CN102421187A - 一种无线传感器网络的高精度时钟同步方法 - Google Patents

一种无线传感器网络的高精度时钟同步方法 Download PDF

Info

Publication number
CN102421187A
CN102421187A CN2011103923310A CN201110392331A CN102421187A CN 102421187 A CN102421187 A CN 102421187A CN 2011103923310 A CN2011103923310 A CN 2011103923310A CN 201110392331 A CN201110392331 A CN 201110392331A CN 102421187 A CN102421187 A CN 102421187A
Authority
CN
China
Prior art keywords
leader cluster
node
time
delay
cluster node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103923310A
Other languages
English (en)
Other versions
CN102421187B (zh
Inventor
周庆飞
王石记
安佰岳
周志波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Measurement and Control Technology Co Ltd
Original Assignee
Beijing Aerospace Measurement and Control Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aerospace Measurement and Control Technology Co Ltd filed Critical Beijing Aerospace Measurement and Control Technology Co Ltd
Priority to CN201110392331.0A priority Critical patent/CN102421187B/zh
Publication of CN102421187A publication Critical patent/CN102421187A/zh
Application granted granted Critical
Publication of CN102421187B publication Critical patent/CN102421187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线传感器网络的高精度时钟同步方法,在无线传感器网络中上位机和网关通过以太网相连,网关通过Wi-Fi无线网络连接无线传感器网络内的各个簇头节点,簇头节点通过Zigbee无线网络与传感器节点相连;簇头节点和传感器节点均在发送和接收数据时将数据在MAC层和物理层传输的时间作为精确发送/接收时间;同步时,各簇头节点先采用GPS模块进行簇头节点间的同步,然后簇头节点通过Zigbee无线网络对簇内的每一个传感器节点进行时钟同步;传感器节点的同步包括簇头节点与传感器节点之间的时钟偏移同步以及二者之间传输延迟同步。使用本发明能够降低成本和能耗,而且同步过程计算简单。

Description

一种无线传感器网络的高精度时钟同步方法
技术领域
本发明涉及无线传感器网络同步技术领域,具体涉及一种无线传感器网络的高精度时钟同步方法。
背景技术
随着计算机网络的发展,越来越多的工业领域对时钟同步提出了更高的要求,尤其是在大多数以工业以太网为基础的分布式控制系统中,已经对时钟同步提出了微秒级的同步要求。
无线传感器网络(WSN)是指由大量无处不在的,具有通信与计算能力的微小传感器节点密集分布在监控区域内而构成的根据环境自主完成指定任务的自治测控网络系统。
时间同步是无线传感器网络应用的重要组成部分,传感器数据融合、传感器节点自身定位等都要求节点间的时钟保持同步。在WSN应用中,传感器节点通常需要协调操作共同完成一项复杂的传感任务。为了能够正确监测事件发生的次序要求传感器节点之间实现相对时间同步。在状态监测等应用中,事件自身的发生时间是相当重要的参数,这要求每个节点维持唯一的全局时间以实现整个网络的时间同步。
目前广泛用于网络时间同步的方法主要有GPS和NTP。GPS具有相当高的同步精度,但其成本较高并且能耗较大,而且在恶劣的环境下同步精度会受到很大影响。NTP(Network Time Protocol)是Internet上进行时钟同步的协议,它能实现网络上高精度的计算机校时,但它是计算密集型的,具有很大的计算开销。在WSN应用中,传感器节点对功耗有严格的要求,并且要求尽可能保持较小的外形和低廉的成本使其能够被大量部署,其部署环境经常是常人难以接近的恶劣环境,这使得部署后的维护通常是不可能的;显然将GPS和NTP用于WSN的时间同步是不可取的。
为了实现分布式无线传感器网络内所有节点的时钟同步,迫切需要一种同步配置机制来对各个传感器节点的本地时钟进行时钟校准,以保证所有节点能够严格按照时序相互协同工作,共同完成监测任务。
发明内容
有鉴于此,本发明提供了一种无线传感器网络的高精度时钟同步方法,能够降低成本和能耗,而且同步过程计算简单,能够被大量部署。
首先,所述无线传感器网络包括上位机、以太网、网关、簇头节点和传感器节点;上位机和网关通过以太网相连,网关通过Wi-Fi无线网络连接无线传感器网络内的各个簇头节点,每个簇头节点通过Zigbee无线网络与簇内的传感器节点相连;每个簇头节点上配置GPS模块;所述簇头节点和传感器节点均在发送数据时,将数据从MAC层到达物理层的时间记录下来作为精确地发送时间,在接收数据时,将数据从物理层到达MAC层的时间记录下来作为精确地接收时间;
该同步方法包括如下步骤:
1)上位机通过以太网发布控制指令,网关将该控制指令通过Wi-Fi无线网络转发给各簇头节点;
2)各簇头节点接收到控制指令后,启动各自内置的授时型GPS模块实时接收GPS信号,产生精准的秒脉冲触发信号并作为簇头节点的时钟基准,对簇头节点内部的时钟进行校准,从而实现各个簇头节点的时钟同步。
3)每个簇头节点通过Zigbee无线网络按照顺序依次对簇内的每一个传感器节点进行时钟同步;
对一个传感器节点进行时钟同步的具体过程包括如下两个阶段:
首先为两个阶段定义变量Offset和Delay,Offset是簇头节点与传感器节点之间的当前时钟偏移,Delay是簇头节点与传感器节点之间的当前传输延迟时间,在第一次时钟同步之前令Delay=0;
第一阶段:
A1)簇头节点向传感器节点发出一个同步信息Sync,并测量精确的发送时间TM1,传感器节点测量出接收的准确时间TS1;簇头节点在Sync信息发出后发出一个接续信息Follow_Up,该Follow_Up信息中携带所述TM1;
A2)传感器节点更新当前时钟偏移:Offset=TS1-TM1-Delay;
A3)传感器节点更新本地时钟Ts:Ts=Ts-Offset;
第二阶段:
B1)传感器节点向簇头节点发出延迟请求信息Delay_Req,并记录准确的发送时间TS3,簇头节点收到Delay_Req后,在延迟响应信息包Delay_Resp记录准确的Delay_Req信息接收时间TM3,并返回给传感器节点;
B2)传感器节点更新传输延迟时间Delay=(TM3-TS3)/2;
B3)传感器节点更新当前时钟偏移Offset=-Delay;
B4)传感器节点更新本地时钟Ts:Ts=Ts-Offset;
此后,无线传感器网络进入正常工作状态。
优选地,所述在进入正常工作之前,进行多轮如步骤3)所述的时钟同步,且Delay不需要重置为0,使用前一次时钟同步后的Delay值。
优选地,在无线传感器网络进入正常工作状态之后,进一步包括:周期性地执行所述步骤3)实现簇内各个传感器节点的实时时钟同步。
优选地,簇头节点与网关之间的通信为:将秒脉冲均匀划分成若干个时间段,每个簇头节点占据各自的时间段,在各自的时间段内独自完成与网关的通信任务。
优选地,无线传感器网络进入正常工作状态之后,簇头节点与传感器节点之间的通信为:簇头节点采用轮询的方式对簇内的各个传感器节点进行访问,完成数据交换。
有益效果:
本发明提供了一种适用于无线传感器网络的高精度同步方法,采用GPS同步各簇头节点,然后再由各簇头节点同步簇内的传感器节点。从而在少量设置GPS模块的情况下,完成了整个网络的时间同步,与全网布置GPS模块的方案相比,大大降低了成本。
其次,簇头节点继承了Zigbee、Wi-Fi两种通用的无线接口,可进行Zigbee接口无线传感器组网,并可通过Wi-Fi无线接口与互联网连接,进行传感器网络的远程控制。其好处在于,Wi-Fi适用于大数据量传输,Zigbee适用于间断工作,每次数据量少,功耗小,簇头节点下层有多个节点轮询工作,工作时间短,适合采用Zigbee,而所有传感器节点的数据均通过一个网关与上位机互通,传输数据量大,网关是瓶颈,因此适合采用Wi-Fi。可见,采用两种无线接口的中间件装置能够减小整个网络的功耗。
此外,本发明设计了时钟偏移+路径延迟的二阶段同步方案,能够实现所有传感器节点的精确同步,而且本发明通过捕捉数据在物理层和MAC层之间的传递时间获得数据准确发送和接收时间,从而为精确同步提供了有利的基础。
附图说明
图1是本发明无线传感器网络的结构示意图。
图2是时钟偏移测量示意图。
图3是时钟延迟测量示意图。
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本发明提供了一种无线传感器网络的高精度时钟同步方法,为了实现该方法,首先对无线传感器网络进行配置。每个簇头节点上配置GPS模块。
图1为本发明无线传感器网络的结构示意图,如图1所示,无线传感器网络包括上位机、以太网、网关、簇头节点和传感器节点。上位机和网关通过以太网相连,网关通过Wi-Fi无线网络连接无线传感器网络内的各个簇头节点,每个簇头节点通过Zigbee无线网络与簇内的传感器节点相连。
与现有技术不同,本发明中的簇头节点与上层和下层的通信方式采用不同的无线网络,与下层的传感器节点通过Zigbee网络互联,与上层的网关通过Wi-Fi网络互联。这是因为,Wi-Fi适用于大数据量传输,Zigbee适用于间断工作,每次数据量少,功耗小,簇头节点下层有多个节点轮询工作,工作时间短,适合采用Zigbee,而所有传感器节点的数据均通过一个网关与上位机互通,传输数据量大,网关是瓶颈,因此适合采用Wi-Fi。本发明是考虑到这种簇型无线传感器的特点,在通信协议选用上进行了特殊设计。
本发明时钟同步方法的步骤如下:
首先将各个传感器节点、簇头节点以及网关布设在无线传感器网络的指定区域内,一切准备就绪后开始上电。
1)上位机通过以太网发布控制指令,网关将该控制指令通过Wi-Fi无线网络转发给各簇头节点;
2)各簇头节点接收到控制指令后,启动各自内置的授时型GPS模块实时接收GPS信号,输出精准的秒脉冲触发信号,簇头节点将该秒脉冲触发信号作为时钟基准,对簇头节点内部的时钟进行校准,进而实现各个簇头节点的时钟同步,保证整个无线网络内部每个簇头节点的时钟保持一致。
3)每个簇头节点通过Zigbee无线网络与传感器节点实现互联,按照顺序依次与簇内的每一个传感器节点进行通信,按照如下方法对每个传感器节点的本地时钟进行时钟校准,消除时钟偏移和路径时延。
在同步过程中,簇头节点作为主时钟,传感器节点为从时钟。时钟同步配置方法的实现过程可分为两个阶段:计算时钟偏移(Offset)阶段和计算路径延迟(Delay)阶段。Offset是簇头节点与传感器节点之间的当前时钟偏移,由于受到网络延迟,尤其是数据报文的递交延迟的影响,一次传送同步报文计算的时钟偏移并不准确,还需计算路径延迟加以修正,而Delay就是簇头节点与传感器节点之间的当前传输延迟时间,在第一次时钟同步之前令Delay=0。
首先为两个阶段定义变量Offset和Delay,这两个变量在同步过程中不断被更新。并且,为了精确地获取数据发送和接收时间,簇头节点和传感器节点均在发送数据时,将数据从MAC层到达物理层的时间记录下来作为精确地发送时间,在接收数据时,将数据从物理层到达MAC层的时间记录下来作为精确地接收时间。
第一阶段:偏移测量
偏移测量阶段用来修正簇头节点的主时钟和传感器节点的从时钟的时间差。在这个偏移修正过程中,簇头节点周期性发出一个同步信息(简称Sync信息),一般为每两秒一次。如图2所示,假设同步之前主时钟的时间为Tm=1050s,而从属时钟的时间为Ts=1000s。簇头节点测量出发送的准确时间TM1,而传感器节点测量出接收的准确时间TS1。簇头节点在Sync信息发出后发出一个Follow_Up信息,该信息加了一个时间印章,准确地记载了Sync信息的真实发出时间TM1。这样,从属时钟使用Follow_Up信息中的真实发出时间和接收方的真实接收时间,可以计算出从属时钟与主时钟之间的偏移(Offset):
Offset=TS1-TM1-Delay=1002-1051-0=-49
这里要说明的是,上式中的Delay指的是主时钟与从属时钟之间的传输延迟时间,它在本阶段是一个未知数,暂且视为0s,将在下面的延迟测量阶段测出。传感器节点根据偏移测量阶段计算得到的Offset更新本地从时钟,将从时钟修正为:
Ts=Ts-Offset=1003-(-49)=1052。
本第一阶段可以执行多次。
如图2可以看出,经过第一阶段Offset的测量和Ts的更新,主从时钟已经同步,簇头发送下一个Sync信息的时间为TM2=1053,设传感器节点接收时间TS2=1053,Offset=TS2-TM2-Delay=1053-1053-0,可见主从之间时钟本身的偏移已经克服。
第二阶段:延迟测量
延迟测量(delay measurement)阶段用来测量网络传输造成的延迟时间。为了测量网络的传输延时,定义了一个延迟请求信息包(Delay Request Packet),简称Delay_Req。
如图3所示,传感器节点在收到Sync信息后在TS3=1080时刻发出延迟请求信息包Delay_Req,簇头收到Delay_Req后在延迟响应信息包(Delay_RequestPacket,Delay_Resp)记录出准确的接收时间TM3,并发送给传感器节点,因此传感器节点就可以非常准确地计算出网络延时:
设,主到从的网络延时为Delay1,从到主的网络延时为Delay2;
因为:
TS2-TM2=Delay1+Offfset
TM3-TS3=Delay2-Offfset
则:Delay1+Delay2=(TS2-TM2)+(TM3-TS3)
因为网络延迟时间是对称相等的,所以:
Delay=(Delay1+delay2)/2=[(TS2-TM2)-(TS3-TM3)]/2;
由于TS2=TM2,则Delay=(TM3-TS3)/2;
那么,传感器节点更新传输延迟时间Delay=(1082-1080)]/2=1。
此时,由于TM和TS已经相同,因此传感器节点可以采用如下简化后的公式更新当前时钟偏移:Offset=-Delay=-1;
接着,传感器节点更新本地时钟Ts:
Ts=Ts-Offset=1084-(-1)=1085。
当然,如果仍采用Offset=TS-TM-Delay的公式更新Offset,那么需要簇头节点与传感器节点之间再进行一次Sync和Follow_Up的交互,簇头节点发送Sync准确时间为TS4=1083,传感器节点接收Follow_Up准确时间为TM4=1083;
然后,传感器节点再次更新当前时钟偏移:
Offset=TS4-TM4-Delay=1083-1083-1=-1;
接着,传感器节点更新本地时钟Ts:
Ts=Ts-Offset=1084-(-1)=1085。
可见,更新结果是相同的。
与偏移测量阶段不同的是,延迟测量阶段的延迟请求信息包是随机发出的,并没有严格时间限制。需要说明的是,在这个测量过程中,假设传输介质是对称均匀的。
最终,经过同步信息的交换,消除了主从设备的时钟偏移和网络传输的路径延迟,最终实现了从属时钟与主时钟的精确时间同步。
此后,无线传感器网络进入正常工作状态。进入正常工作之前,也可以进行多轮如步骤3)所述的同步,只是由于不是第一次同步,因此Delay不需要重置为0,使用前一次时钟同步后的Delay值即可。在此之后,还可以进行周期性的同步,实现簇内各个传感器节点的实时时钟同步。
基于时分多址原理,整个无线传感器网络采用分时工作模式,将秒脉冲均匀划分成若干个时间段(例如将1秒划分为10个时间段),每个簇头节点占据各自的时间段,独自完成相应的通信任务,避免通信冲突造成网关处的网络拥堵。簇头节点,采用轮询的方式对簇内的各个传感器节点进行访问,完成数据交换。
簇头节点通过Wi-Fi无线网络获取由网关转发的上位机控制指令,并将其通过Zigbee无线网络转发给下层的每一个传感器节点。簇头节点通过Zigbee无线网络获取下层传感器节点采集到的数据,并将该数据通过Wi-Fi无线网络上传给网关,再由以太网输送到上位机。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种无线传感器网络的高精度时钟同步方法,其特征在于,所述无线传感器网络包括上位机、以太网、网关、簇头节点和传感器节点;上位机和网关通过以太网相连,网关通过Wi-Fi无线网络连接无线传感器网络内的各个簇头节点,每个簇头节点通过Zigbee无线网络与簇内的传感器节点相连;每个簇头节点上配置GPS模块;所述簇头节点和传感器节点均在发送数据时,将数据从MAC层到达物理层的时间记录下来作为精确地发送时间,在接收数据时,将数据从物理层到达MAC层的时间记录下来作为精确地接收时间;
该同步方法包括如下步骤:
1)上位机通过以太网发布控制指令,网关将该控制指令通过Wi-Fi无线网络转发给各簇头节点;
2)各簇头节点接收到控制指令后,启动各自内置的授时型GPS模块实时接收GPS信号,产生精准的秒脉冲触发信号并作为簇头节点的时钟基准,对簇头节点内部的时钟进行校准,从而实现各个簇头节点的时钟同步。
3)每个簇头节点通过Zigbee无线网络按照顺序依次对簇内的每一个传感器节点进行时钟同步;
对一个传感器节点进行时钟同步的具体过程包括如下两个阶段:
首先为两个阶段定义变量Offset和Delay,Offset是簇头节点与传感器节点之间的当前时钟偏移,Delay是簇头节点与传感器节点之间的当前传输延迟时间,在第一次时钟同步之前令Delay=0;
第一阶段:
A1)簇头节点向传感器节点发出一个同步信息Sync,并测量精确的发送时间TM1,传感器节点测量出接收的准确时间TS1;簇头节点在Sync信息发出后发出一个接续信息Follow_Up,该Follow_Up信息中携带所述TM1;
A2)传感器节点更新当前时钟偏移:Offset=TS1-TM1-Delay;
A3)传感器节点更新本地时钟Ts:Ts=Ts-Offset;
第二阶段:
B1)传感器节点向簇头节点发出延迟请求信息Delay_Req,并记录准确的发送时间TS3,簇头节点收到Delay_Req后,在延迟响应信息包Delay_Resp记录准确的Delay_Req信息接收时间TM3,并返回给传感器节点;
B2)传感器节点更新传输延迟时间Delay=(TM3-TS3)/2;
B3)传感器节点更新当前时钟偏移Offset=-Delay;
B4)传感器节点更新本地时钟Ts:Ts=Ts-Offset;
此后,无线传感器网络进入正常工作状态。
2.如权利要求1所述的方法,其特征在于,所述在进入正常工作之前,进行多轮如步骤3)所述的时钟同步,且Delay不需要重置为0,使用前一次时钟同步后的Delay值。
3.如权利要求1所述的方法,其特征在于,在无线传感器网络进入正常工作状态之后,进一步包括:周期性地执行所述步骤3)实现簇内各个传感器节点的实时时钟同步。
4.如权利要求1所述的方法,其特征在于,簇头节点与网关之间的通信为:将秒脉冲均匀划分成若干个时间段,每个簇头节点占据各自的时间段,在各自的时间段内独自完成与网关的通信任务。
5.如权利要求1所述的方法,其特征在于,无线传感器网络进入正常工作状态之后,簇头节点与传感器节点之间的通信为:簇头节点采用轮询的方式对簇内的各个传感器节点进行访问,完成数据交换。
CN201110392331.0A 2011-12-01 2011-12-01 一种无线传感器网络的高精度时钟同步方法 Active CN102421187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110392331.0A CN102421187B (zh) 2011-12-01 2011-12-01 一种无线传感器网络的高精度时钟同步方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110392331.0A CN102421187B (zh) 2011-12-01 2011-12-01 一种无线传感器网络的高精度时钟同步方法

Publications (2)

Publication Number Publication Date
CN102421187A true CN102421187A (zh) 2012-04-18
CN102421187B CN102421187B (zh) 2014-02-19

Family

ID=45945354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110392331.0A Active CN102421187B (zh) 2011-12-01 2011-12-01 一种无线传感器网络的高精度时钟同步方法

Country Status (1)

Country Link
CN (1) CN102421187B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833853A (zh) * 2012-08-31 2012-12-19 北京联合大学 基于嵌入式gps模块时钟校正的无线传感器网络的节点
CN103940470A (zh) * 2014-04-17 2014-07-23 江南大学 基于Zigbee的车间环境无线低功耗检测系统
CN104166393A (zh) * 2014-08-17 2014-11-26 成都国光电子仪表有限责任公司 天然气站场实时监控方法
CN104202214A (zh) * 2014-09-10 2014-12-10 广西电网公司电力科学研究院 配电自动化无线通信终端与配电主站通信通道延时测试方法
CN104469927A (zh) * 2014-10-27 2015-03-25 北京必创科技股份有限公司 一种无线传感器星型网络的同步采集方法和系统
CN104735741A (zh) * 2015-01-28 2015-06-24 合肥天海电气技术有限公司 一种企业配用电安全无线传感网
CN104918319A (zh) * 2014-03-13 2015-09-16 北方工业大学 一种应用于无线传感器网络的时钟同步精简信息交互方法
CN105207768A (zh) * 2015-10-23 2015-12-30 上海斐讯数据通信技术有限公司 路由器端访问设备与互联网时间不一致的提醒方法和系统
CN106068022A (zh) * 2016-07-07 2016-11-02 福建师范大学福清分校 一种基于高速采样重构波形的无线传感器数据同步方法
CN107592669A (zh) * 2016-06-10 2018-01-16 博能电子公司 无线网络内的时钟同步
CN108632989A (zh) * 2018-05-15 2018-10-09 中山大学 一种无线传感器网络一致性分布式时间同步方法
CN108650648A (zh) * 2018-04-04 2018-10-12 云南民族大学 一种室内环境监测系统
CN108880727A (zh) * 2018-06-13 2018-11-23 合肥工业大学 一种基于PTPd2协议的精确时钟同步实现方法
CN109413733A (zh) * 2018-10-24 2019-03-01 济南格林信息科技有限公司 传感网络信息采集同步校时方法、网关、传感节点及系统
CN109525352A (zh) * 2018-12-21 2019-03-26 北京无线电计量测试研究所 一种地下管网设备时间同步方法
CN110916657A (zh) * 2019-11-05 2020-03-27 浙江大学 可无线充电式多通道无线表面肌电信号采集系统
CN111132201A (zh) * 2020-01-09 2020-05-08 华南理工大学 一种基于uwb的无线测量系统
WO2020135382A1 (zh) * 2018-12-29 2020-07-02 阿里巴巴集团控股有限公司 多传感器同步授时系统、方法、装置及电子设备
CN111510876A (zh) * 2020-04-01 2020-08-07 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
CN112672415A (zh) * 2020-12-25 2021-04-16 之江实验室 多传感器时间同步方法、装置、系统、电子设备及介质
CN112666954A (zh) * 2020-12-31 2021-04-16 上海商汤临港智能科技有限公司 智能驾驶设备、方法、智能驾驶系统及行驶设备
CN113037415A (zh) * 2021-02-25 2021-06-25 上海赫千电子科技有限公司 一种基于车载以太网传输的tsn网络时钟同步方法、系统及设备
CN113747563A (zh) * 2021-09-03 2021-12-03 国网江苏省电力有限公司电力科学研究院 一种电力物联网传感器同步采集方法及装置
CN114172610A (zh) * 2021-12-08 2022-03-11 北京经纬恒润科技股份有限公司 一种多源数据同步处理方法、装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425887A (zh) * 2007-10-29 2009-05-06 吉林市曼博科技有限公司 一种用于无线传感器网络的时间同步方法
CN101846737A (zh) * 2009-03-25 2010-09-29 何丽莉 基于无线传输延迟的传感器网络节点定位方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425887A (zh) * 2007-10-29 2009-05-06 吉林市曼博科技有限公司 一种用于无线传感器网络的时间同步方法
CN101846737A (zh) * 2009-03-25 2010-09-29 何丽莉 基于无线传输延迟的传感器网络节点定位方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAVID L.等: "Internet Time Synchronization:The Network Time Protocol", 《IEEE TRANSACTIONS ON COMMUNICATIONS》, vol. 39, no. 10, 31 October 1991 (1991-10-31), pages 1482 - 1492 *
周新莲等: "无线传感器网络中多跳时间同步算法的研究", 《计算机工程与应用》, vol. 45, no. 27, 31 December 2009 (2009-12-31), pages 102 - 104 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833853A (zh) * 2012-08-31 2012-12-19 北京联合大学 基于嵌入式gps模块时钟校正的无线传感器网络的节点
CN102833853B (zh) * 2012-08-31 2015-08-12 北京联合大学 基于嵌入式gps模块时钟校正的无线传感器网络的节点
CN104918319B (zh) * 2014-03-13 2018-01-16 北方工业大学 一种应用于无线传感器网络的时钟同步精简信息交互方法
CN104918319A (zh) * 2014-03-13 2015-09-16 北方工业大学 一种应用于无线传感器网络的时钟同步精简信息交互方法
CN103940470B (zh) * 2014-04-17 2016-08-31 江南大学 基于Zigbee的车间环境无线低功耗检测系统
CN103940470A (zh) * 2014-04-17 2014-07-23 江南大学 基于Zigbee的车间环境无线低功耗检测系统
CN104166393A (zh) * 2014-08-17 2014-11-26 成都国光电子仪表有限责任公司 天然气站场实时监控方法
CN104202214A (zh) * 2014-09-10 2014-12-10 广西电网公司电力科学研究院 配电自动化无线通信终端与配电主站通信通道延时测试方法
CN104469927A (zh) * 2014-10-27 2015-03-25 北京必创科技股份有限公司 一种无线传感器星型网络的同步采集方法和系统
CN104735741A (zh) * 2015-01-28 2015-06-24 合肥天海电气技术有限公司 一种企业配用电安全无线传感网
CN105207768A (zh) * 2015-10-23 2015-12-30 上海斐讯数据通信技术有限公司 路由器端访问设备与互联网时间不一致的提醒方法和系统
CN105207768B (zh) * 2015-10-23 2018-06-19 上海斐讯数据通信技术有限公司 路由器端访问设备与互联网时间不一致的提醒方法和系统
CN107592669A (zh) * 2016-06-10 2018-01-16 博能电子公司 无线网络内的时钟同步
US10469241B2 (en) 2016-06-10 2019-11-05 Polar Electro Oy Clock synchronization within wireless network
CN107592669B (zh) * 2016-06-10 2019-07-16 博能电子公司 无线网络内的时钟同步
CN106068022A (zh) * 2016-07-07 2016-11-02 福建师范大学福清分校 一种基于高速采样重构波形的无线传感器数据同步方法
CN106068022B (zh) * 2016-07-07 2019-06-25 福建师范大学福清分校 一种基于高速采样重构波形的无线传感器数据同步方法
CN108650648A (zh) * 2018-04-04 2018-10-12 云南民族大学 一种室内环境监测系统
CN108632989B (zh) * 2018-05-15 2020-09-22 中山大学 一种无线传感器网络一致性分布式时间同步方法
CN108632989A (zh) * 2018-05-15 2018-10-09 中山大学 一种无线传感器网络一致性分布式时间同步方法
CN108880727A (zh) * 2018-06-13 2018-11-23 合肥工业大学 一种基于PTPd2协议的精确时钟同步实现方法
CN109413733B (zh) * 2018-10-24 2021-04-23 济南格林信息科技有限公司 传感网络信息采集同步校时方法、网关、传感节点及系统
CN109413733A (zh) * 2018-10-24 2019-03-01 济南格林信息科技有限公司 传感网络信息采集同步校时方法、网关、传感节点及系统
CN109525352B (zh) * 2018-12-21 2020-08-07 北京无线电计量测试研究所 一种地下管网设备时间同步方法
CN109525352A (zh) * 2018-12-21 2019-03-26 北京无线电计量测试研究所 一种地下管网设备时间同步方法
WO2020135382A1 (zh) * 2018-12-29 2020-07-02 阿里巴巴集团控股有限公司 多传感器同步授时系统、方法、装置及电子设备
CN110916657A (zh) * 2019-11-05 2020-03-27 浙江大学 可无线充电式多通道无线表面肌电信号采集系统
CN111132201A (zh) * 2020-01-09 2020-05-08 华南理工大学 一种基于uwb的无线测量系统
CN111132201B (zh) * 2020-01-09 2024-05-28 华南理工大学 一种基于uwb的无线测量系统
CN111510876B (zh) * 2020-04-01 2022-04-22 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
CN111510876A (zh) * 2020-04-01 2020-08-07 北京未来感知科技有限公司 基于uwb技术的无线传感系统时钟同步方法、接收端系统及发射端系统
CN112672415A (zh) * 2020-12-25 2021-04-16 之江实验室 多传感器时间同步方法、装置、系统、电子设备及介质
CN112672415B (zh) * 2020-12-25 2022-04-26 之江实验室 多传感器时间同步方法、装置、系统、电子设备及介质
CN112666954A (zh) * 2020-12-31 2021-04-16 上海商汤临港智能科技有限公司 智能驾驶设备、方法、智能驾驶系统及行驶设备
CN113037415A (zh) * 2021-02-25 2021-06-25 上海赫千电子科技有限公司 一种基于车载以太网传输的tsn网络时钟同步方法、系统及设备
CN113037415B (zh) * 2021-02-25 2024-05-28 上海赫千电子科技有限公司 一种基于车载以太网传输的tsn网络时钟同步方法、系统及设备
CN113747563A (zh) * 2021-09-03 2021-12-03 国网江苏省电力有限公司电力科学研究院 一种电力物联网传感器同步采集方法及装置
CN114172610A (zh) * 2021-12-08 2022-03-11 北京经纬恒润科技股份有限公司 一种多源数据同步处理方法、装置及系统
CN114172610B (zh) * 2021-12-08 2024-05-07 北京经纬恒润科技股份有限公司 一种多源数据同步处理方法、装置及系统

Also Published As

Publication number Publication date
CN102421187B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
CN102421187B (zh) 一种无线传感器网络的高精度时钟同步方法
US8913514B2 (en) Communication control unit and communication control system
KR101506138B1 (ko) 원격통신 네트워크에서 시간 분배를 위한 방법, 장치 및 시스템
EP3188381B1 (en) Delay management for distributed communications networks
CN103201971B (zh) 用于同步具有节点之间的聚合连接的分组交换网络的主时钟和从时钟的方法以及相关联的同步装置
CN103929293B (zh) 非对称延迟的时间同步方法及系统
CN102237997B (zh) 一种链状以太网节点间的实时同步及动态补偿方法
US8397095B2 (en) Method and apparatus for synchronizing time of day of terminal in convergent network
EP3444789B1 (en) Timing synchronization method, sensor embedding terminal, and sensor network system
CN105450384A (zh) 通信系统同步时钟对时装置
US9246615B2 (en) Delay measurement in a point to multipoint system
CN101252404A (zh) 基于fpga的分布式网络时钟同步系统及方法
CN102299788A (zh) 自动发送ieee1588协议报文的控制方法及装置
CN104850526A (zh) 动态可重构高速串行总线中的时间同步方法
CN109150357A (zh) 基于rs485和以太网的混合总线的时间同步方法
CN104184534A (zh) 精确ieee1588协议的透明时钟路径延迟的方法
CN103546268A (zh) 一种系统时间的补偿方法及设备
CN112003768B (zh) 多节点测试系统及用于执行多节点测试的方法
CN105978652B (zh) 冗余以太网的同步对时设备、系统及方法
CN114337895A (zh) 基于线性菊花链以太网拓扑的时钟同步系统
KR100726476B1 (ko) 이기종 센서노드의 전력소모 최소화를 위한 시간동기화방법 및 이를 적용한 네트워크
CN202514075U (zh) 一种无线传感器网络中的中间件装置
CN108683472A (zh) 一种基于延时测量的时钟同步方法
CN101977433B (zh) 无线传感器网络的平均时钟同步方法
CN106656395B (zh) 基于自学习改进的电网时间同步测量系统和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant