  玻璃绝缘件114的直径   0.75
  长度X1   3.50
  宽度X2   1.00
  厚度X3   0.40
  厚度X4   0.25
  壁X5   0.25
技术人员应理解,其它的实施方式也可用来实践本文所述的原理。例如,功能单元20可置于自由体如引线内。此外,虽然MEMS封装件是就传感器或传感器部件(例如变换器)描述的,但可以想到,MEMS封装件100可通过各种方式使用,以实现可植入医疗器件的特定功能。
图3和4分别是单极(单引脚)馈通组件200的等轴测图和截面图,其中终端引脚202从馈通组件中穿过。但应理解,本发明的内容可应用于包含多个终端引脚以及不含终端引脚的馈通组件。不含终端引脚的馈通组件,如美国专利第5902326号所述的那些馈通组件,有时称作“光学”馈通装置。
组件200包含总体上呈圆柱形的套圈204,该套圈具有空腔,引脚202从空腔穿过。套圈204由导电材料(例如钛合金)制成,设计成能牢固地连接(例如焊接)到需要气密性密封的器件(如医疗器件)的容器上。绝缘结构206设置在套圈204内,使引脚202相对于套圈204固定,并使引脚202与套圈204之间实现电绝缘。绝缘结构206包含支撑结构208和接头-绝缘子子组件210,二者均设置在终端引脚202周围。在多个实施方式中,绝缘结构206可不含支撑结构208。下文将更充分地描述到,接头-绝缘子子组件210起绝缘密封的作用,可以是例如钎焊接头或玻璃封接体的形式。支撑结构208可由非导电材料(例如聚酰亚胺)制成,搁在套圈204里面的内壁架212上。
从图4可以看出,接头-绝缘子子组件210主要包含三个部件:使引脚202与套圈204绝缘的绝缘环214(例如由陶瓷材料制成)、将绝缘环214连接到引脚202上的引脚-绝缘子封接体216(例如通过金钎焊或玻璃封接形成)以及将绝缘环214连接到套圈204上的绝缘子-套圈封接体218(例如通过金钎焊或玻璃封接形成)。绝缘环214可包含底部215、顶部217和内径部分219。内径部分219限定终端引脚202可延伸通过的孔。
在本发明的多个实施方式中,引脚-绝缘子封接体216和绝缘子-套圈封接体218中的一个或两个可由上述玻璃组合物形成。也就是说,引脚-绝缘子封接体216和绝缘子-套圈封接体218可以是具有以下组成的玻璃:30-40%的B2O3、约0-20%的CaO、约0-20%的MgO、约0-20%的SrO、约0-5%的La2O3、约5-10%的SiO2以及约10-20%的Al2O3,其中所有百分数都是摩尔百分数。在一些实施方式中,所述组合物还包含高达约10%的MnO2,在一些情况下MnO2可约为15%。在一些实施方式中,全部或部分数量的CaO和/或MgO用对应量的SrO代替,其中SrO的量不超过约40%。例如,约10%的CaO和约5%的MgO可用约15%的SrO代替。不过,CaO和MgO的数量没有完全被SrO代替,且CaO、MgO和SrO的量均不超过30%。在一些实施方式中,所述组成包含约30%的B2O3、约20%的CaO、约20%的MgO、约5%的La2O3、约10%的SiO2和约15%的Al2O3
接头-绝缘子子组件210沿着套圈204底侧露出。当套圈204牢固地连接到例如医疗器件的容器上时,套圈204的下面部分可暴露于体液,因而接头-绝缘子子组件210的下面部分也暴露于体液。因此,接头-绝缘子子组件210在套圈104与终端引脚202之间形成气密性密封是很重要的。可对接头-绝缘子子组件210进行检漏测试。为进行此项测试,提供了穿过套圈204到达内环腔的孔220(图3),所述内环腔由接头-绝缘子子组件210的外表面、支撑结构208的下表面和套圈204的内表面构成。通过孔220将气体送入内环腔,堵上孔220。较佳的是,选择低分子量气体(例如氦气或氢气),使它能够轻易穿过接头-绝缘子子组件210的细小裂缝。然后,通过例如质谱仪监测套圈200,看接头-绝缘子子组件210附近是否存在气体。若未检测到气体,可断定接头-绝缘子子组件210已形成令人满意的密封。
下面参考图5-7,它们说明了根据本发明的多个实施方式制造示例性馈通组件的方法。套圈300可包含凹陷部分302,其中插有绝缘结构310。凹陷部分302可与壁部分304交界,还可包含壁架306,插入的绝缘结构310可放在壁架上,使绝缘结构310邻接壁架306。凹陷部分302还可限定开口308,终端引脚330可从中穿过。
绝缘结构310可包含顶部312、底部314和内径部分316,所述内径部分限定从顶部312延伸到底部314的孔318。在多个实施方式中,绝缘结构310可包含成角(angled)部分317,所述成角部分辅助终端引脚330与绝缘结构310的结合,下文将更充分地描述。
在本发明的多个实施方式中,将绝缘结构310插入凹陷部分302,将终端引脚330插入孔318。可将玻璃预成形体320装在绝缘结构310周围,可将第二玻璃预成形体325装在终端引脚330周围。在多个实施方式中,壁部分304可包含斜切面305,以便将玻璃预成形体320更牢固地放置在绝缘结构310旁边。此外,绝缘结构可包含成角部分317,以便将玻璃预成形体325更牢固地放置在终端引脚330旁边。
施加热能350之后,玻璃预成形体320将软化或部分熔化或完全熔化,并流入绝缘结构310与壁部分304之间的凹陷部分302。这样,玻璃预成形体320将形成玻璃封接体320A,它将绝缘结构310牢固地固定在套圈300上,如图7所示。根据所用预成形体的组成,可用不同类型的能量(例如辐射能、微波能、磁能)代替热能350,或者与热能同时使用。可用相同或类似的方法在终端引脚330与绝缘结构310之间形成玻璃封接体325A。玻璃封接体320A、325A之一与金钎焊或其它封接组合物的组合使用(如玻璃封接体320A与金钎焊组合用于封接终端引脚330和绝缘结构310,或者玻璃封接体325A与金钎焊组合用于封接套圈300和绝缘结构310)包括在本发明的范围之内。
在本发明的多个实施方式中,玻璃预成形体320、325和玻璃封接体320A、325A可由上述玻璃组合物形成。也就是说,玻璃预成形体320、325和玻璃封接体320A、325A可以是具有以下组成的玻璃:30-40%的B2O3、约0-20%的CaO、约0-20%的MgO、约0-20%的SrO、约0-5%的La2O3、约5-10%的SiO2以及约10-20%的Al2O3,其中所有百分数都是摩尔百分数。在一些实施方式中,所述组合物还包含高达约10%的MnO2,在一些情况下MnO2可约为15%。在一些实施方式中,全部或部分数量的CaO和/或MgO用对应量的SrO代替,其中SrO的量不超过约40%。例如,约10%的CaO和约5%的MgO可用约15%的SrO代替。不过,CaO和MgO的数量没有完全被SrO代替,且CaO、MgO和SrO的量均不超过30%。在一些实施方式中,所述组成包含约30%的B2O3、约20%的CaO、约20%的MgO、约5%的La2O3、约10%的SiO2和约15%的Al2O3
