CN102413923A - 催化剂制备方法 - Google Patents

催化剂制备方法 Download PDF

Info

Publication number
CN102413923A
CN102413923A CN2010800192092A CN201080019209A CN102413923A CN 102413923 A CN102413923 A CN 102413923A CN 2010800192092 A CN2010800192092 A CN 2010800192092A CN 201080019209 A CN201080019209 A CN 201080019209A CN 102413923 A CN102413923 A CN 102413923A
Authority
CN
China
Prior art keywords
carrier
catalyst
metal
calcining
moulding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800192092A
Other languages
English (en)
Other versions
CN102413923B (zh
Inventor
M·P·U·卡尔森
J·G·奥利弗
M·R·费维尔
D·J·伯德萨尔
S·A·弗兰切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey PLC
Original Assignee
Johnson Matthey PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Matthey PLC filed Critical Johnson Matthey PLC
Publication of CN102413923A publication Critical patent/CN102413923A/zh
Application granted granted Critical
Publication of CN102413923B publication Critical patent/CN102413923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/55Cylinders or rings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1252Cyclic or aromatic hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本发明描述了制备催化剂的方法,其包括以下步骤:(i)制备煅烧成型的铝酸钙催化剂载体,(ii)用水处理所述煅烧成型的铝酸钙载体,且随后干燥所述载体,(iii)用含有一种或多种金属化合物的溶液浸渍所述干燥的载体并干燥所述浸渍过的载体,(iv)煅烧所述干燥的浸渍过的载体以在所述载体的表面上形成金属氧化物和(v)任选对金属氧化物涂布的载体重复步骤(ii)、(iii)和(iv)。所述方法提供蛋壳型催化剂,其中金属氧化物富集在载体的外层上。

Description

催化剂制备方法
本发明涉及负载在铝酸钙上的催化剂的制备方法。
铝酸钙负载的催化剂用于许多工业工艺中,包括甲烷化和蒸汽转化工艺,诸如预转化、一段转化和二段转化。在这类情况下,催化活性金属通常为镍,但也可以使用其它过渡金属或贵金属。
在甲烷化和蒸汽转化工艺中,通常安装在氧化铝或铝酸钙上包含氧化镍的颗粒并原位进行氧化镍到活性元素镍的还原。
US4707351描述了由以鞍状构造的低氧化硅铝酸钙水泥组合物制成的蒸汽转化催化剂。所述催化剂通过混合铝酸钙与水和聚乙酸乙烯酯、由所得材料冲压成型、干燥并在至多1400℃下煅烧鞍状物,随后用硝酸镍浸渍来制备。将浸渍的鞍状物进一步干燥并煅烧以产生催化剂前体。在该方法中,使铝酸钙载体在成型过程期间水合,且随后在用硝酸镍浸渍之前煅烧以增加其强度并限定微观性质。
迄今为止,已经将浸渍铝酸钙载体视为实现在颗粒内均匀分散金属化合物所必需的,以使得经过煅烧金属氧化物均匀分散在颗粒内,由此使金属表面积最大化,且因此使催化剂活性最大化。
已经发现,通过使煅烧成型的铝酸钙催化剂载体的表面再水合且随后将其干燥,该载体一旦用金属化合物浸渍就提供蛋壳型催化剂前体,其中经煅烧形成的金属氧化物作为外表面层富集在载体上且并未均匀分布。
此外,与已知催化剂相比,这类催化剂的性质得以增强。
因此,本发明提供制备催化剂的方法,其包括以下步骤:
(i)制备煅烧成型的铝酸钙催化剂载体,
(ii)用水处理所述煅烧成型的铝酸钙载体,且随后干燥所述载体,
(iii)用含有一种或多种金属化合物的溶液浸渍所述干燥的载体并干燥浸渍过的载体,
(iv)煅烧所述干燥的浸渍过的载体以在所述载体的表面上形成金属氧化物,和
(v)任选对金属氧化物涂布的载体重复步骤(ii)、(iii)和(iv)。
本发明进一步提供可通过所述方法获得的蛋壳型催化剂。
本发明进一步提供对烃进行蒸汽转化的方法,其包括在高温和高压下使烃与蒸汽的混合物与蛋壳型催化剂接触的步骤。
术语“蛋壳型催化剂”是指一种或多种催化活性金属并未均匀分布在催化剂载体内,而是富集在表面上,且因此形成薄层,其中在该层下面不存在所述金属。蛋壳层的厚度优选≤1000μm、更优选≤800μm、最优选≤300μm。
所述催化剂载体由铝酸钙水泥制备。术语铝酸钙水泥包括含有一种或多种式nCaO.mAl2O3的铝酸钙化合物的水硬水泥,其中n和m为整数。这类铝酸钙化合物的实例包括单铝酸钙(CaO.Al2O3)、铝酸三钙(3CaO.Al2O3)、三铝酸五钙(5CaO.3Al2O3)、五铝酸三钙(3CaO.5Al2O3)和七铝酸十二钙(12CaO.7Al2O3)。一些铝酸钙水泥(例如所谓的“高氧化铝”水泥)可能含有与这类铝酸钙化合物混合、溶解于其中或与其组合的氧化铝。例如,众所周知的商业高氧化铝水泥具有相当于约18%氧化钙、79%氧化铝和3%水和其它氧化物的组成。该材料具有约1∶5的钙∶铝原子比,即2CaO.5Al2O3。铝酸钙常被铁化合物污染,但是并非认为这些对本发明有害。合适的水泥包括市售的Ciment Fondu和自Kerneos购得的Secar 50、Secar 71、Secar 80及自Almatis购得的CA-25、CA-14、CA-270。
本发明中使用的载体组合物优选具有在1∶3至1∶12范围内、更优选在1∶3至1∶10范围内、最优选在1∶4至1∶8范围内的钙∶铝原子比。在铝酸钙水泥为“高氧化铝”水泥的情况下,可能不需要另外的氧化铝,但是一般而言,载体理想地由铝酸钙水泥制成,已经向该铝酸钙水泥中加入了另外量的氧化铝,该氧化铝可以以过渡型氧化铝、单水合物或三水合物形式。
为了加速硬化,也可以将一定量的生石灰(CaO)(例如占组合物的至多15wt%)并入载体组合物中。
因此,所述载体通常将为由氧化铝的煅烧混合物、一种或多种所述铝酸钙化合物和任选的生石灰组成的耐火组合物。
其它氧化物质(例如氧化钛、氧化锆或氧化镧)可以存在于铝酸钙载体组合物中。虽然在一些情况下可以并入氧化硅以用作蒸汽转化载体,但是希望低氧化硅含量,即基于载体组合物中氧化物质的重量计算小于1wt%、优选小于0.5wt%,因为氧化硅在蒸汽转化条件下具有明显的挥发性。所述载体组合物优选含有≤25wt%、更优选≤15wt%、最优选≤10wt%的除了铝酸钙和氧化铝以外的氧化物质。
成型的催化剂载体可以通过使铝酸钙水泥粉末(其任选具有另外的氧化铝和/或生石灰)成型为所需形状,使水泥固化且随后煅烧成型的载体而制得。
可以在成型之前将加工助催化剂(诸如石墨和/或金属硬脂酸盐(例如硬脂酸镁或硬脂酸铝)并入组合物中:石墨的比例通常为所述组合物的1-5wt%。所包括的金属硬脂酸盐的量可以在0.1-2.0wt%范围内。
适于颗粒形成的典型组合物包含与24-48wt%的氧化铝、0-15wt%的生石灰和2-5wt%的石墨混合的30-70wt%的铝酸钙水泥(包含65-85wt%的氧化铝和15-35wt%的CaO)。
所述组合物理想地使用已知技术成型为颗粒,但也可以制备为挤出物或细粒。这类成型的单元的长度、宽度和高度可以在3-50mm范围内。所述载体可以以如在上述US 4707351中所述的鞍状物形式,但优选例如如在WO 2004/014549中所述,所述载体被挤压成圆柱体形式的颗粒,其可以具有一个或多个通孔。更优选所述成型的载体为圆柱形颗粒形式,所述颗粒具有1-12个贯穿其中延伸的孔,特别是圆形截面的3-10个孔,和任选沿颗粒长度延伸的2-20个沟槽或叶。这类颗粒的合适直径在4-40mm范围内且纵横比(长度/直径)优选≤2。特别优选的形状为以具有长度C和直径D的圆柱体形式的高度带圆盖的圆柱形颗粒,其具有一个或多个贯穿其中延伸的孔,其中所述圆柱体具有长度为A和B的圆盖末端,使得(A+B+C)/D在0.50-2.00范围内且(A+B)/C在0.40-5.00范围内。这类形状描述在同时待审的WO 2010/029323 A1和WO 2010/029324 A1中,C优选在1-25mm范围内且D优选在4-40mm范围内。
在成型之后,应该使在成型的催化剂载体中的水泥固化并使载体通常在200℃下干燥且随后煅烧。铝酸钙水泥的固化可以在干燥步骤之前或期间发生,例如在干燥之前通过用水喷雾或浸没成型的催化剂载体或在使残留水挥发之前在控制的相对湿度的条件下加热成型的催化剂载体来发生。煅烧通常通过在空气中将成型的单元加热到500-1400℃历时1-16小时来进行。随着煅烧温度增加,催化剂载体强度增加,同时孔隙率和表面积减小。因此,载体煅烧应该在足以获得所需机械强度但不应高到使表面积和孔隙率过度降低的温度下进行。
成型的煅烧的催化剂载体优选具有如由氮吸附测量的0.5-40m2·g-1、特别1-15m2·g-1的总表面积和如由水银孔率法测定0.1-0.3cm3·g-1的孔隙体积。
在最终煅烧之前,载体可以通过用诸如氢氧化钾的碱金属的溶液浸渍来“碱化”。这用以使在蒸汽转化期间由烃的高温裂解和碳氧化物与氢气的反应引起碳在催化剂上的沉积最少化。可以使用在煅烧的载体上至多约5wt%的碱金属氧化物(例如氧化钾(potash))水平。
在本发明中,在用金属化合物浸渍之前,通过用水处理载体使煅烧成型的铝酸钙载体经受再水合步骤。该水理想地不含盐且优选为去矿物质水或去离子水。可以将少量有机碱或氨加到水中。用水处理成型的铝酸钙载体可以通过在环境温度或高温下用水浸没或喷雾进行。再水合步骤应该执行足以使煅烧成型的铝酸钙载体的表面与水反应的时间。在一个优选的实施方案中,用水处理通过在10-95℃范围内的温度下将成型的载体浸没在水中历时1-120分钟来进行。已经发现使用处于≤30℃的温度下的水给出更薄的金属氧化物层,特别是对于小催化剂或具有通孔的催化剂,这是有利的。再水合步骤可以在常压或高压下执行。
在用水处理煅烧的载体的表面之后,将载体干燥以除去水,优选除去物理吸附的水,而不是化学吸附的水。因此,载体干燥优选在在25-250℃范围内、更优选在50-150℃范围内的温度下在常压或减压下执行。干燥时间可以视水含量而在1-24小时范围内。
在不希望受理论限制的情况下,据信再水合和干燥步骤改变铝酸钙载体的表面化学性质。证据表明在载体的表面中的孔隙没有堵塞;而载体的表面碱度受到影响,使得在浸渍时,金属浸渍物的不溶性化合物沉淀在载体的表面处/附近,由此产生蛋壳型催化剂。
随后将再水合并干燥了的催化剂载体用包含一种或多种可溶性金属化合物的溶液浸渍。所述浸渍溶液优选包含一种或多种过渡金属、优选一种或多种选自由铬、锰、镍、钴、铁、铜和锌组成的集合的金属。更优选所述浸渍溶液包含镍、钴、铁或铜中的一种或多种,最优选镍。
特别合适的是水性浸渍溶液。所述浸渍溶液优选包含一种或多种酸性化合物,即溶解于水中给出酸性溶液的化合物(即,浸渍溶液理想地具有<7.0的pH)。合适的酸性金属化合物包括金属硝酸盐、金属乙酸盐、金属柠檬酸盐和金属草酸盐。在浸渍金属为镍的情况下,用于浸渍载体的金属化合物优选为硝酸镍或乙酸镍。
在浸渍溶液中金属的浓度理想地在100-300克金属/升范围内。
浸渍可以在环境温度或高温下和在常压或高压下使用已知技术执行,所述已知技术包括在含金属的溶液中浸没再水合并干燥了的催化剂载体,或者通过所谓的“初始润湿”浸渍进行,其中所使用的溶液的体积近似等于载体材料的孔隙体积。可以使用在环境温度(即,10-25℃)下且在常压(约1巴绝对压力)下的金属化合物的浸渍,然而,已经发现通过在50-90℃的温度下浸渍载体,可以获得对蛋壳层的厚度的改善控制。例如,在颗粒化材料上的蛋壳层厚度在20-30℃下可≤800μm,但在50-90℃下的浸渍可以产生≤300μm的厚度。
在浸渍之后,将浸渍过的载体干燥并煅烧。干燥条件优选与在再水合步骤之后使用的条件相同。使浸渍的金属化合物转化为其相应金属氧化物的煅烧步骤优选在空气中在250-850℃的温度下执行。凭借较低的金属含量和在催化剂表面上增加的金属浓度,本发明的优势在于与当前催化剂材料相比较,可以降低在煅烧基于金属硝酸盐的前体期间放出的氮氧化物的量。
所得催化剂的催化金属含量可以通过诸如溶液的金属含量和浸渍条件的许多因素来测定。通过浸渍形成的蒸汽转化催化剂通常具有在10-35wt%范围内的NiO含量。沉淀的预转化催化剂可以具有40-80wt%或更大的NiO含量。甲烷化催化剂通常具有在30-35wt%范围内的NiO含量。在本发明中,因为催化金属氧化物富集在载体的表面上,所以可以在降低的金属负载量下实现改善的催化剂活性。这具有明显的商业益处。煅烧的催化剂的催化金属氧化物含量优选在2-25wt%范围内,优选为4-15wt%。因此,一次浸渍可足以产生所需催化剂。然而,如果需要,则可以重复再水合、干燥和浸渍步骤,直到煅烧材料的金属氧化物含量大于2.5wt%、优选大于5wt%、更优选大于7.5wt%、最优选大于10wt%。多次浸渍可以使用相同或不同的催化活性金属执行。为了保持蛋壳型催化剂,应该在每次金属浸渍之前使含金属氧化物的载体再水合、干燥并煅烧。
催化金属的比表面积合适地在0.1-50m2/g催化剂的范围内。在该范围内,对于在600℃下的反应,优选较大面积。
可以将一种或多种助催化剂化合物浸渍到干燥的载体和/或金属氧化物涂布的载体中。因此,一种或多种助催化剂化合物可以包括在金属浸渍溶液中或助催化剂可以随后通过单独浸渍而加入。所述助催化剂可以限制在蛋壳层中或可以遍布载体催化剂分布。助催化剂包括贵金属,诸如铂、钯、铱、钌、铑和金。诸如镧和铈的镧系元素金属也可以作为助催化剂而包括。可以将水溶性盐(特别是硝酸盐)用作金属助催化剂的来源。可以存在多于一种助催化剂且也可以加入另外的碱金属。助催化剂金属的量通常将在煅烧过的催化剂材料的0.1-5wt%范围内。
所述催化剂可以以其氧化形式提供并使用。例如,可以将氧化钴催化剂用于氧化反应。
在催化剂包含诸如Cu、Ni、Co或Fe的可还原金属的情况下,煅烧产物可以以其氧化形式提供,且如果需要,用含氢气的气体还原金属氧化物以形成元素金属可原位(即在其中将使用催化剂的反应器)进行。可以使用已知的还原技术。
或者,可以非原位还原氧化催化剂且随后使用含氧气的气体将元素金属用薄钝化氧化层涂布。用这种方法,可以将催化剂安全地传输给用户,且减少产生活性催化剂的还原时间和在随后活化期间使用的氢气的量。这对用户具有明显的益处。因此,在一个实施方案中,制备催化剂的方法进一步包括用含氢气的气体混合物将可还原的金属氧化物还原成元素形式且随后用含氧气的气体钝化元素金属的表面的步骤。例如如在US 4090980中所述,可以使用氧气和二氧化碳气体。
根据本发明制备的蛋壳型催化剂可以用于诸如一段蒸汽转化、一段转化气体混合物的二段转化和预转化的蒸汽转化工艺中。所述催化剂也可以用于甲烷化反应、氢化反应和以氧化未还原的形式用于分解水溶液中的次氯酸盐。
在蒸汽转化中,在常包含镍的催化活性材料上使烃(通常是含甲烷的气体,诸如天然气或石脑油)与蒸汽和/或在适当情况下与二氧化碳反应以产生含氢气和碳氧化物的气体。氢气生成反应为:
Figure BDA0000104283480000071
“CH2”+H2O→CO+2H2
(“CH2”表示比甲烷高级的烃,例如通常气态的烃和在至多200℃下沸腾的通常液态的烃)。与二氧化碳的类似反应可以单独进行或与蒸汽反应一起进行。
CH4+CO2→2CO+2H2
“CH2”+CO2→2CO+H2
这些反应强烈吸热且当反应在外部加热下(如在管状蒸汽转化中)进行时该工艺特别合适。或者,热量可以通过加热反应物且使蒸汽在绝热床中或在复合工艺(其中氧气为反应物)中穿过催化剂来供应,使得在氧化中放出的热由吸热反应所吸收。该复合工艺可以应用到管状或绝热工艺的产物(即,在“二段转化”中)或应用到新鲜原料(“催化部分氧化”或“自热转化”)。这些反应通常伴随着水煤气变换反应:
Figure BDA0000104283480000081
如果原料烃为“CH2”且温度相对低,则也可能发生甲烷化反应(放热)。
CO+3H2→CH4+H2O
CO2+4H2→CH4+2H2O
然而,蒸汽转化工艺优选在净吸热条件下操作且所生成的含氢气的气体含有以干基计算至少30%v/v的氢气。优选其含有以干基计算小于30、特别小于10%v/v的甲烷。对于含氢气的合成气的生产,出口温度优选为至少600℃以确保低甲烷含量。虽然对于制备用于氨或甲醇生产的合成气来说,温度通常在750-900℃范围内,但是为了生产冶金还原气体,其可以至多1100℃,或为了生产城市煤气,其可以低至700℃。对于使用氧气的复合工艺,该温度在催化床的最热部分中可以高达1300℃。
在预转化中,使烃/蒸气混合物经受绝热低温蒸汽转化步骤。在这一工艺中,将烃/蒸气混合物加热到通常400-650℃范围的温度,且随后使其绝热穿过合适微粒催化剂的固定床,催化剂通常具有例如大于40wt%的高镍含量。所述催化剂可为简单圆柱体或多孔叶的形状。预转化催化剂通常以预还原并钝化的形式提供,尽管也可以安装氧化催化剂。在该绝热低温转化步骤中,使比甲烷高级的任何烃与蒸汽在催化剂表面上反应以给出甲烷、碳氧化物和氢气的混合物。希望使用这种绝热转化步骤,通常称为预转化,以确保到蒸汽转化器的进料不含比甲烷高级的烃并且含有显著量的氢气。为了使在下游蒸汽转化器中在催化剂上形成碳的危险最小化,这是合乎需要的,
在蒸汽转化工艺中的压力通常在1-50巴绝对压力范围内,但建议至多120巴绝对压力的压力。通常使用过量的蒸气和/或二氧化碳,特别是在1.5-6摩尔范围内、例如在2.5-5摩尔范围内的蒸气或二氧化碳/克在原料烃中的碳原子。
在将催化剂用于甲烷化中以从含氢气的气体中除去低浓度的CO和CO2(0.1-0.5%体积)的情况下,通常在230-450℃的温度和至多约50巴绝对压力或更高、至多约250巴绝对压力的压力下使所述含氢气的气体穿过含镍催化剂的颗粒固定床。与蒸汽转化不同,催化剂优选为没有通孔的简单圆柱形颗粒,尽管如果需要,也可以使用具有通孔的颗粒。典型的颗粒直径在2.5-6mm范围内,其长度在相同范围内。该催化剂可以以氧化形式或预还原并钝化的形式提供。
参考以下实施例和图1-3进一步说明本发明。
图1描绘一分为二以显示根据本发明制备的催化剂的蛋壳层的圆柱形催化剂颗粒的图像。
图2描绘根据现有技术制备的类似催化剂颗粒的图像,且
图3描绘根据本发明制备的催化剂的具有蛋壳层的叶状4-孔圆柱形催化剂颗粒的截面的电子探针微分析仪(EMPA)的图像。
实施例1.催化剂载体的制备
a)将铝酸钙水泥与三水合氧化铝和生石灰共混以获得具有10∶43的Ca∶Al比的混合物。加入石墨(4wt%),且所得混合物使用液压制片机制成颗粒以给出直径为3.3mm且长度为3.3mm的圆柱体。使颗粒经受水固化并煅烧以获得具有以下性质的煅烧成型的载体。
BET(氮):5.7m2/g
孔隙体积:0.28cm3/g
密度:1.66g/cc
b)重复实施例1(a)的方法以生成直径为5.4mm且长度为3.0mm的颗粒。
c)重复实施例1(a)的方法,不同之处在于将铝酸钙水泥与三水合氧化铝共混以获得具有10∶74的Ca∶Al比的混合物。
实施例2.Ni催化剂的制备
a)再水合。来自实施例1(b)的成型煅烧的铝酸钙载体通过将颗粒浸没于处于30℃的去矿物质水中历时40分钟来用水处理。将颗粒移出并在110℃下干燥16小时。
b)Ni的并入。随后在25℃下将催化剂载体颗粒浸没在硝酸镍在去矿物质水中的溶液(200克Ni/升)中5分钟。随后移出浸渍的颗粒并使其滴水10分钟且在110℃下干燥6小时。随后将干燥了的浸渍的颗粒以100℃/小时加热到650℃,且随后在650℃下保持4小时以使硝酸镍转化为氧化镍。对含氧化镍的颗粒重复再水合、干燥、浸渍、干燥和煅烧程序另外两次。如图1所示Ni以薄层围绕催化剂颗粒的边缘富集。蛋壳层的厚度为约800μm。
使用相同的水处理条件对实施例1(a)的载体重复该程序,但每次在70℃下而不是在25℃下进行Ni浸渍5分钟。对20个颗粒测量各次煅烧之后的重量增加且取平均值。结果如下:
Figure BDA0000104283480000101
最终催化剂性质为:
BET(氮):43.6m2/g
孔隙体积:0.17cm3/g
密度:1.84g/cc
该物质称为催化剂2A。
使用相同水处理和浸渍条件,对实施例1(c)的载体重复对实施例1(a)应用的程序。生成蛋壳型催化剂材料。
作为对比,在25℃下将得自实施例1(b)但未经上述再水合步骤的成型煅烧的铝酸钙载体浸没在硝酸镍在去矿物质水中的溶液(200克Ni/升)中5分钟。随后移出浸渍的颗粒并使其滴水10分钟且在110℃下干燥6小时。随后将干燥了的浸渍的颗粒以100℃/小时加热到650℃,且随后在650℃下保持6小时以使硝酸镍转化为氧化镍。对含氧化镍的颗粒重复浸渍、干燥和煅烧程序另外两次。如图2所见,Ni遍布催化剂颗粒分布。
作为进一步的比较,在70℃下将得自实施例1(a)且也未经再水合步骤的成型煅烧的铝酸钙载体浸没在硝酸镍在去矿物质水中的溶液(200克Ni/升)中5分钟。随后移出浸渍的颗粒并使其滴水10分钟且在110℃下干燥6小时。随后将干燥了的浸渍的颗粒以100℃/小时加热到650℃,且随后在650℃下保持4小时以使硝酸镍转化为氧化镍。对含氧化镍的颗粒重复浸渍、干燥和煅烧程序另外两次。在最终煅烧之后该材料的NiO含量为约16.5wt%。该对比材料称为催化剂2B。
实施例3:试验
将催化剂2A和2B在具有1-英寸的转化器管内径的实验室规模蒸汽转化器中试验。将催化剂用熔融氧化铝片(筛分粒级3.35mm-4.74mm)稀释并在480℃下使用在N2中的50%体积的H2还原2小时。在催化剂还原之后,在480℃-750℃的温度范围上评价催化剂性能。原料气体为以3.0∶1的蒸汽∶碳比与蒸汽混合的天然气。出口气体组成通过红外和气相色谱法分析。
结果如下:
Figure BDA0000104283480000121
在该温度范围内,蛋壳催化剂2A的乙烷转化率较好。
实施例4.催化剂的制备
a)催化剂载体。将铝酸钙水泥与三水合氧化铝和生石灰共混以获得具有10∶43的Ca∶Al比的混合物。加入石墨(4wt%),且所得混合物使用液压制片机制成颗粒以给出直径为5.4mm且长度为5.4mm的圆柱体。使颗粒经受水固化并煅烧以获得具有与实施例1(a)相同性质的煅烧成型的载体。
b)再水合。成型的煅烧的铝酸钙载体通过将颗粒浸没于处于30℃的去矿物质水中历时40分钟来用水处理。将催化剂载体颗粒从水中移出并在110℃下干燥16小时。
c)催化剂制备。在25℃下将催化剂载体颗粒浸没在如下所述的金属硝酸盐在去矿物质水中的溶液中5分钟。
随后移出浸渍的颗粒并使其滴水10分钟且在110℃下干燥12小时。
颗粒通过光学显微法分析,且在所有情况下,发现金属化合物围绕颗粒的边缘富集,即,已经形成了蛋壳材料。
作为对比,在25℃下将未经再水合步骤(b)的成型的煅烧的铝酸钙载体浸没在如上所述的金属硝酸盐在去矿物质水中的溶液中5分钟。随后移出浸渍的颗粒并使其滴水10分钟且在110℃下干燥12小时。颗粒通过光学显微法分析,且在所有情况下,金属遍布催化剂分布。
实施例5.用乙酸镍制备催化剂。
a)催化剂载体。将铝酸钙水泥与三水合氧化铝和生石灰共混以获得具有10∶43的Ca∶Al比的混合物。加入石墨(4wt%),且所得混合物使用液压制片机制成颗粒以给出直径为5.4mm且长度为5.4mm的圆柱体。使颗粒经受水固化并煅烧以获得具有与实施例1(a)相同性质的煅烧成型的载体。
b)再水合。成型的煅烧的铝酸钙载体通过将颗粒浸没于处于30℃的去矿物质水中历时40分钟来用水处理。将颗粒移出并在110℃下干燥16小时。
c)催化剂制备。随后在25℃下将颗粒浸没在乙酸镍在去矿物质水中的溶液(2g/100ml)中5分钟。
随后移出浸渍的颗粒并使其滴水5分钟且在110℃下干燥4小时。
颗粒通过光学显微法分析,且发现镍围绕颗粒的边缘富集。
实施例6:具有通孔的成型的催化剂载体
4-孔、4-叶催化剂煅烧的铝酸钙催化剂载体据实施例1的方法制备。根据实施例2的方法将催化剂载体再水合并在25℃下用硝酸镍浸渍3次。所得干燥并煅烧的催化剂颗粒的截面的电子探针显微分析(EPMA)显示围绕颗粒外部和围绕每一通孔的圆周的氧化镍薄层(较亮区域)。EPMA图像绘于图3中。

Claims (18)

1.制备催化剂的方法,其包括以下步骤:
(i)制备煅烧成型的铝酸钙催化剂载体,
(ii)用水处理所述煅烧成型的铝酸钙载体,且随后干燥所述载体,
(iii)用含有一种或多种金属化合物的溶液浸渍所述干燥的载体并干燥浸渍过的载体,
(iv)煅烧干燥的浸渍过的载体以在所述载体的表面上形成金属氧化物,和
(v)任选对金属氧化物涂布的载体重复步骤(ii)、(iii)和(iv)。
2.权利要求1的方法,其中所述铝酸钙载体通过使任选地具有另外的氧化铝和/或生石灰的铝酸钙水泥粉末成型为所需形状,使所述水泥固化且随后煅烧成型的载体而制得。
3.权利要求2的方法,其中所述载体通过在煅烧之前用碱金属的溶液浸渍来碱化。
4.权利要求1-3中任一项的方法,其中所述载体为成型的颗粒、挤出物或细粒形式。
5.权利要求4的方法,其中所述载体为具有贯穿其中延伸的1-12个孔和任选2-20个沟槽或叶的圆柱形颗粒。
6.权利要求1-5中任一项的方法,其中用水处理所述成型的铝酸钙载体通过用水浸没或喷雾来进行。
7.权利要求6的方法,其中用水进行的所述处理通过在10-95℃范围内的温度下将所述成型的载体浸没在水中历时1-120分钟来进行。
8.权利要求1-7中任一项的方法,其中所述载体干燥步骤在25-250℃的温度下执行。
9.权利要求1-8中任一项的方法,其中所述浸渍溶液包含一种或多种过渡金属,优选铬、锰、镍、钴、铁、铜或锌中的一种或多种,更优选镍、钴、铁或铜中的一种或多种,最优选镍。
10.权利要求1-9中任一项的方法,其中所述浸渍溶液中的金属浓度在100-300克金属/升范围内。
11.权利要求1-10中任一项的方法,其中所述金属浸渍步骤在50-90℃的温度下执行。
12.权利要求1-11中任一项的方法,其中重复步骤(ii)、(iii)和(iv)直到所述煅烧的材料的金属氧化物含量在2-25wt%范围内。
13.权利要求1-12中任一项的方法,其中将一种或多种助催化剂化合物浸渍到干燥的载体和/或金属氧化物涂布的载体中。
14.权利要求1-13中任一项的方法,其中所述浸渍过的载体的煅烧在250-850℃的温度下执行。
15.权利要求1-14中任一项的方法,其中所述金属氧化物为可还原的金属氧化物,所述方法进一步包括用含氢气的气体混合物还原所述金属氧化物为元素形式的步骤。
16.蛋壳型催化剂材料,其通过权利要求1-15中任一项的方法获得。
17.对烃进行蒸汽转化的方法,其包括在高温和高压下使烃与蒸汽的混合物与权利要求16的催化剂或根据权利要求1-15中任一项的方法制备的催化剂接触的步骤。
18.使含有在0.1-0.5%体积范围内的量的CO和CO2的氢气流气流甲烷化的方法,其包括在230-450℃的温度下使所述氢气流与权利要求16的催化剂或根据权利要求1-15中任一项的方法制备的催化剂接触的步骤。
CN201080019209.2A 2009-05-01 2010-04-15 催化剂制备方法 Active CN102413923B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0907539.1 2009-05-01
GBGB0907539.1A GB0907539D0 (en) 2009-05-01 2009-05-01 Catalyst preparation method
PCT/GB2010/050624 WO2010125369A2 (en) 2009-05-01 2010-04-15 Catalyst preparation method

Publications (2)

Publication Number Publication Date
CN102413923A true CN102413923A (zh) 2012-04-11
CN102413923B CN102413923B (zh) 2014-06-04

Family

ID=40792122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080019209.2A Active CN102413923B (zh) 2009-05-01 2010-04-15 催化剂制备方法

Country Status (11)

Country Link
US (3) US9480971B2 (zh)
EP (2) EP2424657B1 (zh)
CN (1) CN102413923B (zh)
DK (2) DK2424657T3 (zh)
ES (2) ES2847477T3 (zh)
GB (1) GB0907539D0 (zh)
HU (2) HUE052735T2 (zh)
LT (2) LT3453451T (zh)
PL (2) PL2424657T3 (zh)
TR (1) TR201900395T4 (zh)
WO (1) WO2010125369A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255531A (zh) * 2015-10-19 2016-01-20 中国华能集团清洁能源技术研究院有限公司 一种低温干馏煤气制天然气并联产氢气的系统及方法
CN109433199A (zh) * 2018-10-22 2019-03-08 武汉大学 一种用于二氧化碳还原的钌基催化剂及其制备方法和应用
CN113710361A (zh) * 2019-05-20 2021-11-26 庄信万丰股份有限公司 催化剂制备方法
CN116490456A (zh) * 2020-08-13 2023-07-25 庄信万丰股份有限公司 蒸汽重整
CN117732460A (zh) * 2023-12-18 2024-03-22 湖北禾谷环保有限公司 一种耐氯cos水解催化剂及其制备方法和应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0907539D0 (en) 2009-05-01 2009-06-10 Johnson Matthey Plc Catalyst preparation method
GB201018152D0 (en) * 2010-10-27 2010-12-08 Johnson Matthey Plc Catalyst preparation method
GB201102502D0 (en) 2011-02-14 2011-03-30 Johnson Matthey Plc Catalysts for use in reforming processes
EP2602024A1 (en) 2011-12-08 2013-06-12 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalytic architecture with high S/V ratio, low DP and high void fraction for industrial applications
WO2015023740A1 (en) * 2013-08-13 2015-02-19 Celanese International Corporation Catalyst for aldol condensation
CN106163657B (zh) 2014-04-07 2023-01-24 托普索公司 壳浸渍催化剂及壳浸渍催化剂主体的制备方法
JP6462448B2 (ja) * 2015-03-25 2019-01-30 株式会社大貴 吸水処理材及びその製造方法
US9579628B2 (en) 2015-04-15 2017-02-28 Air Products And Chemicals, Inc. Perforated adsorbent particles
CN107999080A (zh) * 2018-01-08 2018-05-08 四川天科技股份有限公司 一种用于直接还原铁工艺的烃类重整催化剂、制备及应用
GB2607490B (en) * 2020-01-08 2024-05-22 Petroleo Brasileiro Sa Petrobras Method for preparing a steam reforming catalyst, catalyst and related use
CN111389405B (zh) * 2020-01-21 2023-09-15 天津大学 一种预活化甲烷水蒸气制氢催化剂的方法
GB202012616D0 (en) 2020-08-13 2020-09-30 Johnson Matthey Plc Steam reforming
CN115722221B (zh) * 2021-08-26 2024-04-09 中国石油化工股份有限公司 一种催化氧化催化剂及其制备方法
GB202301101D0 (en) * 2023-01-26 2023-03-15 Johnson Matthey Plc Steam reforming catalyst and process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329530A (en) * 1979-11-20 1982-05-11 Imperial Chemical Industries Limited Hydrogenation catalyst and process for the selective hydrogenation of highly unsaturated hydrocarbons
US4707351A (en) * 1985-01-22 1987-11-17 Imperial Chemical Industries Plc Catalyst and catalytic process
US4906603A (en) * 1987-02-18 1990-03-06 Sud-Chemie Aktiengesellschaft Catalyst for the steam reforming of hydrocarbons
WO2006016983A2 (en) * 2004-07-09 2006-02-16 Sud-Chemie Inc. Promoted calcium-aluminate supported catalysts for synthesis gas generation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4090980A (en) * 1975-11-20 1978-05-23 Exxon Research & Engineering Co. Method for preparing reduced metal catalyst having metal surface area
US4380589A (en) 1981-12-24 1983-04-19 The Dow Chemical Company Novel Fischer-Tropsch catalysts
US20040043900A1 (en) 2002-08-12 2004-03-04 Combs Glenn A. Heterogeneous gaseous chemical reactor catalyst
GB0816705D0 (en) 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneous catalysts
GB0816703D0 (en) 2008-09-12 2008-10-22 Johnson Matthey Plc Shaped heterogeneous catalysts
GB0907539D0 (en) 2009-05-01 2009-06-10 Johnson Matthey Plc Catalyst preparation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329530A (en) * 1979-11-20 1982-05-11 Imperial Chemical Industries Limited Hydrogenation catalyst and process for the selective hydrogenation of highly unsaturated hydrocarbons
US4707351A (en) * 1985-01-22 1987-11-17 Imperial Chemical Industries Plc Catalyst and catalytic process
US4906603A (en) * 1987-02-18 1990-03-06 Sud-Chemie Aktiengesellschaft Catalyst for the steam reforming of hydrocarbons
WO2006016983A2 (en) * 2004-07-09 2006-02-16 Sud-Chemie Inc. Promoted calcium-aluminate supported catalysts for synthesis gas generation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105255531A (zh) * 2015-10-19 2016-01-20 中国华能集团清洁能源技术研究院有限公司 一种低温干馏煤气制天然气并联产氢气的系统及方法
CN105255531B (zh) * 2015-10-19 2018-07-06 中国华能集团清洁能源技术研究院有限公司 一种低温干馏煤气制天然气并联产氢气的系统及方法
CN109433199A (zh) * 2018-10-22 2019-03-08 武汉大学 一种用于二氧化碳还原的钌基催化剂及其制备方法和应用
CN113710361A (zh) * 2019-05-20 2021-11-26 庄信万丰股份有限公司 催化剂制备方法
CN113710361B (zh) * 2019-05-20 2023-09-26 庄信万丰股份有限公司 催化剂制备方法
US11958040B2 (en) 2019-05-20 2024-04-16 Johnson Matthey Public Limited Company Catalyst preparation method
CN116490456A (zh) * 2020-08-13 2023-07-25 庄信万丰股份有限公司 蒸汽重整
CN116490456B (zh) * 2020-08-13 2024-09-13 庄信万丰股份有限公司 蒸汽重整
CN117732460A (zh) * 2023-12-18 2024-03-22 湖北禾谷环保有限公司 一种耐氯cos水解催化剂及其制备方法和应用

Also Published As

Publication number Publication date
LT3453451T (lt) 2021-01-25
PL2424657T3 (pl) 2019-05-31
GB0907539D0 (en) 2009-06-10
US20120135860A1 (en) 2012-05-31
US20170014809A1 (en) 2017-01-19
WO2010125369A3 (en) 2011-03-31
US20180264442A1 (en) 2018-09-20
ES2847477T3 (es) 2021-08-03
PL3453451T3 (pl) 2021-05-31
DK2424657T3 (en) 2019-03-11
ES2712937T3 (es) 2019-05-16
TR201900395T4 (tr) 2019-02-21
WO2010125369A2 (en) 2010-11-04
EP2424657B1 (en) 2018-11-28
CN102413923B (zh) 2014-06-04
DK3453451T3 (da) 2021-01-25
US9480971B2 (en) 2016-11-01
HUE042451T2 (hu) 2019-07-29
LT2424657T (lt) 2019-02-25
EP3453451A1 (en) 2019-03-13
US9981252B2 (en) 2018-05-29
HUE052735T2 (hu) 2021-05-28
EP2424657A2 (en) 2012-03-07
US10076744B1 (en) 2018-09-18
EP3453451B1 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
CN102413923B (zh) 催化剂制备方法
CN103189136B (zh) 催化剂制备方法
Malik et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation
JP4414951B2 (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
EP1802394B1 (en) Promoted calcium-aluminate supported catalysts for synthesis gas generation
WO2004011138A1 (en) Nickel-catalyst for syngas generation by mixed reforming using co2 and steam
EP1732688A1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
EP3129142B1 (en) Shell impregnated catalyst and process for producing a shell impregnated catalyst body
CN113710361B (zh) 催化剂制备方法
CA2359940A1 (en) Catalyst carrier carrying nickel ruthenium and lanthanum
RU2575351C2 (ru) Способ получения катализатора
Malika et al. Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 for methanol synthesis from CO2 hydrogenation
CN117751014A (zh) 用于重质烃进料的蒸汽重整催化剂

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant