CN102426674A - 一种基于马尔科夫链的电力系统负荷预测方法 - Google Patents

一种基于马尔科夫链的电力系统负荷预测方法 Download PDF

Info

Publication number
CN102426674A
CN102426674A CN2011103347710A CN201110334771A CN102426674A CN 102426674 A CN102426674 A CN 102426674A CN 2011103347710 A CN2011103347710 A CN 2011103347710A CN 201110334771 A CN201110334771 A CN 201110334771A CN 102426674 A CN102426674 A CN 102426674A
Authority
CN
China
Prior art keywords
load
state
constantly
data
transfer distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103347710A
Other languages
English (en)
Other versions
CN102426674B (zh
Inventor
李文升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Original Assignee
Qingdao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Power Supply Co of State Grid Shandong Electric Power Co Ltd filed Critical Qingdao Power Supply Co of State Grid Shandong Electric Power Co Ltd
Priority to CN201110334771.0A priority Critical patent/CN102426674B/zh
Publication of CN102426674A publication Critical patent/CN102426674A/zh
Application granted granted Critical
Publication of CN102426674B publication Critical patent/CN102426674B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种基于马尔科夫链的电力系统负荷预测方法,已知值Lt-1的情况下,根据历史数据统计出下一时刻t的各种变化趋势,并统计其概率,最后以概率最大的一个趋势作为最终的预测结果,本发明的优点是负荷预测只用少量样本就可以进行,运行速度快,运算时间短,并且可以得出概率预测的结果。

Description

一种基于马尔科夫链的电力系统负荷预测方法
技术领域
本发明涉及一种负荷预测方法,特别是针对于电力系统短期负荷预测的方法。
背景技术
负荷预测是根据系统的运行特性、增容决策、自然条件与社会影响等诸多因素,在满足一定精度要求的条件下,确定未来某特定时刻的负荷数据,其中负荷是指电力需求量(功率)或用电量;负荷预测是电力系统经济调度中的一项重要内容,是能量管理系统(EMS)的一个重要模块。电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。城市民用负荷主要来自城市居民家用电器的用电负荷,它具有年年增长的趋势,以及明显的季节性波动特点,而且民用负荷的特点还与居民的日常生活和工作的规律紧密相关。
商业负荷,主要是指商业部门的照明、空调、动力等用电负荷,覆盖面积大,且用电增长平稳,商业负荷同样具有季节性波动的特性。
工业负荷是指用于工业生产的用电,一般工业负荷的比重在用电构成中居于首位,它不仅取决于工业用户的工作方式(包括设备利用情况、企业的工作班制等),而且与各行业的行业特点、季节因素都有紧密的联系,一般负荷是比较恒定的。
农村负荷则是指农村居民用电和农业生产用电。此类负荷与工业负荷相比,受气候、季节等自然条件的影响很大,这是由农业生产的特点所决定的。农业用电负荷也受农作物种类、耕作习惯的影响,但就电网而言,由于农业用电负荷集中的时间与城市工业负荷高峰时间有差别,所以对提高电网负荷率有好处。
从以上分析可知电力负荷的特点是经常变化的,不但按小时变、按日变,而且按周变,按年变,同时负荷又是以天为单位不断起伏的,具有较大的周期性,负荷变化是连续的过程,一般不会出现大的跃变,但电力负荷对季节、温度、天气等是敏感的,不同的季节,不同地区的气候,以及温度的变化都会对负荷造成明显的影响。
电力负荷的特点决定了电力总负荷由以下四部分组成:基本正常负荷分量、天气敏感负荷分量、特别事件负荷分量和随机负荷分量。
电力系统负荷预测包括最大负荷功率、负荷电量及负荷曲线的预测。最大负荷功率预测对于确定电力系统发电设备及输变电设备的容量是非常重要的。为了选择适当的机组类型和合理的电源结构以及确定燃料计划等,还必须预测负荷及电量。负荷曲线的预测可为研究电力系统的峰值、抽水蓄能电站的容量以及发输电设备的协调运行提供数据支持。
负荷预测根据目的的不同可以分为超短期、短期、中期和长期:
①超短期负荷预测是指未来1小时以内的负荷预测,在安全监视状态下,需要5~10秒或1~5分钟的预测值,预防性控制和紧急状态处理需要10分钟至1小时的预测值。
②短期负荷预测是指日负荷预测和周负荷预测,分别用于安排日调度计划和周调度计划,包括确定机组起停、水火电协调、联络线交换功率、负荷经济分配、水库调度和设备检修等,对短期预测,需充分研究电网负荷变化规律,分析负荷变化相关因子,特别是天气因素、日类型等和短期负荷变化的关系。
③中期负荷预测是指月至年的负荷预测,主要是确定机组运行方式和设备大修计划等。
④长期负荷预测是指未来3~5年甚至更长时间段内的负荷预测,主要是电网规划部门根据国民经济的发展和对电力负荷的需求,所作的电网改造和扩建工作的远景规划。对中、长期负荷预测,要特别研究国民经济发展、国家政策等的影响。
对于负荷预测的方法,专利CN101706778A公开了基于CURE算法在负荷预测中的应用,CURE算法在负荷预测中的步骤:(1)对负荷预测中的历史数据库中抽出数据样本;(2)对于每一分区,利用层次算法进行聚类;(3)对样本中的全部数据进行聚类,输入只包括各个分区独自聚类时发现的簇的代表性点。CN101299251A一种基于概率逆换算法的中长期电力负荷的预测方法,包括以下步骤:1)基础数据的采集和改进:根据行业数据库,给出行业负荷的初始数据表,并将点估计扩展成三段式区间估计;2)专家能力数据的生成与改进:根据行业专业知识,将专家能力数量化并根据专家权重生成“虚拟专家”;3)实际数据与虚拟专家数据的整合:根据虚拟专家数据,修正步骤1)中的区间估计;4)负荷预测与预测结果修正:通过概率逆换算法反复将虚拟专家数据逆换到实际数据空间并加以比较修正,直到得到满意结果。这些方法取样量多,运算麻烦,时间长。
发明内容
本发明的目的是提供一种基于马尔科夫链的电力系统负荷预测方法,该种方法负荷预测只用少量样本就可以进行,运行速度快,运算时间短,并且可以得出概率预测的结果。
本发明采取的技术方案为:
马尔科夫链是数学中具有马尔可夫性质的离散时间随机过程。马尔科夫性质指的是设{(X(t),t∈T)}是一个随机过程,如果{(X(t),t∈T)}在t0时刻所处的状态为已知时,它在t>t0时刻的值只与其前一个值有关,则称{(X(t),t∈T)}具有马尔可夫性。
设{(X(t),t∈T)}的状态空间为S,如果对于任意的n≥2,任意的t1<t2<…<tn∈T,在条件X(ti)=xi,xi∈S,i=1,2,…,n-1下,X(tn)的条件分布函数恰好等于在条件X(tn-1)=Xn-1下的条件分布函数,即
P(X(tn)≤xn|X(t1)=xi,X(t2)=x2,…,X(tn-1)=xn-1)
=P(X(tn)≤xn|X(tn-1)=xn-1)
则称{(X(t),t∈T)}为马尔可夫过程。
负荷预测所依据的是历史负荷数据,历史数据则具有离散时间随机过程的特性。负荷数据没有阶跃变化的特性,数据的在任意时刻的值Lt都是基于前一时刻Lt-1值的浮动,因此可以将负荷曲线看作一条具有马尔科夫性质的曲线,这一条曲线所代表的离散时间随机过程就可以认为是马尔科夫链。
基于马尔科夫链的基本思想,本发明一种基于马尔科夫链的电力系统负荷预测方法,包括步骤如下:
(1)取5组以上的历史负荷数据,每一组都有t-1时刻的负荷数据Lt-1和t时刻的负荷数据Lt
(2)对Lt-1和Lt的值域做状态划分,并设定状态集合E={1,2,…,N},1<N<+∞,状态划分规则是1状态表示负荷为0~100之间的数值,2状态表示负荷为100~200之间的数值,以此类推。由状态集合的定义可知,Lt-1和Lt都可以映射为状态集合中的某一个状态值。假设t-1和t时刻的状态取值分别为Ct-1和Ct,则ΔC=Ct-Ct-1即是在这一组数据中的状态转移距离,计算出的每组历史数据的状态转移距离之后就可以得到状态转移表。
(3)统计状态转移表中各转移距离发生的概率,并且将得到的概率结果按照转移距离升序排列,得到一个一维矩阵,这个称为转移矩阵。
(4)若得到的转移矩阵为F=[a1,a2,…an],并且aj的值最大,其中1<j<n。根据转移矩阵的定义可知,aj最大表示其所代表的转移距离在历史数据中发生的概率最大,不妨假设其所代表的转移距离为j。待预测时刻为t,t-1时刻的值为已知,并且可将t-1时刻的值映射至状态集合E中的某个状态C,则预测t时刻的值映射至状态集合E的状态值为C+j。根据预测的状态值,可以得到其代表的值域范围,将这一值域范围的中点作为预测值。
待预测的负荷值Lt只与前一时刻的值Lt-1相关,根据Lt-1的值和历史数据归纳出的变化趋势来进行预测。在已知值Lt-1的情况下,根据历史数据统计出下一时刻t的各种变化趋势,并统计其概率,最后以概率最大的一个趋势作为最终的预测结果。本发明的优点是负荷预测只用少量样本就可以进行,运行速度快,运算时间短,并且可以得出概率预测的结果。
具体实施方式
实施例1
现在要预测t时刻的负荷数据Lt,预测Lt的前提是已经得到了t-1时刻的预测数据Lt-1,根据马尔科夫性质预测数据Lt只与Lt-1相关。
第一步,取14组历史负荷数据,每一组都有t-1时刻和t时刻的数据各一个,如下表1:
表1
Figure BDA0000103343430000041
将第1组数据假设为待预测数据,则可知Lt-1=15217,需要预测的则是Lt,即第1组t时刻数据。
第二步,设定状态集合E={1,2,…,N}。其中1状态表示负荷为0~100之间的数值,2状态表示负荷为100~200之间的数值,由状态矩阵的性质可知,所取历史数据和待预测数据都可以映射至状态集合中的某一个状态值。将t时刻的状态值Ct减去t-1时刻的状态值Ct-1得到的ΔC=Ct-Ct-1,就代表着转移距离。
表2
Figure BDA0000103343430000051
第三步,统计各转移距离出现的概率,并将其按照转移距离升序排列。可以形成如下转移矩阵
[ 0,0,0,0,0,0 , 0 , 1 13 , 2 13 , 2 13 , 7 13 , 1 13 , 0 , . . . ]
转移矩阵表示了t-1时刻到t时刻的数据状态转移概率,待预测数据则是依据t-1时刻数据Lt-1和转移矩阵来确定结果,由此转移矩阵我们可知状态转移10是概率最大的转移距离。
第四步,有转移矩阵得到了概率最大的转移距离之后,我们就可以根据Lt-1=15217得到预测结果。根据第二步的状态集合定义可知,t-1时刻值映射至状态集合E中的值153,再根据转移矩阵得到t时刻转移到状态163的概率为
Figure BDA0000103343430000061
是最大概率的转移距离。将其作为预测结果,即预测数据在16200~16300之间,我们取这一值域的中点,可得到预测结果Lt=16250。误差率为0.24%。
实施例2
现在要预测t时刻的负荷数据Lt,预测Lt的前提是已经得到了t-1时刻的预测数据Lt-1,根据马尔科夫性质预测数据Lt只与Lt-1相关。
第一步,取14组历史负荷数据,每一组都有t-1时刻和t时刻的数据各一个,如下表1:
表3
Figure BDA0000103343430000062
将第1组数据假设为待预测数据,则可知Lt-1=16226,需要预测的则是Lt,即第1组t时刻数据。
第二步,设定状态集合E={1,2,…,N}。其中1状态表示负荷为0~100之间的数值,2状态表示负荷为100~200之间的数值,由状态矩阵的性质可知,所取历史数据和待预测数据都可以映射至状态集合中的某一个状态值。将t时刻的状态值Ct减去t-1时刻的状态值Ct-1得到的ΔC=Ct-Ct-1,就代表着转移距离。
表4
Figure BDA0000103343430000071
第三步,统计各转移距离出现的概率,并将其按照转移距离升序排列。可以形成如下转移矩阵
[ 0,0,0,0,0,0 , 0 , 1 13 , 2 13 , 2 13 , 8 13 , 0 , 0 , . . . ]
转移矩阵表示了t-1时刻到t时刻的数据状态转移概率,待预测数据则是依据t-1时刻数据Lt-1和转移矩阵来确定结果,由此转移矩阵我们可知状态转移10是概率最大的转移距离。
第四步,有转移矩阵得到了概率最大的转移距离之后,我们就可以根据Lt-1=16226得到预测结果。根据第二步的状态集合定义可知,t-1时刻值映射至状态集合E中的值163,再根据转移矩阵得到t时刻转移到状态173的概率为是最大概率的转移距离。将其作为预测结果,即预测数据在17200~17300之间,我们取这一值域的中点,可得到预测结果Lt=17250。与真实数据Lt=17218相比,误差率为0.19%。
实施例3
现在要预测t时刻的负荷数据Lt,预测Lt的前提是已经得到了t-1时刻的预测数据Lt-1,根据马尔科夫性质预测数据Lt只与Lt-1相关。
第一步,取14组历史负荷数据,每一组都有t-1时刻和t时刻的数据各一个,如下表1:
表5
Figure BDA0000103343430000081
将第1组数据假设为待预测数据,则可知Lt-1=14125,需要预测的则是Lt,即第1组t时刻数据。
第二步,设定状态集合E={1,2,…,N}。其中1状态表示负荷为0~100之间的数值,2状态表示负荷为100~200之间的数值,由状态矩阵的性质可知,所取历史数据和待预测数据都可以映射至状态集合中的某一个状态值。将t时刻的状态值Ct减去t-1时刻的状态值Ct-1得到的ΔC=Ct-Ct-1,就代表着转移距离。
表6
Figure BDA0000103343430000091
第三步,统计各转移距离出现的概率,并将其按照转移距离升序排列。可以形成如下转移矩阵
[ 0,0,0,0,0,0 , 0 , 2 13 , 2 13 , 3 13 , 5 13 , 1 13 , 0 , . . . ]
转移矩阵表示了t-1时刻到t时刻的数据状态转移概率,待预测数据则是依据t-1时刻数据Lt-1和转移矩阵来确定结果,由此转移矩阵我们可知状态转移10是概率最大的转移距离。
第四步,有转移矩阵得到了概率最大的转移距离之后,我们就可以根据Lt-1=14125得到预测结果。根据第二步的状态集合定义可知,t-1时刻值映射至状态集合E中的值142,再根据转移矩阵得到t时刻转移到状态152的概率为
Figure BDA0000103343430000093
是最大概率的转移距离。将其作为预测结果,即预测数据在15100~15200之间,我们取这一值域的中点,可得到预测结果Lt=14150。与真实数据15114相比,误差率为0.25%。
上述对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (2)

1.一种基于马尔科夫链的电力系统负荷预测方法,包括步骤如下:
(1)对实测数据进行分析处理,取5组以上的历史负荷数据,每一组都有t-1时刻的负荷数据Lt-1和t时刻的负荷数据Lt
(2)对Lt-1和Lt的值域做状态划分,并设定状态集合E={1,2,…,N},其中1状态表示负荷为0~100之间的数值,2状态表示负荷为100~200之间的数值,以此类推,设t-1和t时刻的状态取值分别为Ct-1和Ct,则ΔC=Ct-Ct-1即是在这一组数据中的状态转移距离,计算出的每组历史数据的状态转移距离得到状态转移表;
(3)统计状态转移表中各转移距离发生的概率,并且将得到的概率结果按照转移距离升序排列,得到一个一维矩阵,这个称为转移矩阵F=[a1,a2,…an];根据转移矩阵可以得出在所取历史数据中出现概率最大的转移距离,将这一出现概率最大的转移距离作为待测时刻t相对于其前一时刻t-1的转移距离;
(4)检测电力系统某时刻的负荷值记为t-1时刻状态量,根据所记的t-1时刻状态量和转移距离算出待预测t时刻所处的状态量,由t时刻的状态量再映射到其所代表的值域,取这一值域的中点作为待预测值。
2.根据权利要求1所述的基于马尔科夫链的电力系统负荷预测方法,其特征是,步骤(4)中所述的根据已知的t-1时刻状态量和转移距离算出待预测t时刻所处的状态量具体过程为设转移矩阵中aj的值最大,即其所代表的转移距离在历史数据中发生的概率最大,设其所代表的转移距离为j,已知的t-1时刻状态量C和转移距离j算出待预测t时刻所处的状态量为C+j。
CN201110334771.0A 2011-10-28 2011-10-28 一种基于马尔科夫链的电力系统负荷预测方法 Expired - Fee Related CN102426674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110334771.0A CN102426674B (zh) 2011-10-28 2011-10-28 一种基于马尔科夫链的电力系统负荷预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110334771.0A CN102426674B (zh) 2011-10-28 2011-10-28 一种基于马尔科夫链的电力系统负荷预测方法

Publications (2)

Publication Number Publication Date
CN102426674A true CN102426674A (zh) 2012-04-25
CN102426674B CN102426674B (zh) 2015-06-10

Family

ID=45960653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110334771.0A Expired - Fee Related CN102426674B (zh) 2011-10-28 2011-10-28 一种基于马尔科夫链的电力系统负荷预测方法

Country Status (1)

Country Link
CN (1) CN102426674B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722642A (zh) * 2012-05-25 2012-10-10 重庆市电力公司长寿供电局 大波动电网负荷短期预测方法
CN105447008A (zh) * 2014-08-11 2016-03-30 中国移动通信集团四川有限公司 时序聚类的分布式处理方法及系统
CN105825298A (zh) * 2016-03-14 2016-08-03 梁海东 一种基于负荷特性预估的电网计量预警系统及方法
CN106485068A (zh) * 2016-10-08 2017-03-08 东南大学 一种空调负荷的聚合建模方法
CN106845673A (zh) * 2016-12-14 2017-06-13 国网北京市电力公司 电力系统的供电方法和装置
CN108388644A (zh) * 2018-02-27 2018-08-10 江苏理工学院 一种基于大数据的金融客户管理方法及系统
CN110175270A (zh) * 2019-06-03 2019-08-27 北京中科奥创科技有限公司 一种大数据处理方法、系统和计算机可读存储介质
CN110310046A (zh) * 2019-07-09 2019-10-08 珠海格力电器股份有限公司 供电方法、设备、装置、系统及计算机可读存储介质
CN111160617A (zh) * 2019-12-06 2020-05-15 北京国电通网络技术有限公司 一种电力日负荷预测方法及装置
CN111260406A (zh) * 2020-01-18 2020-06-09 李琦 房地产销售目标自动设置方法、装置、服务器及存储介质
CN112183804A (zh) * 2019-07-05 2021-01-05 华北电力大学 一种基于马尔科夫链的电动汽车虚拟储能可用容量预测方法
CN112259193A (zh) * 2020-10-09 2021-01-22 江苏大学 一种基于马尔科夫链的戒毒状态预测方法
CN112421608A (zh) * 2020-10-10 2021-02-26 华南理工大学 一种基于马尔科夫自下而上的家庭负荷预测方法
CN112446545A (zh) * 2020-12-01 2021-03-05 河北工业大学 一种基于叠加马尔科夫链的负荷预测方法
CN112801415A (zh) * 2021-03-05 2021-05-14 国网山东省电力公司寿光市供电公司 基于马尔科夫链分布模型的超短期负荷预测方法及系统
CN117193034A (zh) * 2023-11-07 2023-12-08 湖南恒意智能工程有限公司 一种楼宇智能化控制方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158417A1 (en) * 2002-11-06 2004-08-12 Bonet Antonio Trias System and method for monitoring and managing electrical power transmission and distribution networks
CN101551884A (zh) * 2009-05-08 2009-10-07 华北电力大学 面向大规模样本的cvr电力负荷快速预测方法
CN101706778A (zh) * 2008-08-27 2010-05-12 王阳 一种电力负荷预测的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158417A1 (en) * 2002-11-06 2004-08-12 Bonet Antonio Trias System and method for monitoring and managing electrical power transmission and distribution networks
CN101706778A (zh) * 2008-08-27 2010-05-12 王阳 一种电力负荷预测的方法
CN101551884A (zh) * 2009-05-08 2009-10-07 华北电力大学 面向大规模样本的cvr电力负荷快速预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李敏等: "马尔科夫链在电力负荷组合预测中的应用", 《电力系统及其自动化学报》, vol. 23, no. 2, 30 April 2011 (2011-04-30), pages 131 - 134 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722642B (zh) * 2012-05-25 2014-12-10 重庆市电力公司长寿供电局 大波动电网负荷短期预测方法
CN102722642A (zh) * 2012-05-25 2012-10-10 重庆市电力公司长寿供电局 大波动电网负荷短期预测方法
CN105447008A (zh) * 2014-08-11 2016-03-30 中国移动通信集团四川有限公司 时序聚类的分布式处理方法及系统
CN105825298B (zh) * 2016-03-14 2020-05-01 梁海东 一种基于负荷特性预估的电网计量预警系统及方法
CN105825298A (zh) * 2016-03-14 2016-08-03 梁海东 一种基于负荷特性预估的电网计量预警系统及方法
CN106485068A (zh) * 2016-10-08 2017-03-08 东南大学 一种空调负荷的聚合建模方法
CN106485068B (zh) * 2016-10-08 2018-12-28 东南大学 一种空调负荷的聚合建模方法
CN106845673A (zh) * 2016-12-14 2017-06-13 国网北京市电力公司 电力系统的供电方法和装置
CN106845673B (zh) * 2016-12-14 2020-12-11 国网北京市电力公司 电力系统的供电方法和装置
CN108388644A (zh) * 2018-02-27 2018-08-10 江苏理工学院 一种基于大数据的金融客户管理方法及系统
CN110175270A (zh) * 2019-06-03 2019-08-27 北京中科奥创科技有限公司 一种大数据处理方法、系统和计算机可读存储介质
CN112183804A (zh) * 2019-07-05 2021-01-05 华北电力大学 一种基于马尔科夫链的电动汽车虚拟储能可用容量预测方法
CN110310046A (zh) * 2019-07-09 2019-10-08 珠海格力电器股份有限公司 供电方法、设备、装置、系统及计算机可读存储介质
CN110310046B (zh) * 2019-07-09 2021-02-09 珠海格力电器股份有限公司 供电方法、设备、装置、系统及计算机可读存储介质
CN111160617A (zh) * 2019-12-06 2020-05-15 北京国电通网络技术有限公司 一种电力日负荷预测方法及装置
CN111160617B (zh) * 2019-12-06 2022-11-18 北京国电通网络技术有限公司 一种电力日负荷预测方法及装置
CN111260406A (zh) * 2020-01-18 2020-06-09 李琦 房地产销售目标自动设置方法、装置、服务器及存储介质
CN112259193A (zh) * 2020-10-09 2021-01-22 江苏大学 一种基于马尔科夫链的戒毒状态预测方法
CN112421608A (zh) * 2020-10-10 2021-02-26 华南理工大学 一种基于马尔科夫自下而上的家庭负荷预测方法
CN112421608B (zh) * 2020-10-10 2023-06-20 华南理工大学 一种基于马尔科夫自下而上的家庭负荷预测方法
CN112446545A (zh) * 2020-12-01 2021-03-05 河北工业大学 一种基于叠加马尔科夫链的负荷预测方法
CN112446545B (zh) * 2020-12-01 2022-02-08 河北工业大学 一种基于叠加马尔科夫链的负荷预测方法
CN112801415A (zh) * 2021-03-05 2021-05-14 国网山东省电力公司寿光市供电公司 基于马尔科夫链分布模型的超短期负荷预测方法及系统
CN117193034A (zh) * 2023-11-07 2023-12-08 湖南恒意智能工程有限公司 一种楼宇智能化控制方法及系统
CN117193034B (zh) * 2023-11-07 2024-02-02 湖南恒意智能工程有限公司 一种楼宇智能化控制方法及系统

Also Published As

Publication number Publication date
CN102426674B (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
CN102426674B (zh) 一种基于马尔科夫链的电力系统负荷预测方法
CN102509173B (zh) 一种基于马尔科夫链的电力系统负荷准确预测方法
Dong et al. Wind power day-ahead prediction with cluster analysis of NWP
Wu et al. A novel hybrid model for short‐term forecasting in PV power generation
CN104636822A (zh) 一种基于elman神经网络的居民负荷预测方法
CN111049193B (zh) 一种风电系统多调度场景的备用需求动态评估方法
CN107748972A (zh) 一种基于双能源指标预测全社会用电量的方法
CN113610296B (zh) 一种区域内用电负荷峰值预测方法及电网投资规划方法
CN105184388A (zh) 一种城市电力负荷短期预测的非线性回归方法
CN114372360A (zh) 用于电力负荷预测的方法、终端及存储介质
CN111008727A (zh) 一种配电台区负荷预测方法及装置
CN116227637A (zh) 一种面向有源配电网的精细化负荷预测方法和系统
CN104376371A (zh) 一种基于拓扑的配网分层负荷预测方法
CN112884601A (zh) 一种基于天气区划策略的电力系统运行风险评估方法
CN112598155A (zh) 一种变电站的负荷增减预估方法及系统
CN107977898A (zh) 一种光伏电站的发电量保险定价评估方法
Sutthichaimethee et al. A forecasting model on carrying capacity for government's controlling measure under environmental law in Thailand: Adapting non-recursive autoregression based on the var-x model
CN104252647B (zh) 基于反距离权重插值法的用电负荷预测方法
CN114186733A (zh) 一种短期负荷预测方法和装置
CN118095704A (zh) 基于大数据的乡村典型能源供需平衡方法及系统
CN117200223A (zh) 日前电力负荷预测方法和装置
CN113139698A (zh) 负荷预测方法、装置及设备
CN112330017A (zh) 电力负荷预测方法、装置、电子设备和存储介质
JP3754267B2 (ja) 配水量予測システム
Shukur et al. Electricity load forecasting using hybrid of multiplicative double seasonal exponential smoothing model with artificial neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150610

Termination date: 20171028