本发明的广泛内容可通过各种形式实施。因此,尽管本发明包含具体的实施例,但本发明的真正范围不应受此限制,因为在研究附图、说明书和以下权利要求书之后,其它的改进形式将是显而易见的。

Claims (12)

1.一种馈通组件,它包含:
套圈;
绝缘结构;以及
将所述绝缘结构牢固地固定在所述套圈内的玻璃封接体,
其特征在于,所述玻璃封接体包含:
30%的B2O3
30%至40%的选自下组的成分:CaO、MgO、SrO及其组合,前提是CaO和MgO各自的含量不超过20%;
5%的La2O3
10%的SiO2;以及
15%的Al2O3
其中所有百分数都是摩尔百分数。
2.如权利要求1所述的馈通组件,它还包含至少一个终端引脚,其中所述绝缘结构具有顶部、底部和内径部分,所述内径部分限定至少一个从所述顶部延伸到所述底部的孔,所述至少一个终端引脚从所述至少一个孔中延伸通过。
3.如权利要求2所述的馈通组件,其特征在于,所述玻璃封接体还包含0-10%的MnO2
4.如权利要求2所述的馈通组件,其特征在于,所述玻璃封接体还包含10%的MnO2
5.如权利要求2所述的馈通组件,其特征在于,所述玻璃封接体包含30%的B2O3、20%的CaO、20%的MgO、5%的La2O3、10%的SiO2以及15%的Al2O3
6.如权利要求2所述的馈通组件,它还包含封接所述至少一个终端引脚和所述绝缘结构的第二玻璃封接体。
7.如权利要求2所述的馈通组件,它还包含封接所述至少一个终端引脚和所述绝缘结构的金钎焊。
8.如权利要求1所述的馈通组件,其特征在于,所述套圈包含壁部分和壁架,所述绝缘结构邻接所述壁架,所述玻璃封接体将所述绝缘结构牢固地固定到所述壁部分上。
9.如权利要求1所述的馈通组件,其特征在于,所述玻璃封接体还包含0-10%的MnO2
10.如权利要求1所述的馈通组件,其特征在于,所述玻璃封接体还包含10%的MnO2
11.如权利要求1所述的馈通组件,其特征在于,所述玻璃封接体包含30%的B2O3、20%的CaO、20%的MgO、5%的La2O3、10%的SiO2以及15%的Al2O3
12.如权利要求1所述的馈通组件,其特征在于,软化或熔化玻璃预成形体,形成玻璃封接体。
CN201080036053.9A 2009-09-09 2010-09-08 馈通组件及相关方法 Active CN102470249B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/555,888 2009-09-09
US12/555,888 US8288654B2 (en) 2006-11-30 2009-09-09 Feedthrough assembly including a ferrule, an insulating structure and a glass
PCT/US2010/048086 WO2011031725A1 (en) 2009-09-09 2010-09-08 Feedthrough assembly and associated method

Publications (2)

Publication Number Publication Date
CN102470249A CN102470249A (zh) 2012-05-23
CN102470249B true CN102470249B (zh) 2014-10-29

Family

ID=43264717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080036053.9A Active CN102470249B (zh) 2009-09-09 2010-09-08 馈通组件及相关方法

Country Status (4)

Country Link
US (1) US8288654B2 (zh)
EP (1) EP2475424B1 (zh)
CN (1) CN102470249B (zh)
WO (1) WO2011031725A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8433409B2 (en) * 2010-01-29 2013-04-30 Medtronic, Inc. Implantable medical device battery
EP2371417B1 (de) * 2010-03-29 2019-07-24 BIOTRONIK SE & Co. KG Elektrische Durchführung, Verfahren zur Herstellung und Verwendung einer solchen
US8509899B2 (en) 2010-12-23 2013-08-13 Medtronic, Inc. Multi-electrode implantable systems and assemblies thereof
DE102011009862B4 (de) 2011-01-31 2012-11-08 Heraeus Precious Metals Gmbh & Co. Kg Cermethaltige Durchführung mit Halteelement für eine medizinisch implantierbare Vorrichtung
DE102011009857B8 (de) 2011-01-31 2013-01-17 Heraeus Precious Metals Gmbh & Co. Kg Elektrische Durchführung mit cermethaltigem Verbindungselement für eine aktive, implantierbare, medizinische Vorrichtung
DE102011009865B4 (de) * 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Kopfteil für eine medizinisch implantierbare Vorrichtung
DE102011009856B8 (de) 2011-01-31 2012-12-27 W.C. Heraeus Gmbh Elektrische Durchführung und Verfahren zur Herstellung einer cermethaltigen Durchführung für eine medizinisch implantierbare Vorrichtung
DE102011009867B4 (de) 2011-01-31 2013-09-05 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung für eine medizinisch implantierbare Vorrichtung
DE102011009859B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit Filter
DE102011009855B8 (de) 2011-01-31 2013-01-03 Heraeus Precious Metals Gmbh & Co. Kg Keramikdurchführung mit induktivem Filter
DE102011009866B4 (de) * 2011-01-31 2013-09-05 Heraeus Precious Metals Gmbh & Co. Kg Direkt aufbringbare elektrische Durchführung
DE102011009861B4 (de) 2011-01-31 2012-09-20 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Herstellung einer cermethaltigen Durchführung
DE102011009860B4 (de) 2011-01-31 2013-03-07 Heraeus Precious Metals Gmbh & Co. Kg Implantierbare Vorrichtung mit integrierter Keramikdurchführung
DE102011009858B8 (de) 2011-01-31 2013-11-07 Heraeus Precious Metals Gmbh & Co. Kg Cermethaltige Durchführung für eine medizinisch inplantierbare Vorrichtung mit Verbindungsschicht
US20120290021A1 (en) 2011-05-10 2012-11-15 Medtronic, Inc. Battery feedthrough for an implantable medical device
DE102011119125B4 (de) 2011-11-23 2014-01-23 Heraeus Precious Metals Gmbh & Co. Kg Kontaktierungsanordnung mit Durchführung und Filterstruktur
US20130286536A1 (en) * 2012-04-26 2013-10-31 Medtronic, Inc. Implantable medical device with feedthrough, feedthrough and method
GB2505566A (en) 2012-08-31 2014-03-05 Avx Corp Iterative screening method for electrolytic capacitors
US9478959B2 (en) 2013-03-14 2016-10-25 Heraeus Deutschland GmbH & Co. KG Laser welding a feedthrough
US9431801B2 (en) 2013-05-24 2016-08-30 Heraeus Deutschland GmbH & Co. KG Method of coupling a feedthrough assembly for an implantable medical device
US9403023B2 (en) 2013-08-07 2016-08-02 Heraeus Deutschland GmbH & Co. KG Method of forming feedthrough with integrated brazeless ferrule
US9643020B2 (en) 2013-08-09 2017-05-09 Medtronic, Inc. Feedthrough assembly for an implantable medical device
US10464836B2 (en) 2013-10-10 2019-11-05 Medtronic, Inc. Hermetic conductive feedthroughs for a semiconductor wafer
US9610452B2 (en) 2013-12-12 2017-04-04 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing by sintering
US9504841B2 (en) 2013-12-12 2016-11-29 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing with ultrasonic welding
US9610451B2 (en) 2013-12-12 2017-04-04 Heraeus Deutschland GmbH & Co. KG Direct integration of feedthrough to implantable medical device housing using a gold alloy
US9138821B2 (en) * 2014-01-17 2015-09-22 Medtronic, Inc. Methods for simultaneously brazing a ferrule and lead pins
US10245441B2 (en) 2014-04-25 2019-04-02 Medtronic, Inc. Implantable device with optical lead
EP3134180B1 (en) 2014-04-25 2019-10-02 Medtronic, Inc. Implantable device with optical lead connector
DE102014216765A1 (de) * 2014-08-22 2016-02-25 Zf Friedrichshafen Ag Mediendichtes Gehäuse
US9968794B2 (en) * 2014-12-24 2018-05-15 Medtronic, Inc. Implantable medical device system including feedthrough assembly and method of forming same
US20170222411A1 (en) * 2016-01-29 2017-08-03 Onesubsea Ip Uk Limited Electrical Conductor and Method of Making the Same
CN110167633A (zh) * 2017-01-05 2019-08-23 心脏起搏器股份公司 基于硅或芯片的馈通
US10433737B2 (en) 2017-01-27 2019-10-08 Medtronic, Inc. Medical device including feedthrough assembly
US11217846B2 (en) 2017-03-16 2022-01-04 Eaglepicher Technologies, Llc Electrochemical cell
CN108172553A (zh) * 2018-01-17 2018-06-15 杭州暖芯迦电子科技有限公司 一种视网膜假体植入芯片的封装结构及其封装方法
CN108899710B (zh) * 2018-04-28 2020-08-11 北京品驰医疗设备有限公司 馈通滤波器及其制造方法、植入式电刺激器
US11058883B2 (en) * 2019-02-15 2021-07-13 Medtronic, Inc. Feedthrough assembly
US11224754B2 (en) 2019-05-23 2022-01-18 Medtronic, Inc. Feedthrough assembly with feature for controlling component position
EP4230258A1 (en) 2020-02-21 2023-08-23 Heraeus Medical Components, LLC Ferrule with strain relief spacer for implantable medical device
EP4226968A1 (en) 2020-02-21 2023-08-16 Heraeus Medical Components, LLC Ferrule for non-planar medical device housing
WO2021202646A1 (en) 2020-03-31 2021-10-07 Avx Corporation Screening method for electrolytic capacitors that maintains individual capacitor unit identity
US20210328203A1 (en) * 2020-04-20 2021-10-21 Eaglepicher Technologies, Llc Electrochemical cells and methods of using and making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175067A (en) * 1989-07-12 1992-12-29 Medtronic, Inc. Feed through
US6759163B2 (en) * 2000-05-04 2004-07-06 Wilson Greatbatch Ltd. Mismatched compression glass-to-metal seal
US6855456B2 (en) * 2001-10-30 2005-02-15 Medtronic, Inc. Titanium alloy-pin battery feedthrough for an implantable medical device

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646405A (en) * 1969-01-08 1972-02-29 Mallory & Co Inc P R Hermetic seal
US3803875A (en) * 1973-02-05 1974-04-16 Bendix Corp Method of forming titanium metal-glass hermetic seals
US3920888A (en) * 1974-06-04 1975-11-18 Nuclear Battery Corp Electrical feed-through assembly suitable for electronic devices implantable in a human body
US4152540A (en) * 1977-05-03 1979-05-01 American Pacemaker Corporation Feedthrough connector for implantable cardiac pacer
US4421947A (en) * 1977-10-11 1983-12-20 James C. Kyle Polycrystalline insulating material seals between spaced members such as a terminal pin and a ferrule
US4285730A (en) * 1979-10-05 1981-08-25 Corning Glass Works Moldable glasses
US4314031A (en) * 1980-06-17 1982-02-02 Corning Glass Works Tin-phosphorus oxyfluoride glasses
US4323654A (en) * 1981-03-26 1982-04-06 Corning Glass Works Moldable glass compositions
US4424551B1 (en) * 1982-01-25 1991-06-11 Highly-reliable feed through/filter capacitor and method for making same
US4420569A (en) * 1983-04-11 1983-12-13 Corning Glass Works Alkali metal zirconofluorophosphate glasses
DE8631853U1 (de) 1986-11-28 1988-11-24 Siemens AG, 1000 Berlin und 8000 München Keramik-Metall-Durchführung, insbesondere für Nerven- oder Herzschrittmacher
US5015530A (en) * 1988-01-21 1991-05-14 The Unites States Of America As Represetned By The United States Department Of Energy High expansion, lithium corrosion resistant sealing glasses
US5021307A (en) * 1988-01-21 1991-06-04 The United States Of America As Represented By The United States Department Of Energy High expansion, lithium corrosion resistant sealing glasses
US4943686A (en) * 1988-04-18 1990-07-24 Andrzej Kucharek Seal frame and method of use
US5104738A (en) * 1988-06-01 1992-04-14 The United States Of America As Represented By The United States Department Of Energy Sealing glasses for titanium and titanium alloys
AU638020B2 (en) 1989-06-15 1993-06-17 Medtronic, Inc. Improved glass-metal seals
US5306581A (en) * 1989-06-15 1994-04-26 Medtronic, Inc. Battery with weldable feedthrough
US5104755A (en) * 1989-06-15 1992-04-14 Medtronic, Inc. Glass-metal seals
US4940858A (en) * 1989-08-18 1990-07-10 Medtronic, Inc. Implantable pulse generator feedthrough
US5821011A (en) * 1989-10-11 1998-10-13 Medtronic, Inc. Body implanted device with electrical feedthrough
US5089446A (en) * 1990-10-09 1992-02-18 Corning Incorporated Sealing materials and glasses
US5922444A (en) * 1992-10-27 1999-07-13 Ngk Spark Plug Co., Ltd. Glaze composition
US5294241A (en) * 1993-02-19 1994-03-15 Medtronic, Inc. Method for making glass to metal seals
US5333095A (en) * 1993-05-03 1994-07-26 Maxwell Laboratories, Inc., Sierra Capacitor Filter Division Feedthrough filter capacitor assembly for human implant
US5817984A (en) * 1995-07-28 1998-10-06 Medtronic Inc Implantable medical device wtih multi-pin feedthrough
US5650759A (en) * 1995-11-09 1997-07-22 Hittman Materials & Medical Components, Inc. Filtered feedthrough assembly having a mounted chip capacitor for medical implantable devices and method of manufacture therefor
US5693580A (en) * 1996-09-13 1997-12-02 Sandia Corporation Titanium sealing glasses and seals formed therefrom
US5648302A (en) * 1996-09-13 1997-07-15 Sandia Corporation Sealing glasses for titanium and titanium alloys
US5825608A (en) * 1996-10-18 1998-10-20 Novacap, Inc. Feed-through filter capacitor assembly
US5871513A (en) * 1997-04-30 1999-02-16 Medtronic Inc. Centerless ground feedthrough pin for an electrical power source in an implantable medical device
US5870272A (en) * 1997-05-06 1999-02-09 Medtronic Inc. Capacitive filter feedthrough for implantable medical device
US5902326A (en) * 1997-09-03 1999-05-11 Medtronic, Inc. Optical window for implantable medical devices
US6643903B2 (en) * 1997-11-13 2003-11-11 Greatbatch-Sierra, Inc. Process for manufacturing an EMI filter feedthrough terminal assembly
US6275369B1 (en) * 1997-11-13 2001-08-14 Robert A. Stevenson EMI filter feedthough terminal assembly having a capture flange to facilitate automated assembly
US6349025B1 (en) * 1999-11-30 2002-02-19 Medtronic, Inc. Leak testable capacitive filtered feedthrough for an implantable medical device
US6414835B1 (en) * 2000-03-01 2002-07-02 Medtronic, Inc. Capacitive filtered feedthrough array for an implantable medical device
JP4874492B2 (ja) * 2000-05-25 2012-02-15 株式会社ノリタケカンパニーリミテド ガラス組成物及び該組成物を含むガラス形成材料
US6536882B1 (en) * 2000-07-26 2003-03-25 Eastman Kodak Company Inkjet printhead having substrate feedthroughs for accommodating conductors
US6529103B1 (en) * 2000-09-07 2003-03-04 Greatbatch-Sierra, Inc. Internally grounded feedthrough filter capacitor with improved ground plane design for human implant and other applications
US6433276B1 (en) * 2001-03-14 2002-08-13 John Bellora Surface mount feedthrough
US6490148B1 (en) * 2002-01-02 2002-12-03 Greatbatch-Hittman, Incorporated Installation of filter capacitors into feedthroughs for implantable medical devices
EP1479087B1 (en) * 2002-02-28 2010-07-28 Greatbatch Ltd. Emi feedthrough filter terminal assembly for human implant applications utilizing oxide resistant biostable conductive pads for reliable electrical attachments
US6603182B1 (en) * 2002-03-12 2003-08-05 Lucent Technologies Inc. Packaging micromechanical devices
US6759309B2 (en) * 2002-05-28 2004-07-06 Applied Materials, Inc. Micromachined structures including glass vias with internal conductive layers anodically bonded to silicon-containing substrates
DE20220582U1 (de) * 2002-08-24 2003-11-13 Schott Glas, 55122 Mainz Borosilicatglas
US7098117B2 (en) * 2002-10-18 2006-08-29 The Regents Of The University Of Michigan Method of fabricating a package with substantially vertical feedthroughs for micromachined or MEMS devices
US6936494B2 (en) * 2002-10-23 2005-08-30 Rutgers, The State University Of New Jersey Processes for hermetically packaging wafer level microscopic structures
US6888233B2 (en) * 2003-03-10 2005-05-03 Honeywell International Inc. Systems for buried electrical feedthroughs in a glass-silicon MEMS process
US7837085B1 (en) * 2003-04-09 2010-11-23 Boston Scientific Neuromodulation Corporation Hermetic seal
US6768629B1 (en) * 2003-06-02 2004-07-27 Greatbatch-Hittman, Inc. Multipin feedthrough containing a ground pin passing through an insulator and directly brazed to a ferrule
US7966070B2 (en) * 2003-09-12 2011-06-21 Medtronic, Inc. Feedthrough apparatus with noble metal-coated leads
US20070260282A1 (en) * 2003-09-12 2007-11-08 Taylor William J Feedthrough apparatus with noble metal-coated leads
US7094967B2 (en) * 2003-09-24 2006-08-22 Schlumberger Technology Corporation Electrical feedthru
US6903268B2 (en) * 2003-10-29 2005-06-07 Medtronic, Inc. Implantable device feedthrough assembly
US7285509B2 (en) * 2004-01-15 2007-10-23 United States Of America As Represented By The Secretary Of The Navy Optical transmission of BGG glass material
US7364451B2 (en) * 2004-02-24 2008-04-29 Ring John H Hybrid glass-sealed electrical connectors
US7210966B2 (en) * 2004-07-12 2007-05-01 Medtronic, Inc. Multi-polar feedthrough array for analog communication with implantable medical device circuitry
US7260434B1 (en) * 2004-09-23 2007-08-21 Pacesetter, Inc. Integrated 8-pole filtered feedthrough with backfill tube for implantable medical devices
US7046499B1 (en) * 2004-10-04 2006-05-16 Pacesetter, Inc. Internally grounded filtering feedthrough
US7551963B2 (en) * 2005-02-01 2009-06-23 Greatbatch Ltd. Apparatus to improve the high voltage flashover characteristics of EMI feedthrough filters used in active implantable medical devices
US7214441B2 (en) * 2005-02-03 2007-05-08 Corning Incorporated Low alkali sealing frits, and seals and devices utilizing such frits
US7816745B2 (en) * 2005-02-25 2010-10-19 Medtronic, Inc. Wafer level hermetically sealed MEMS device
US20060247714A1 (en) * 2005-04-28 2006-11-02 Taylor William J Glass-to-metal feedthrough seals having improved durability particularly under AC or DC bias
KR100705802B1 (ko) * 2005-06-24 2007-04-09 엘지전자 주식회사 실링용 유리 조성물 및 이를 이용한 평판 디스플레이 장치
US8160707B2 (en) * 2006-01-30 2012-04-17 Medtronic, Inc. Method and apparatus for minimizing EMI coupling in a feedthrough array having at least one unfiltered feedthrough
US8285379B2 (en) * 2006-01-30 2012-10-09 Medtronic, Inc. Electrical interconnection structures and method
US20070217121A1 (en) * 2006-03-14 2007-09-20 Greatbatch Ltd. Integrated Filter Feedthrough Assemblies Made From Low Temperature Co-Fired (LTCC) Tape
US7281305B1 (en) * 2006-03-31 2007-10-16 Medtronic, Inc. Method of attaching a capacitor to a feedthrough assembly of a medical device
US7668597B2 (en) * 2006-03-31 2010-02-23 Medtronic, Inc. Feedthrough array for use in implantable medical devices
DE102006041940A1 (de) * 2006-09-07 2008-03-27 Biotronik Crm Patent Ag Elektrische Durchführung
FR2908928B1 (fr) * 2006-11-21 2009-11-27 Commissariat Energie Atomique Traversee etanche pour batterie au lithium, son procede de fabrication et son utilisation dans une batterie au lithium, et batterie au lithium mettant en oeuvre une telle traversee
US7928818B2 (en) * 2007-09-25 2011-04-19 Medtronic, Inc. Capacitive elements and filtered feedthrough elements for implantable medical devices
US20090079517A1 (en) * 2007-09-25 2009-03-26 Iyer Rajesh V Novel capacitive elements and filtered feedthrough elements for implantable medical devices
US8059386B2 (en) * 2007-09-25 2011-11-15 Medtronic, Inc. Capacitive elements and filtered feedthrough elements for implantable medical devices
US7964523B2 (en) * 2008-06-19 2011-06-21 Nihon Yamamura Glass Co., Ltd. Composition for sealing glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5175067A (en) * 1989-07-12 1992-12-29 Medtronic, Inc. Feed through
US6759163B2 (en) * 2000-05-04 2004-07-06 Wilson Greatbatch Ltd. Mismatched compression glass-to-metal seal
US6855456B2 (en) * 2001-10-30 2005-02-15 Medtronic, Inc. Titanium alloy-pin battery feedthrough for an implantable medical device

Also Published As

Publication number Publication date
EP2475424A1 (en) 2012-07-18
EP2475424B1 (en) 2014-12-17
US8288654B2 (en) 2012-10-16
CN102470249A (zh) 2012-05-23
US20090321107A1 (en) 2009-12-31
WO2011031725A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
CN102470249B (zh) 馈通组件及相关方法
US4940858A (en) Implantable pulse generator feedthrough
US8751002B2 (en) Lead connector with glass braze
US5817984A (en) Implantable medical device wtih multi-pin feedthrough
US8129622B2 (en) Insulator for feedthrough
US5821011A (en) Body implanted device with electrical feedthrough
CN102614590B (zh) 具有滤波器的陶瓷套管
US8569633B2 (en) Feedthrough for microelectromechanical system
US10272253B2 (en) Hermetic terminal for an active implantable medical device with composite co-fired filled via and body fluid side brazed leadwire
KR20140006904A (ko) 관통 접속구
US20060247714A1 (en) Glass-to-metal feedthrough seals having improved durability particularly under AC or DC bias
CN102824692B (zh) 用于植入式医疗设备的馈通连接器及制造方法
US9943695B2 (en) Lead connector with glass insulators
EP1464089B1 (en) Hermetic seals for lithium-ion batteries
US9278223B2 (en) Lead connector with glass braze
US20140111904A1 (en) Capacitor including registration feature for aligning an insulator layer
CN110100324A (zh) 用于馈通导体的基体以及壳体的、尤其具有这种基体的电池壳体的壳体部件
AU638020B2 (en) Improved glass-metal seals
EP3924043B1 (en) A feedthrough assembly
CN220439967U (zh) 一种通过玻封提升良率的真空连接器
CN112870551B (zh) 一种人工耳蜗植入体
JPH04116140U (ja) 半導体素子収納用パツケージ
JP2003188304A (ja) 気密封止型パッケージとそれに用いられるリード封止部材
JPH04120239U (ja) 半導体素子収納用パツケージ
JPH04116141U (ja) 半導体素子収納用パツケージ

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant