CN102468817A - 微机电滤波器 - Google Patents

微机电滤波器 Download PDF

Info

Publication number
CN102468817A
CN102468817A CN2010105355505A CN201010535550A CN102468817A CN 102468817 A CN102468817 A CN 102468817A CN 2010105355505 A CN2010105355505 A CN 2010105355505A CN 201010535550 A CN201010535550 A CN 201010535550A CN 102468817 A CN102468817 A CN 102468817A
Authority
CN
China
Prior art keywords
resonator
electrode
piezoelectric
micro electronmechanical
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105355505A
Other languages
English (en)
Other versions
CN102468817B (zh
Inventor
黄俊哲
许丰家
张平
王钦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN201010535550.5A priority Critical patent/CN102468817B/zh
Publication of CN102468817A publication Critical patent/CN102468817A/zh
Application granted granted Critical
Publication of CN102468817B publication Critical patent/CN102468817B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种微机电滤波器。此微机电滤波器包括一输入电极、一输出电极、一个或多个压电谐振器、一个或多个高品质因子谐振器以及一个或多个耦合梁。压电谐振器上方具有输入电极与输出电极。高品质因子谐振器的材质为硅或压电材料,且上方不具有金属电极。在压电谐振器与高品质因子谐振器之间以耦合梁作为连接。耦合梁用于谐振器间传递声波,并可控制滤波器的频宽。

Description

微机电滤波器
技术领域
本发明是关于一种滤波器,且特别是关于一种用于无线通讯系统的微机电滤波器。
背景技术
在过去几年,各种无线通讯蓬勃发展。目前应用在无线通讯上的规格或频段已达七种以上,每种规格都有其独特的通讯协议(protocol),例如不同的频带、不同的通道宽度。在通讯系统中,声波滤波器用于将欲传输的讯号提取出来,并将其它噪声予以滤除,为通讯系统中一项不可或缺的元件。对于给定的频率响应,滤波器的转移函数是由品质因子(qualityfactor,简称Q值)所决定。传统射频(radio frequency)元件因为导体及介质在GHz的频率下,元件损耗将随着频率而增加。因此,以某些结构共振方式设计的体声波谐振器(Film Bulk Acoustic Wave Resonator),由于具有体积小,逐渐取代相关元件,而成为某些手机用滤波器的主要元件。目前某些商业化的体声波共振滤波器在1GHz时,Q值约800至1200,仅适合作为频段选择滤波器。若要开发“通道选择滤波器”来满足某些下一代通讯系统需求,则谐振器在1GHz的Q值需要更高。
现有国际研发单位中,关于研究静电驱动谐振器以美国加州伯克利大学(University of California-Berkeley)为首。相关文献中记载了在静电力驱动下,某些静电驱动谐振器具有高品质因子,Q值约8800,且具有高输入阻抗(input impedance)约100K欧姆(Ohm)。在现有通讯系统中,系统的阻抗一般约为50Ohm。若元件阻抗太高(数十K Ohm至数M Ohm),则该元件的反射系数将接近1,造成插入损失(insertion loss)太高,不适合在通讯系统中使用该元件。
此外,为增加谐振器的机电转换系数,现有技术是利用压电薄膜谐振器,但金属材料本身特性是属于低品质因子。相关文献中记载了在压电驱动下,压电驱动谐振器的机电转换系数典型值为7.7×10-5C/m;在静电驱动下,静电驱动谐振器的机电转换系数典型值为3.3×10-6C/m。可知某些技术以压电材料作为共振体可得到较低的阻抗,但无法达到高Q值。所以某些压电谐振器的特性是具有低品质因子且具有低输入阻抗。
某些已知的谐振器存在下列问题:不能同时满足提高Q值与降低阻抗,故无法设计极高Q值的滤波器且阻抗达到50欧姆。因此,如何设计极高Q值的滤波器且阻抗达到50欧姆,以使与通讯系统的阻抗匹配,进而可以达到信道选择滤波器的目标,是当前亟待解决的课题。
发明内容
本发明提供一种微机电滤波器。此微机电滤波器可实现高频共振且声波损耗小,可以提供高品质因子与降低输入阻抗特性的滤波器。
本发明提出一种微机电滤波器。此微机电滤波器包括一第一基板、一第二基板、一输入电极、一输出电极、一第一悬挂式谐振器、一第二悬挂式谐振器、一压电谐振器以及一耦合梁。所述输入电极配置在所述第一基板上方。所述输出电极配置在所述第二基板上方。所述第一悬挂式谐振器连接所述第一基板及所述第二基板。所述第二悬挂式谐振器连接所述第一基板及所述第二基板。所述压电谐振器紧密地连结在所述第一悬挂式谐振器上方,所述压电谐振器的上电极具有一叉指形式图案。所述叉指形式图案两侧分别与所述输入电极、所述输出电极连接,而配置在所述压电谐振器的上电极下方依次为一第一压电材料层与一第一下电极。在所述第一悬挂式谐振器与所述第二悬挂式谐振器之间以所述耦合梁做耦合连接。所述耦合梁用于传递声波,并可控制滤波器的频宽。
本发明另提出一种微机电滤波器,此微机电滤波器包括一第一压电区域、一第二压电区域、一输入电极、一输出电极、一第一压电谐振器、一第二压电谐振器以及一耦合梁。所述输入电极配置在所述第一压电区域上方。所述输出电极配置在所述第二压电区域上方。所述第一压电谐振器包括一上电极、一悬挂式压电层以及一第一下电极。所述上电极具有一叉指形式图案,所述叉指形式图案与所述输入电极或所述输出电极连接。所述悬挂式压电层配置在所述上电极的下方。所述悬挂式压电层连接所述第一压电区域及所述第二压电区域。所述第一下电极配置在所述悬挂式压电层下方。所述第二压电谐振器连接所述第一压电区域及所述第二压电区域。在所述悬挂式压电层与所述第二压电谐振器之间以所述耦合梁做耦合连接。所述耦合梁用于传递声波,并可控制滤波器的频宽。
从另一角度来看,本发明提出一种微机电滤波器。此微机电滤波器包括一输入电极、一输出电极、至少一第一谐振器以及至少一第二谐振器,其中所述第一谐振器为一压电谐振器。所述第一谐振器耦接在所述输入电极与所述输出电极之间。所述第二谐振器的材质为硅、绝缘层上有硅的半导体材料或压电材料,且所述第二谐振器不具有金属的材质。在所述至少一第一谐振器与所述至少一第二谐振器之间以所述耦合梁做耦合连接。所述耦合梁用于谐振器间传递声波,并可控制滤波器的频宽。
为让本发明的上述特征能更明显易懂,下文特举多个实施例,并配合所附附图,作详细说明如下。
附图说明
图1是根据本发明的第一实施例的微机电滤波器的立体示意图;
图2是根据本发明的第二实施例的微机电滤波器的立体示意图;
图3是根据本发明的第三实施例的微机电滤波器的立体示意图;
图4是根据本发明的第四实施例的微机电滤波器的立体示意图。
【主要元件符号说明】
100、200:微机电滤波器;
110:第一基板;
110a、120a:硅层;
120:第二基板;
110b、120b:SOI层;
130:输入电极;
140:输出电极;
150:第一悬挂式谐振器;
160:第二悬挂式谐振器;
170:压电谐振器;
172:上电极;
174:第一压电材料层;
180:耦合梁;
190:第二压电材料层;
192:第三压电材料层;
300、400:微机电滤波器;
310:第一压电区域;
320:第二压电区域;
330:输入电极;
340:输出电极;
350:悬挂式压电层;
352:上电极;
360:不具有叉指电极的压电谐振器;
370:具有叉指电极的压电谐振器;
380:耦合梁;
390:SOI层。
具体实施方式
有关本发明的前述及其它技术内容、特点与功效,在以下配合参考附图的实施例的详细说明中,将可清楚的呈现。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本发明。各实施例中相似的元件统一地用相似的标号来表示。
第一实施例
请参照图1,图1是根据本发明的第一实施例的微机电滤波器的立体示意图。微机电滤波器100包括第一基板110、第二基板120、输入电极130、输出电极140、第一悬挂式谐振器150、第二悬挂式谐振器160、压电谐振器170以及耦合梁180。
第一基板110与第二基板120是同一种的材质层,分成两块形成平行配置的原因是为了形成多个谐振器的支撑层,在第一悬挂式谐振器150、第二悬挂式谐振器160的下方部分以镂空方式完成。于是,第一悬挂式谐振器150以悬挂方式连接于第一基板110与第二基板120之间,而形成“I”字型;类似地,第二悬挂式谐振器160也以悬挂方式连接于第一基板110与第二基板120之间,也形成“I”字型。其中,第一悬挂式谐振器150与第二悬挂式谐振器160形成平行配置,这两个谐振器的厚度相同。压电谐振器170配置在第一悬挂式谐振器150上方,以完全紧密地连结而形成复合层谐振器,在复合层谐振器中,压电谐振器170相对于第一悬挂式谐振器150的厚度薄。复合层谐振器与第二悬挂式谐振器160形成平行配置。在复合层谐振器与第二悬挂式谐振器160之间以耦合梁180做耦合连接。
第一悬挂式谐振器150与压电谐振器170的形状一致,以能够完全紧密连结。第一悬挂式谐振器150与第二悬挂式谐振器160可以为相似或相同形状的结构。第一悬挂式谐振器150连接第一基板110及第二基板120。第二悬挂式谐振器160也连接第一基板110及第二基板120。基板110a、基板120a、第一悬挂式谐振器150、第二悬挂式谐振器160及耦合梁180的材质为相同,可以为纯硅或绝缘层上有硅的(SOI,Silicon On Insulator)半导体材料。另外,第一基板110可以包括硅层110a或SOI层110b,或硅层110a与SOI层110b的组合;第二基板120可以包括硅层120a或SOI层120b,或硅层120a与SOI层120b的组合。
输入电极130配置在第一基板110上方。输出电极140配置在第二基板120上方。电信号可以进入输入电极130,但电信号无法通过第一基板110或第二基板120。输入电极130与输出电极140的电极连接方向分别延伸至复合层谐振器的上方,而形成叉指式图案,其中输入电极130与输出电极140的材质为金属,压电谐振器170可以将输入电极130的电信号转换为机械能带动悬挂式谐振器150并透过耦合梁180传至悬挂式谐振器160,其中机械能再被转换为电信号而从输出电极140传送出去。
压电谐振器170具有上电极172、第一压电材料层174与第一下电极。压电谐振器170的上电极172具有一叉指形式图案。此叉指形式图案两侧分别与输入电极130及输出电极140相连接。而配置在上电极172下方依次为第一压电材料层174与第一下电极,其中第一下电极配置在第一压电材料层174与第一悬挂式谐振器150之间。因为第一下电极的金属厚度极薄,在图中并未绘制出来。图1中,上电极172的叉指形式图案的配置方式也可以在第一压电材料层174上做多阶交迭变化的叉指形式,本发明并不以此图示为限。
在本实施例中,由于第二悬挂式谐振器160的材质可以为硅或绝缘层上有硅的半导体材料,而形成硅谐振器160。第二悬挂式谐振器160的材质优选方式是纯硅。硅谐振器(第二悬挂式谐振器160)的结构是属于高品质因子谐振器。
值得一提的是,复合层谐振器包含第一悬挂式谐振器150与压电谐振器170,而压电谐振器170因为本身结构使用到金属材料,形成具有低品质因子及低阻抗的复合层谐振器。此外,硅谐振器(第二悬挂式谐振器160)因为本身使用的材料与结构等因素,可形成具有高品质因子的谐振器。
硅谐振器(第二悬挂式谐振器160)本身不具有金属且不与输入电极130或输出电极140连接。压电谐振器170的上电极172与输入电极130或输出电极140连接,因此电信号可以通过输入电极130进入复合层谐振器,并在复合层谐振器内形成声波(Acoustic Wave)的共振,该声波转换为电信号后再经由输出电极140传输出去。压电谐振器170推动与本身紧密结合的第一悬挂式谐振器150,接着复合层谐振器可以推动耦合梁180,再推动第二悬挂式谐振器160。由于耦合梁180连接在复合层谐振器与硅谐振器(第二悬挂式谐振器160)之间,耦合梁180带动了两谐振器,将不同品质因子串联。耦合梁180的作用可以在谐振器170与硅谐振器(第二悬挂式谐振器160)之间传递声波而呈同相或反相的共振状态,并可控制微机电滤波器100的频宽。由于硅对声波的损耗小,此微机电滤波器100的结构可以得到极高的品质因子。另一方面,电信号的输入是经由压电谐振器170,所以输入阻抗极低。因此,微机电滤波器100可以对输入信号产生滤波的效果,并且同时具有高品质因子与低输入阻抗的特性。
承上所述,耦合梁180会影响声波共振时的同相或反相的频率。耦合梁180的尺寸将影响微机电滤波器100的带通频宽。设计时,可以根据通讯系统的需求、谐振器数目及排列来调整耦合梁180的长度、粗细,使所设计出的振动模态配置在所要的频段或频宽内,即可得到适当的频率响应。
此外,微机电滤波器100在输入电极130一侧还可以包括第二压电材料层190与第二下电极,其中第二下电极因为其金属厚度极薄在图中并未绘制出来。第二压电材料层190配置在输入电极130下方,第二下电极配置在第二压电材料层190与第一基板110之间。类似上述方式,微机电滤波器100在输出电极140一侧还可以包括第三压电材料层192与第三下电极,其中第三下电极因为其金属厚度极薄在图中并未绘制出来。第三压电材料层192配置在输出电极140下方,第三下电极配置在第三压电材料层192与第二基板120之间。第一压电材料层174、第二压电材料层190与第三压电材料层192连接在一起,而形成位于同一个压电材料层。第一、第二及第三下电极连接在一起。
另外,由于第一基板110与第二基板120是同一种的材质层,因此第一基板110与第二基板120可以是一体成型,在一实施例中的整体看来,微机电滤波器像个日字型。以下再举几个实施方式进行说明。
第二实施例
请参照图2,图2是根据本发明的第二实施例的微机电滤波器的立体示意图。微机电滤波器200的结构类似于前述的微机电滤波器100。微机电滤波器200采用多个耦合梁将多个压电谐振器与多个硅谐振器组合。此微机电滤波器200包括第一基板110、第二基板120、输入电极130、输出电极140、多个第一悬挂式谐振器150、多个第二悬挂式谐振器160、多个压电谐振器170以及多个耦合梁180。其中第一悬挂式谐振器150的数量与压电谐振器170的数量相同。
第一基板110与第二基板120是同一种的材质层,分成两块形成平行配置的原因是为了形成多个谐振器的支撑层,在第一悬挂式谐振器150、第二悬挂式谐振器160的下方部分以镂空方式完成。每一个第一悬挂式谐振器150以悬挂方式连接于第一基板110与第二基板120之间,而形成类似“I”字型;类似地,每一个第二悬挂式谐振器160也以悬挂方式连接于第一基板110与第二基板120之间,也形成类似“I”字型。其中,每一个第一悬挂式谐振器150与每一个第二悬挂式谐振器160形成平行配置,谐振器150、160的厚度相同。每一个压电谐振器170配置在其相应的第一悬挂式谐振器150上方,以完全紧密地连结而形成复合层谐振器,在复合层谐振器中的两谐振器相比,压电谐振器170相对于第一悬挂式谐振器150的厚度薄。在每一个复合层谐振器与第二悬挂式谐振器160之间以一个耦合梁180做耦合连接。
第一悬挂式谐振器150与压电谐振器170的形状一致,以能够完全紧密连结。每一个第一悬挂式谐振器150与每一个第二悬挂式谐振器160可以为相似或相同形状的结构。每一个第一悬挂式谐振器150连接第一基板110及第二基板120。每一个第二悬挂式谐振器160也连接第一基板110及第二基板120。基板110a、基板120a、第一悬挂式谐振器150、第二悬挂式谐振器160及耦合梁180的材质为相同,可以为纯硅或绝缘层上有硅的半导体材料。另外,第一基板110可以包括硅层110a或SOI层110b,或硅层110a与SOI层110b的组合;第二基板110可包括硅层120a或SOI层120b,或硅层120a与SOI层120b的组合。
输入电极130配置在第一基板110上方。输出电极140配置在第二基板120上方。电信号可以进入输入电极130,但电信号无法通过第一基板110或第二基板120。输入电极130与输出电极140的电极连接方向分别延伸至复合层谐振器的上方,而形成叉指式图案,其中输入电极130与输出电极140的材质为金属,压电谐振器170可以将输入电极130的电信号转换为机械能带动第一悬挂式谐振器150并透过耦合梁180传至其它悬挂式谐振器,其中机械能再被转换为电信号而从输出电极140传送出去。
每一个压电谐振器170具有一上电极172、第一压电材料层174与第一下电极。每一个压电谐振器170的上电极172具有一叉指形式图案。每一个叉指形式图案两侧分别与输入电极130及输出电极140相连接。而配置在上电极172下方依次为第一压电材料层174与第一下电极,其中第一下电极配置在第一压电材料层174与第一悬挂式谐振器150之间。因为第一下电极的金属厚度极薄,在图中并未绘制出来。图2中,上电极172的叉指形式图案形式仅是一种实施例。叉指形式图案的配置方式也可以在第一压电材料层174上做多阶交迭变化的叉指形式,本发明并不以此为限。
在此实施例中,由于每一个第二悬挂式谐振器160的材质可以为硅或绝缘层上有硅的半导体材料,而形成多个硅谐振器160。第二悬挂式谐振器160的材质优选方式是纯硅。硅谐振器160的结构是属于高品质因子谐振器。
值得一提的是,复合层谐振器包含第一悬挂式谐振器150与压电谐振器170,而压电谐振器170因为本身结构使用到金属材料,可形成具有低品质因子及低阻抗的谐振器。此外,多个硅谐振器160因为本身使用的材料与结构等因素,可形成多个具有高品质因子的谐振器。图2与图1相比较之下,图2的微机电滤波器200不但具有与图1的微机电滤波器100相类似功效,而且还可以提高Q值。
每一个硅谐振器160本身不具有金属且不与输入电极130或输出电极140连接。每一个压电谐振器170的上电极172与输入电极130或输出电极140连接,因此电信号可以通过输入电极130进入每一个压电谐振器170,并在各压电谐振器170内形成声波的共振,该声波转换为电信号后再经由输出电极140传输出去。由于每一个耦合梁180连接在压电谐振器170与硅谐振器160之间,耦合梁180将不同品质因子串联。每一个压电谐振器170内的声波共振会推动相邻的硅谐振器160。耦合梁180的作用可以在谐振器170与高品质因子谐振器160之间传递声波而呈同相或反相的共振状态,并可控制微机电滤波器200的频宽。由于硅对声波的损耗小,此微机电滤波器200的结构可以得到极高的品质因子。另一方面,声波的输入与输出是经由每一个压电谐振器170,所以输入阻抗极低。因此,微机电滤波器200可以对输入信号产生滤波的效果,并且同时具有高品质因子与低输入阻抗的特性。
承上所述,多个耦合梁180会影响到声波共振时的同相或反相的频率。每一个耦合梁180的尺寸将影响微机电滤波器200的带通频宽。设计时,可以根据通讯系统的需求来调整耦合梁180的长度、粗细,使所设计出的振动模态配置在所要的频段或频宽内,即可得到适当的频率响应。
此外,微机电滤波器200在输入电极130一侧还可以包括第二压电材料层190与第二下电极,其中第二下电极因为其金属厚度极薄在图中并未绘制出来。第二压电材料层190配置在输入电极130下方,第二下电极配置在第二压电材料层190与第一基板110之间。类似上述方式,微机电滤波器200在输出电极140一侧还可以包括第三压电材料层192与第三下电极,其中第三下电极因为其金属厚度极薄在图中并未绘制出来。第三压电材料层192配置在输出电极140下方,第三下电极配置在第三压电材料层192与第二基板120之间。第一压电材料层174、第二压电材料层190与第三压电材料层192连接在一起,而形成位于同一个压电材料层。第一、第二及第三下电极连接在一起。
值得一提的是,第一实施例的微机电滤波器100采用一个耦合梁将一个压电谐振器与一个硅谐振器组合,第二实施例的微机电滤波器200采用四个耦合梁将两个压电谐振器与三个硅谐振器组合,其中硅谐振器的结构是属于高品质因子谐振器。虽然上述实施例中已经描述了微机电滤波器的几个可能的型态,但所属技术领域中具有通常知识者应当知道,本发明的设计当不限制于上述几种可能的型态。换而言之,只要是微机电滤波器透过耦合梁将压电谐振器与高品质因子谐振器组合,所述高品质因子谐振器本身不具有金属且不与输入电极或输出电极连接,且压电谐振器的上电极与输入电极或输出电极连接,就已经是符合了本发明的精神所在。以下再举几个实施方式以便本领域具有通常知识者能够更进一步的了解本发明的精神,并实施本发明。
第三实施例
请参照图3,图3是根据本发明的第三实施例的微机电滤波器的立体示意图。微机电滤波器300包括第一压电区域310、第二压电区域320、输入电极330、输出电极340、具有叉指电极的压电谐振器370、不具有叉指电极的压电谐振器360以及耦合梁380。压电谐振器370包括上电极352、悬挂式压电层350以及第一下电极,其中压电谐振器370不具有硅基板。因为第一下电极的金属厚度极薄,在图中并未绘制出来。
第一压电区域310与第二压电区域320是同一种的材质层,分成两块形成平行配置并配置在SOI层390的上方,微机电滤波器300的左右两边各有SOI层390,因此可以作为多个悬挂式压电层的支撑层。悬挂式压电层350以悬挂方式连接于第一压电区域310与第二压电区域320之间,而形成“I”字型;类似地,不具有叉指电极的压电谐振器360也以悬挂方式连接于第一压电区域310与第二压电区域320之间,也形成“I”字型。其中,悬挂式压电层350与压电谐振器360形成平行配置。在悬挂式压电层350与压电谐振器360之间以一个耦合梁380做耦合连接。每一个压电层与耦合梁380是同一种材质的压电层。
输入电极330配置在第一压电区域310上方。输出电极340配置在第二压电区域320上方。输入电极330与输出电极340的电极连接方向分别延伸至压电谐振器370的上方,而形成叉指式图案,其中输入电极330与输出电极340的材质为金属,压电谐振器370可以将输入电极330的电信号转换为机械能并形成共振,其中机械能再被转换为电信号而从输出电极340传送出去。
上电极352配置在悬挂式压电层350的上方。上电极352具有一叉指形式图案。此叉指形式图案两侧分别与输入电极330以及输出电极340相连接。第一下电极配置在悬挂式压电层350下方。图3中,上电极352的叉指形式图案仅是一种实施例。叉指形式图案的配置方式也可以在悬挂式压电层350上做多阶交迭变化的叉指形式,本发明并不以此为限。
悬挂式压电层350与压电谐振器360可以为相似或相同形状的结构。悬挂式压电层350连接第一压电区域310及第二压电区域320。压电谐振器360连接第一压电区域310及第二压电区域320。上述各个压电层可以为相同的压电薄膜层。
值得一提的是,由于压电谐振器360的材质为压电材料,且不具有金属的材质,因此压电谐振器360的结构是属于高品质因子的谐振器。具有叉指电极的压电谐振器370因为本身结构使用到金属材料,可形成具有低品质因子及低阻抗的谐振器。
压电谐振器360本身不具有金属且不与输入电极330或输出电极340连接。压电谐振器370的上电极352与输入电极330或输出电极340连接,因此电信号可以通过输入电极330进入压电谐振器370,并在压电谐振器370内形成声波的共振,该声波被转换为电信号后再经由输出电极340传输出去。压电谐振器370推动耦合梁380,再推动压电谐振器360。由于耦合梁380连接在压电谐振器370与高品质因子谐振器(压电谐振器360)之间,耦合梁380带动了两谐振器,将不同品质因子串接。压电谐振器370内的声波共振会推动一旁的高品质因子谐振器(压电谐振器360)。耦合梁380的作用可以在谐振器370与高品质因子谐振器(压电谐振器360)之间传递声波而呈同相或反相的共振状态,并可控制微机电滤波器300的频宽。由于硅对声波的损耗小,此微机电滤波器300的结构可以得到极高的品质因子。另一方面,声波的输入与输出是经由压电谐振器370,所以输入阻抗极低。因此,微机电滤波器300可以对输入信号产生滤波的效果,并且同时具有高品质因子与低输入阻抗的特性。
承上所述,耦合梁380会影响声波共振时的同相或反相的频率。耦合梁380的尺寸将影响微机电滤波器300的带通频宽。设计时,可以根据通讯系统的需求来调整耦合梁380的长度、粗细,使所设计出的振动模态配置在所要的频段或频宽内,即可得到适当的频率响应。
此外,微机电滤波器300在输入电极330一侧还可以包括第二下电极,其中第二下电极因为其金属厚度极薄在图中并未绘制出来。第二下电极配置在第一压电区域310下方。第二下电极与第一下电极连接。类似上述方式,微机电滤波器300在输出电极340一侧还可以包括第三下电极,其中第三下电极因为其金属厚度极薄在图中并未绘制出来。第三下电极配置在第二压电层320下方。第三下电极与第一下电极连接。另外,在第二、第三下电极下方可以配置SOI层390。以下再举一实施例进行说明。
第四实施例
请参照图4,图4是根据本发明的第四实施例的微机电滤波器的立体示意图。微机电滤波器400的结构类似于前述的微机电滤波器300。微机电滤波器400采用多个耦合梁将多个压电谐振器与多个高品质因子谐振器(压电谐振器360)组合。此微机电滤波器400包括第一压电区域310、第二压电区域320、输入电极330、输出电极340、多个具有叉指电极的压电谐振器370、多个不具有叉指电极的压电谐振器360以及多个耦合梁380。压电谐振器370包括上电极352、悬挂式压电层350以及第一下电极,其中压电谐振器370不具有硅基板。因为第一下电极的金属厚度极薄,在图中并未绘制出来。
第一压电区域310与第二压电区域320是同一种的材质层,分成两块形成平行配置并配置在SOI层390的上方,微机电滤波器400的左右两边各有SOI层390,因此,可以作为多个悬挂式压电层的支撑层。每一个悬挂式压电层350以悬挂方式连接于第一压电区域310与第二压电区域320之间,而形成“I”字型;类似地,每一个压电谐振器360也以悬挂方式连接于第一压电区域310与第二压电层320之间,也形成“I”字型。其中,每一个悬挂式压电层350与每一个压电谐振器360形成平行配置。在悬挂式压电层350与压电谐振器360之间以一个耦合梁380做耦合连接。每一个压电层与耦合梁380是同一种材质的压电层。
输入电极330配置在第一压电区域310上方。输出电极340配置在第二压电层320上方。输入电极330与输出电极340的电极连接方向分别延伸至压电谐振器370的上方,而形成叉指式图案,其中输入电极330与输出电极340的材质为金属,压电谐振器370可以将输入电极330的电信号转换为机械能并形成共振,其中机械能再被转换为电信号而从输出电极340传送出去。
每一个压电谐振器370的上电极352具有一叉指形式图案。上电极352配置在悬挂式压电层350的上方。每一个叉指形式图案两侧分别与输入电极330以及输出电极340相连接。第一下电极配置在悬挂式压电层350下方。图4中,上电极352的叉指形式图案仅是一种实施例。叉指形式图案的配置方式也可以在悬挂式压电层350上做多阶交迭变化的叉指形式,本发明并不以此为限。
每一个悬挂式压电层350与每一个压电谐振器360可以为相似或相同形状的结构。每一个悬挂式压电层350连接第一压电区域310及第二压电区域320。每一个压电谐振器360连接第一压电区域310及第二压电区域320。上述各个压电层可以为相同的压电薄膜层。
值得一提的是,由于每一个压电谐振器360的材质为压电材料,且不具有金属的材质,因此每一个压电谐振器360的结构是属于高品质因子的谐振器。每一个压电谐振器370因为本身结构使用到金属材料,可形成具有低品质因子及低阻抗的谐振器。图4与图3相比较之下,图4的微机电滤波器400不但具有与图3的微机电滤波器300相类似功效,而且还可以提高Q值。
每一个压电谐振器360本身不具有金属且不与输入电极330或输出电极340连接。每一个压电谐振器370的上电极352与输入电极330或输出电极340连接,因此电信号可以通过输入电极330进入压电谐振器370,并在压电谐振器370内形成声波的共振,该声波转换为电信号后再经由输出电极340传输出去。压电谐振器370推动耦合梁380,再推动压电谐振器360。由于耦合梁380连接在压电谐振器370与高品质因子谐振器(压电谐振器360)之间,耦合梁380将不同品质因子串联。每一个压电谐振器370内的声波共振会推动相邻的高品质因子谐振器(压电谐振器360)。耦合梁380的作用可以在谐振器370与高品质因子谐振器(压电谐振器360)之间传递声波而呈同相或反相的共振状态,并可控制微机电滤波器400的频宽。由于硅对声波的损耗小,此微机电滤波器400的结构可以得到极高的品质因子。另一方面,声波的输入与输出是经由每一个压电谐振器370,所以输入阻抗极低。因此,微机电滤波器400可以对输入信号产生滤波的效果,并且同时具有高品质因子与低输入阻抗的特性。
承上所述,多个耦合梁380会影响声波共振时的同相或反相的频率。每一个耦合梁380的尺寸将影响微机电滤波器400的带通频宽。设计时,可以根据通讯系统的需求来调整耦合梁380的长度、粗细,使所设计出的振动模态配置在所要的频段或频宽内,即可得到适当的频率响应。
此外,微机电滤波器400在输入电极330一侧还可以包括第二下电极,其中第二下电极因为其金属厚度极薄在图中并未绘制出来。第二下电极配置在第一压电区域310下方。第二下电极与第一下电极连接。类似上述方式,微机电滤波器400在输出电极340一侧还可以包括第三下电极,其中第三下电极因为其金属厚度极薄在图中并未绘制出来。第三下电极配置在第二压电层320下方。第三下电极与第一下电极连接。另外,在第二、第三下电极下方可以配置SOI层390。
值得一提的是,上述各实施例的微机电滤波器因为具有比传统滤波器高的Q值且具有低输入阻抗值,因此可应用于需要高Q值的装置,如手机、无线网络等相关无线通讯产品;或是取代现有手机使用中的体声波谐振器(Film Bulk Acoustic Wave Resonator)或表面声波谐振器(SurfaceAcoustic Wave Resonator);或是应用在通讯系统中的阻抗匹配通讯;或可根据需求选取所需的频带,达到信道选择滤波器的目标,以达成无缝隙通讯系统。
由上述可知,本发明实施例的微机电滤波器将具有不同Q值的谐振器以机械结构方式耦合,可获得一高品质因子及接近系统规格的带通滤波器。故当在数十MHz至数GHz的高频率范围时,本发明实施例的微机电滤波器均可适用在不同频段的通讯系统,避免了已知技术的限制且还可以满足下一代的通讯系统需求。由此可见,本发明确实可以提供一项具有产业利用价值的滤波器设计,已具备显著的实用性与进步性。
综上所述,本发明的微机电滤波器将具有不同Q值的谐振器以机械结构方式耦合,并选择低品质因子及低阻抗的谐振器为输入/输出端,可提高Q值与降低阻抗,解决现有技术瓶颈的问题。本发明的实施例至少具有以下特征:(1)可用于中频至高频的频率范围,(2)具有低输入阻抗,可与通讯系统中的阻抗匹配,以及(3)具有高品质因子。
虽然本发明已以实施例公开如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作一些的更改与改进,故本发明的保护范围当视随附的权利要求所界定者为准。

Claims (18)

1.一种微机电滤波器,其特征在于包括:
一第一基板;
一第二基板;
一输入电极,所述输入电极配置在所述第一基板上方;
一输出电极,所述输出电极配置在所述第二基板上方;
一第一悬挂式谐振器,所述第一悬挂式谐振器连接所述第一基板及所述第二基板;
一第二悬挂式谐振器,所述第二悬挂式谐振器连接所述第一基板及所述第二基板;
一压电谐振器,所述压电谐振器紧密地连结在所述第一悬挂式谐振器上方,所述压电谐振器的上电极具有一叉指形式图案,所述叉指形式图案两侧分别与所述输入电极、所述输出电极连接,而配置在所述压电谐振器的上电极下方依次为一第一压电材料层与一第一下电极;以及
一耦合梁,在所述第一悬挂式谐振器与所述第二悬挂式谐振器之间以所述耦合梁做耦合连接,所述耦合梁用于传递声波,并控制所述微机电滤波器的频宽。
2.根据权利要求1所述的微机电滤波器,其特征在于:所述第一基板与所述第二基板是一体成型。
3.根据权利要求1所述的微机电滤波器,其特征在于:所述输入电极与所述输出电极的材质为金属。
4.根据权利要求1所述的微机电滤波器,其特征在于:所述第二悬挂式谐振器的材质为硅或是绝缘层上有硅的半导体材料。
5.根据权利要求1所述的微机电滤波器,其特征在于:所述第一基板及所述第二基板的材质为硅或是绝缘层上有硅的半导体材料。
6.根据权利要求1所述的微机电滤波器,其特征在于:所述耦合梁的材质为硅或是绝缘层上有硅的半导体材料。
7.根据权利要求1所述的微机电滤波器,其特征在于:所述微机电滤波器还包括一第二压电材料层与一第二下电极,所述第二压电材料层配置在所述输入电极下方,所述第二下电极配置在所述第二压电材料层与所述第一基板之间。
8.根据权利要求1所述的微机电滤波器,其特征在于:所述微机电滤波器还包括一第三压电材料层与一第三下电极,所述第三压电材料层配置在所述输出电极下方,所述第三下电极配置在所述第三压电材料层与所述第二基板之间。
9.一种微机电滤波器,其特征在于包括:
一第一压电区域;
一第二压电区域;
一输入电极,所述输入电极配置在所述第一压电区域上方;
一输出电极,所述输出电极配置在所述第二压电区域上方;
一第一压电谐振器,所述第一压电谐振器包括:
一上电极具有一叉指形式图案,所述叉指形式图案与所述输入电极或所述输出电极连接;
一悬挂式压电层,配置在所述上电极的下方,所述悬挂式压电层连接所述第一压电区域及所述第二压电区域;以及
一第一下电极,配置在所述悬挂式压电层下方;
一第二压电谐振器,所述第二压电谐振器连接所述第一压电区域及所述第二压电区域;以及
一耦合梁,在所述悬挂式压电层与所述第二压电谐振器之间以所述耦合梁做耦合连接,所述耦合梁用于传递声波,并控制所述微机电滤波器的频宽。
10.根据权利要求9所述的微机电滤波器,其特征在于:所述输入电极与所述输出电极的材质为金属。
11.根据权利要求9所述的微机电滤波器,其特征在于:所述第二压电谐振器的材质为压电材料且不具有金属的材质。
12.根据权利要求9所述的微机电滤波器,其特征在于:所述耦合梁的材质为压电材料。
13.根据权利要求9所述的微机电滤波器,其特征在于:所述微机电滤波器还包括一第二下电极,所述第二下电极配置在所述第一压电区域下方,所述第二下电极与所述第一下电极连接。
14.根据权利要求9所述的微机电滤波器,其特征在于:所述微机电滤波器还包括一第三下电极,所述第三下电极配置在所述第二压电区域下方,所述第三下电极与所述第一下电极连接。
15.一种微机电滤波器,其特征在于,包括:
一输入电极;
一输出电极;
至少一第一谐振器,所述第一谐振器耦接在所述输入电极与所述输出电极之间,其中所述第一谐振器为一压电谐振器;
至少一第二谐振器,所述第二谐振器的材质为硅、绝缘层上有硅的半导体材料或压电材料,且所述第二谐振器不具有金属的材质;以及
至少一耦合梁,在所述至少一第一谐振器与所述至少一第二谐振器之间以所述耦合梁做耦合连接,所述耦合梁用于谐振器间传递声波,并控制所述微机电滤波器的频宽。
16.根据权利要求15所述的微机电滤波器,其特征在于:所述输入电极与所述输出电极的材质为金属。
17.根据权利要求15所述的微机电滤波器,其特征在于:所述耦合梁的材质为硅、绝缘层上有硅的半导体材料或压电材料。
18.根据权利要求15所述的微机电滤波器,其特征在于:所述第一谐振器包括一上电极、一压电材料层与一下电极,其中所述上电极具有一叉指形式图案,所述叉指形式图案与所述输入电极或所述输出电极连接,而配置在所述叉指形式图案下方依次为所述压电材料层与所述下电极。
CN201010535550.5A 2010-11-04 2010-11-04 微机电滤波器 Expired - Fee Related CN102468817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010535550.5A CN102468817B (zh) 2010-11-04 2010-11-04 微机电滤波器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010535550.5A CN102468817B (zh) 2010-11-04 2010-11-04 微机电滤波器

Publications (2)

Publication Number Publication Date
CN102468817A true CN102468817A (zh) 2012-05-23
CN102468817B CN102468817B (zh) 2014-05-07

Family

ID=46072073

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010535550.5A Expired - Fee Related CN102468817B (zh) 2010-11-04 2010-11-04 微机电滤波器

Country Status (1)

Country Link
CN (1) CN102468817B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821799A (zh) * 2015-04-28 2015-08-05 电子科技大学 一种压电式双方块级联微机械滤波器
CN105391420A (zh) * 2015-12-03 2016-03-09 电子科技大学 一种具有低插入损耗的mems压电谐振器
CN105871351A (zh) * 2016-03-22 2016-08-17 电子科技大学 一种窄支撑梁高品质因数的压电谐振器
CN110661506A (zh) * 2019-09-20 2020-01-07 中国科学院半导体研究所 基于体声波振动模态耦合的rf-mems谐振器
CN112673568A (zh) * 2018-09-07 2021-04-16 芬兰Vtt技术研究中心有限公司 用于调整声波谐振器的频率响应的负荷谐振器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318217A (ja) * 2004-04-28 2005-11-10 Sony Corp フィルタ装置及び送受信機
JP2006298694A (ja) * 2005-04-20 2006-11-02 Nec Tokin Corp 圧電複合基板及びその製造方法
CN101154935A (zh) * 2006-09-29 2008-04-02 Tdk株式会社 弹性表面波滤波器以及弹性表面波共振器
US20100007443A1 (en) * 2006-09-20 2010-01-14 Trustees Of Boston University Nano electromechanical integrated-circuit filter
CN101734608A (zh) * 2008-11-10 2010-06-16 财团法人工业技术研究院 微机电结构及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005318217A (ja) * 2004-04-28 2005-11-10 Sony Corp フィルタ装置及び送受信機
JP2006298694A (ja) * 2005-04-20 2006-11-02 Nec Tokin Corp 圧電複合基板及びその製造方法
US20100007443A1 (en) * 2006-09-20 2010-01-14 Trustees Of Boston University Nano electromechanical integrated-circuit filter
CN101154935A (zh) * 2006-09-29 2008-04-02 Tdk株式会社 弹性表面波滤波器以及弹性表面波共振器
CN101734608A (zh) * 2008-11-10 2010-06-16 财团法人工业技术研究院 微机电结构及其制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821799A (zh) * 2015-04-28 2015-08-05 电子科技大学 一种压电式双方块级联微机械滤波器
CN104821799B (zh) * 2015-04-28 2017-10-17 电子科技大学 一种压电式双方块级联微机械滤波器
CN105391420A (zh) * 2015-12-03 2016-03-09 电子科技大学 一种具有低插入损耗的mems压电谐振器
CN105871351A (zh) * 2016-03-22 2016-08-17 电子科技大学 一种窄支撑梁高品质因数的压电谐振器
CN105871351B (zh) * 2016-03-22 2019-02-15 电子科技大学 一种窄支撑梁高品质因数的压电谐振器
CN112673568A (zh) * 2018-09-07 2021-04-16 芬兰Vtt技术研究中心有限公司 用于调整声波谐振器的频率响应的负荷谐振器
CN112673568B (zh) * 2018-09-07 2023-09-01 芬兰Vtt技术研究中心有限公司 用于调整声波谐振器的频率响应的负荷谐振器
CN110661506A (zh) * 2019-09-20 2020-01-07 中国科学院半导体研究所 基于体声波振动模态耦合的rf-mems谐振器
CN110661506B (zh) * 2019-09-20 2021-09-10 中国科学院半导体研究所 基于体声波振动模态耦合的rf-mems谐振器

Also Published As

Publication number Publication date
CN102468817B (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
EP1482638B1 (en) Film bulk acoustic resonator having supports and manufacturing method therefor
JP4885209B2 (ja) 可変フィルタ用のインターデジット型駆動電極を有するコラプシングジッパー型バラクタ
EP1892832B1 (en) Multi-mode thin film elastic wave resonator filter
CN100420056C (zh) 复合压电元件、以及使用该元件的滤波器、双工器和通讯设备
US7209019B2 (en) Switch
CN102468817B (zh) 微机电滤波器
US7498901B2 (en) Filter device and transmitter-receiver utilizing beam-structured micro-resonators
CN101018070B (zh) 双工器
US7586391B2 (en) Switchable filter with resonators
KR20040075606A (ko) 체적탄성파 공진기 밴드 패스 필터, 이를 포함하는듀플렉서 및 그 제조 방법
TWI459630B (zh) 微機電濾波器
US11881839B2 (en) Acoustic resonator assembly and filter
CN109639255A (zh) 一种双工器
CN101212076B (zh) 微机械可调微波带通滤波器
KR20050049362A (ko) 압전 공진기를 이용한 필터
CN112422097B (zh) 多梁结构组合的射频微机电系统谐振器及应用
CN113972901A (zh) 一种滤波器及其制备方法
CN101997513B (zh) 多耦合型滤波器
CN114465600A (zh) 集成芯片及其制备方法
CN109831178A (zh) 一种双工器
CN102111124A (zh) Fbar滤波器及其组件
JP4390682B2 (ja) 圧電共振器を用いたフィルタ
US6184760B1 (en) Half-wavelength resonator type high frequency filter
JP2006252956A (ja) マイクロマシンスイッチ及び電子機器
JP2011217420A (ja) 弾性表面波フィルタ、アンテナ共用器、及びそれらを用いた高周波モジュール、通信機器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140507

Termination date: 20211104

CF01 Termination of patent right due to non-payment of annual fee