CN102403284B - 电子封装、用于电子装置的散热结构及其制造方法 - Google Patents

电子封装、用于电子装置的散热结构及其制造方法 Download PDF

Info

Publication number
CN102403284B
CN102403284B CN 201010283714 CN201010283714A CN102403284B CN 102403284 B CN102403284 B CN 102403284B CN 201010283714 CN201010283714 CN 201010283714 CN 201010283714 A CN201010283714 A CN 201010283714A CN 102403284 B CN102403284 B CN 102403284B
Authority
CN
China
Prior art keywords
conductive pattern
main body
layer
pattern layer
electronic installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010283714
Other languages
English (en)
Other versions
CN102403284A (zh
Inventor
谭瑞敏
戴明吉
林谕男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Priority to CN 201010283714 priority Critical patent/CN102403284B/zh
Publication of CN102403284A publication Critical patent/CN102403284A/zh
Application granted granted Critical
Publication of CN102403284B publication Critical patent/CN102403284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明实施例揭示一种用于电子装置的散热结构。散热结构包括:一主体、一含硅绝缘层、一超纳米结晶钻石薄膜及导电图案层。主体具有一第一表面及相对于第一表面的一第二表面。含硅绝缘层设置于主体的第一表面上。超纳米结晶钻石薄膜与导电图案层设置于含硅绝缘层上。导电图案层被超纳米结晶钻石薄膜包围,且超纳米结晶钻石薄膜与导电图案层在上视方向彼此不重迭。本发明实施例亦揭示一种用于电子装置的散热结构的制造方法以及具有上述散热结构的电子封装。

Description

电子封装、用于电子装置的散热结构及其制造方法
技术领域
本发明有关于一种集成电路(integrated circuit,IC)制造,特别是有关于一种用于电子装置的散热结构及其制造方法。
背景技术
可携式电子产品,例如手机、行动计算机及其它消费性产品需要在厚度薄、重量轻及低成本的限制因素下呈现高效能及功能,因而驱使制造业者必须增加半导体芯片的集成度(integration)。而随着半导体技术的向上发展,集成电路的集成度或是半导体元件(例如,晶体管、二极管、电阻、电容等等)的密度得以不断提升。在高集成度或高密度的集成电路中,因集成电路的功率及操作频率增加,散热(heat dissipation)问题成为限制集成电路中微电子装置效能的因素之一。
传统上解决热产生的方法是包含于电子装置操作期间,提供一散热装置(即,散热片)与IC封装中的IC芯片作热接触。亦即,每一IC芯片的上表面与对应的散热器作热接触。然而,为了每一IC芯片而提供一分离的散热器会增加制造成本,且会增加IC封装装置的整体尺寸,其并不利于部件或装置尺寸持续缩小的趋势。
另一种解决热产生的方法包含在IC芯片或封装基底的上表面形成一类钻碳(diamond like carbon,DLC)薄膜,以作为钝化保护(passivation)层及导热绝缘层。钝化保护层上通常需形成开口以形成由金属构成的重布局线(redistribution line,RDL)/走线(circuit trace)或是接合垫(bondpad)。然而,由于类钻碳薄膜难以加工且与金属附着性不佳,因而降低装置的可靠度及良率。
因此,有必要发展一种新的用于电子装置的散热结构,其能够改善上述问题。
发明内容
有鉴于此,本发明实施例提供一种用于电子装置的散热结构,包括:一主体,具有一第一表面及相对于第一表面的一第二表面;一含硅绝缘层,设置于主体的第一表面上;一超纳米结晶钻石薄膜,设置于含硅绝缘层上;以及一导电图案层,设置于含硅绝缘层上且被超纳米结晶钻石薄膜包围,其中超纳米结晶钻石薄膜与导电图案层在上视方向彼此不重迭。
本发明实施例提供一种用于电子装置的散热结构的制造方法。提供一主体,其具有一第一表面及相对于第一表面的一第二表面。在主体的第一表面上形成一含硅绝缘层。在含硅绝缘层上分别形成一导电图案层及一超纳米结晶钻石薄膜,其中导电图案层被超纳米结晶钻石薄膜包围,且超纳米结晶钻石薄膜与导电图案层在上视方向彼此不重迭。
附图说明
以下结合附图说明本发明实施例的制作与使用。然而,可轻易了解本发明所提供的实施例仅用于说明以特定方法制作及使用本发明,并非用以局限本发明的范围,其中:
图1至图3是绘示出根据本发明不同实施例的具有用于电子装置的散热结构的电子封装剖面示意图。
图4A至图4J是绘示出根据本发明一实施例的用于电子装置的散热结构的制造方法剖面示意图。
图5A至图5F是绘示出根据本发明另一实施例的用于电子装置的散热结构的制造方法剖面示意图。
图6A至图6J是绘示出根据本发明又一实施例的用于电子装置的散热结构的制造方法剖面示意图。
图7A至图7F是绘示出根据本发明另又另一实施例的用于电子装置的散热结构的制造方法剖面示意图。
具体实施方式
图1是绘示出根据本发明一实施例的具有用于电子装置的散热结构的电子封装剖面示意图。请参照图1,电子封装10包括一散热结构以及设置于散热结构上的电子装置100。在本实施例中,散热结构包括:一主体201、一含硅绝缘层203、一超纳米结晶钻石薄膜(ultrananocrystallinediamond,UNCD)207、第一导电图案层及第二导电图案层214。主体201具有一第一表面201a(例如,上表面)及相对于第一表面201a的一第二表面201b(例如,下表面)。在一实施例中,主体201可为一封装基板或电路板,且可由半导体材料(例如,硅、锗化硅、氮化镓、砷化镓)、陶瓷、或高分子材料所构成。在另一实施例中,主体201可为一半导体芯片,且其内具有至少一半导体元件及电性连接半导体元件的至少一内联线结构。
含硅绝缘层203,例如氮化硅、四乙基硅酸盐(tetraethylorthosilicate,TEOS)氧化物、二氧化硅,设置于主体201的第一表面201a上。特别的是超纳米结晶钻石薄膜207及第一导电图案层设置于含硅绝缘层203上,其中第一导电图案层被超纳米结晶钻石薄膜207包围。再者,超纳米结晶钻石薄膜207与第一导电图案层在上视方向彼此不重迭。
在本实施例中,超纳米结晶钻石薄膜207是作为散热结构中的导热绝缘层。再者,第一导电图案层主要由阻挡材料层204a及导电层204b所构成。另外,导电层204b上可额外形成其它导电结构,例如阻挡材料层210a、导电层210b以及导电层212。在一实施例中,导电层204b及210b可包括电镀铜,而阻挡材料层204a及210a可包括TiW/Cu,以分别作为导电层204b及210b的种子(seed)层。再者,导电层212可由铜、锡或其它已知的焊料所构成。
第二导电图案层214设置于主体201的第二表面201b上,其材质可相同或相似于导电层212。再者,主体201内具有至少一通孔电极(throughvia)210,其由位于主体201内的阻挡材料层210a及导电层210b所构成,且由绝缘层209而与主体201电性绝缘。在本实施例中,绝缘层209可包括氮化硅、二氧化硅或超纳米结晶钻石(UNCD)。再者,通孔电极210自主体201的第二表面201b延伸至第一导电图案层内,用以电性连接于第一导电图案层与第二导电图案层214之间。第二导电图案层214、通孔电极210、第一导电图案层及超纳米结晶钻石薄膜207亦可构成一散热路径。
电子装置100,例如二极管芯片或其它半导体芯片,通过一粘着层100b而贴附于超纳米结晶钻石薄膜207上,且可利用打线接合(wire bonding)工艺,使电子装置100通过接线(wire)100a将电性连接至导电层212下方的第一导电图案层。
请参照图2,其绘示出根据本发明另一实施例的具有用于电子装置的散热结构的电子封装剖面示意图,其中相同于图1的部件是使用相同的标号并省略其说明。在本实施例中,电子封装20中的电子装置100设置于第一导电图案层上。电子装置100可通过覆晶(flip chip)工艺,使电子装置100通过多个凸块(bump)100c而电性连接至导电层212下方的第一导电图案层,且经由对应的通孔电极210而与第二导电图案层214电性连接。
请参照图3,其绘示出根据本发明另一实施例的具有用于电子装置的散热结构的电子封装剖面示意图,其中相同于图1的部件是使用相同的标号并省略其说明。在本实施例中,电子封装30中的电子装置100设置于第一导电图案层上方的导电层212上。电子装置100通过接线100a以及凸块(未绘示)将电子装置100电性连接至导电层212下方的第一导电图案层,且经由对应的通孔电极210而与第二导电图案层214电性连接。
图4A至图4J是绘示出根据本发明一实施例的用于电子装置的散热结构的制造方法剖面示意图,其中相同于图1至图3的部件是使用相同的标号。请参照图4A,提供一主体201,其具有一第一表面201a(例如,上表面)及相对于第一表面201a的一第二表面201b(例如,下表面)。在本实施例中,主体201可为一封装基板或电路板,且可由半导体材料(例如,硅、锗化硅、氮化镓、砷化镓)、陶瓷、或高分子材料所构成。接着,可通过热氧化法或沉积技术,例如化学气相沉积(chemical vapor deposition,CVD),在主体201的第一表面201a上形成一含硅绝缘层203,例如氮化硅、四乙基硅酸盐氧化物或二氧化硅。之后,可利用溅渡工艺(sputtering)或适当的沉积技术,在含硅绝缘层203上毯覆性地形成一阻挡材料层204a,例如TiW/Cu或其它已知的金属阻挡材料。在本实施例中,阻挡材料层204a可作为后续金属电镀的种子层。
请参照图4B,在阻挡材料层204a上形成一光刻胶层205。之后,通过已知光刻工艺,在光刻胶层205内形成一开口图案205a而局部露出阻挡材料层204a,用以在后续工艺中制作导电图案。请参照图4C,在开口图案205a内填入一导电层204b。举例来说,利用露出的阻挡材料层204a作为种子层以进行电镀工艺(plating)而形成导电层204b。
之后,依序去除光刻胶层205以及位于光刻胶层下方的阻挡材料层204a,以形成第一导电图案层(包括阻挡材料层204a及导电层204b)并而局部露出含硅绝缘层203,分别如图4D及图4E所示。
请参照图4F,在露出的含硅绝缘层203上形成一超纳米结晶钻石薄膜207,使第一导电图案层大体上被超纳米结晶钻石薄膜207包围,且超纳米结晶钻石薄膜207与第一导电图案层在上视方向彼此不重迭。举例来说,通过CVD工艺并利用氩气及甲烷(CH4)作为工艺气体,以形成超纳米结晶钻石薄膜207,其中工艺压力可在90torr至120torr的范围而工艺温度可在450℃至500℃的范围。由于超纳米结晶钻石薄膜207具有良好的贴附性(conformity),因此可完全覆盖露出的含硅绝缘层203并贴合于第一导电图案层的侧壁而构成良好的钝化保护膜及导热绝缘膜。
请参照图4G,可通过已知蚀刻工艺,例如干蚀刻,在第一导电图案层内形成至少一开口208,其延伸于局部的主体201内,用以在后续工艺中制作通孔电极。
请参照图4H,在开口208的侧壁及底部上形成一绝缘层209,例如氮化硅、二氧化硅或超纳米结晶钻石。之后,在第一导电图案层上形成作为种子层的一阻挡材料层210a并覆盖位于开口208的侧壁及底部上的绝缘层209。阻挡材料层210a的材质可相同或相似于阻挡材料层204a。
请参照图4I,可进行电镀工艺或其它适当沉积工艺,以在第一导电图案层上方的阻挡材料层210a上形成一导电层210b并填入开口208(如图4H所示)。
请参照图4J,可进行薄化工艺,例如化学机械研磨工艺(chemicalmechanical polishing,CMP)或蚀刻工艺,自主体201的第二表面201b去除部分的主体201,直至露出位于主体201的开口208(如图4H所示)内的导电层210b,以在主体201内形成一通孔电极210(即,位于开口208内的阻挡材料层210a及导电层210b)。在本实施例中,通孔电极210自主体201的第二表面201b延伸至第一导电图案层内。最后,可通过电镀,在第一导电图案层上形成一导电层212,同时在主体201的第二表面201b上形成一第二导电图案层214,其中第二导电图案层214通过通孔电极210而电性连接至第一导电图案层。如此一来,便可完成本实施例的散热结构。在一实施例中,导电层212及第二导电图案层214可由相同的材料(例如,铜、锡或其它已知的焊料)所构成并通过电镀法同时制做而成。在其它实施例中,导电层212及第二导电图案层214可由不同导电材料所构成。上述散热结构可进一步装配于一电子装置100(例如,发光二极管芯片或其它半导体芯片)下方,以形成具有散热结构的电子封装,如图1所示。
图5A至图5F是绘示出根据本发明另一实施例的用于电子装置的散热结构的制造方法剖面示意图,其中相同于图4A至图4J的部件是使用相同的标号并省略其说明。请参照图5A,提供一主体201,其具有一第一表面201a及一第二表面201b。可通过蚀刻工艺,在主体201内形成至少一开口201c,以在后续工艺中制做通孔电极。需注意的是开口201c的数量是取决于设计需求。此处为了简化说明,仅绘示出二个开口201c。
请参照图5B,在主体201的第一表面201a上形成一含硅绝缘层203并延伸进入开口201c的侧壁及底部。之后,在含硅绝缘层203上形成一阻挡材料层204a。
请参照图5C,在阻挡材料层204a上形成一导电层210b并填入主体201的开口201c内。之后,可通过已知光刻及蚀刻工艺,以图案化导电层210b及下方的阻挡材料层204a,而形成第一导电图案层并局部露出含硅绝缘层203,如图5D所示。
请参照图5E,在露出的含硅绝缘层203上形成一超纳米结晶钻石薄膜207,使第一导电图案层大体上被超纳米结晶钻石薄膜207包围,且超纳米结晶钻石薄膜207与第一导电图案层在上视方向彼此不重迭。接着,可进行薄化工艺,自主体201的第二表面201b去除部分的主体201,直至露出位于主体201的开口201c(如图5B所示)内的阻挡材料层204a及导电层210b,以在主体201内形成一通孔电极210(即,位于开口201c内的阻挡材料层204a及导电层210b)。
请参照图5F,可通过电镀,在第一导电图案层上形成一导电层212,同时在主体201的第二表面201b上形成一第二导电图案层214,其中第二导电图案层214通过通孔电极210而电性连接至第一导电图案层。如此一来,便可完成本实施例的散热结构。上述散热结构可进一步装配于一电子装置100(例如,发光二极管芯片或其它半导体芯片)下方,以形成具有散热结构的电子封装,如图2所示。
图6A至图6J是绘示出根据本发明又一实施例的用于电子装置的散热结构的制造方法剖面示意图。请参照图6A,提供一主体301,其具有一第一表面301a(例如,上表面)及相对于第一表面301a的一第二表面301b(例如,下表面)。在本实施例中,主体301可为一半导体芯片,且其内具有至少一内联线结构302(包括多层金属层以及连接多层金属层的导电插塞(plug))以及至少一半导体元件(未绘示),例如晶体管、电阻、电容或其它现有的半导体元件。内联线结构302电性连接至半导体元件。
接着,可通过热氧化法或沉积技术,在主体301的第一表面301a上形成一含硅绝缘层303,例如氮化硅、四乙基酸盐氧化物或二氧化硅。之后,可在含硅绝缘层303内形成开口以露出主体301内的内联线结构302。利用溅渡工艺或适当的沉积技术,在含硅绝缘层303上毯覆性地形成一阻挡材料层304a(例如,TiW/Cu或其它已知的金属阻挡材料)并填入开口中,以在开口内形成导电插塞303a。在本实施例中,阻挡材料层304a可作为后续金属电镀的种子层。
请参照图6B,在阻挡材料层304a上形成一光刻胶层305。之后,通过已知光刻工艺,在光刻胶层305内形成一开口图案305a而局部露出阻挡材料层304a,用以在后续工艺中制作导电图案。请参照图6C,在开口图案305a内填入一导电层304b。举例来说,利用露出的阻挡材料层304a作为种子层以进行电镀工艺而形成导电层304b。
之后,依序去除光刻胶层305以及位于光刻胶层下方的阻挡材料层304a,以形成第一导电图案层(包括阻挡材料层304a及导电层304b)并而局部露出含硅绝缘层303,分别如图6D及图6E所示。第一导电图案层通过导电插塞303a而与内联线结构302电性连接。
请参照图6F,在露出的含硅绝缘层303上形成一超纳米结晶钻石薄膜307,使第一导电图案层大体上被超纳米结晶钻石薄膜307包围,且超纳米结晶钻石薄膜307与第一导电图案层在上视方向彼此不重迭。
请参照图6G,可通过已知蚀刻工艺,例如干蚀刻,在第一导电图案层内形成至少一开口308,其延伸于局部的主体301内,用以在后续工艺中制作通孔电极。
请参照图6H,在开口308的侧壁及底部上形成一绝缘层309,例如氮化硅、二氧化硅或超纳米结晶钻石。之后,在第一导电图案层上形成作为种子层的一阻挡材料层310a并覆盖位于开口308的侧壁及底部上的绝缘层309。阻挡材料层310a的材质可相同或相似于阻挡材料层304a。
请参照图6I,可进行电镀工艺或其它适当沉积工艺,以在第一导电图案层上方的阻挡材料层310a上形成一导电层310b并填入开口308(如图6H所示)。
请参照图6J,可进行薄化工艺,自主体301的第二表面301b去除部分的主体301,直至露出位于主体301的开口308(如图6H所示)内的导电层310b,以在主体301内形成一通孔电极310(即,位于开口308内的阻挡材料层310a及导电层310b)。在本实施例中,通孔电极310自主体301的第二表面301b延伸至第一导电图案层内。最后,可通过电镀,在第一导电图案层上形成一导电层312,同时在主体301的第二表面301b上形成一第二导电图案层314,其中第二导电图案层314通过通孔电极310而电性连接至第一导电图案层。如此一来,便可完成本实施例的散热结构。在一实施例中,导电层312及第二导电图案层314可由相同的材料(例如,铜、锡或其它已知的焊料)所构成并通过电镀法同时制做而成。在其它实施例中,导电层312及第二导电图案层314可由不同导电材料所构成。上述散热结构可进一步装配于一电子装置(例如,发光二极管芯片或其它半导体芯片)下方,以形成具有散热结构的三维集成电路(three-dimensional integrated circuit,3DIC)。
图7A至图7F是绘示出根据本发明又另一实施例的用于电子装置的散热结构的制造方法剖面示意图,其中相同于图6A至图6J的部件是使用相同的标号并省略其说明。请参照图6A,提供一主体301,其具有一第一表面301a及一第二表面301b。主体301可为一半导体芯片,且其内具有至少一内联线结构302以及至少一半导体元件。内联线结构302电性连接至半导体元件。可通过蚀刻工艺,在主体301内形成至少一开口301c,以在后续工艺中制做通孔电极。需注意的是开口301c的数量是取决于设计需求。此处为了简化说明,仅绘示出二个开口301c。
请参照图7B,在主体301的第一表面301a上形成一含硅绝缘层303并延伸进入开口301c的侧壁及底部。之后,可在含硅绝缘层303内形成开口301d,以露出主体301内的内联线结构302。在含硅绝缘层303上形成一阻挡材料层304a并填入开口301c及301d中。
请参照图7C,在阻挡材料层304a上形成一导电层310b并填入主体301的开口301c及301d内,以形成电性连接内线结构302的导电插塞。之后,可通过已知光刻及蚀刻工艺,以图案化导电层310b及下方的阻挡材料层304a,而形成第一导电图案层并局部露出含硅绝缘层303,如图7D所示。
请参照图7E,在露出的含硅绝缘层303上形成一超纳米结晶钻石薄膜307,使第一导电图案层大体上被超纳米结晶钻石薄膜307包围,且超纳米结晶钻石薄膜307与第一导电图案层在上视方向彼此不重迭。接着,可进行薄化工艺,自主体301的第二表面301b去除部分的主体301,直至露出位于主体301的开口301c(如图7B所示)内的阻挡材料层304a及导电层310b,以在主体301内形成一通孔电极310(即,位于开口301c内的阻挡材料层304a及导电层310b)。
请参照图7F,可通过电镀,在第一导电图案层上形成一导电层312,同时在主体301的第二表面301b上形成一第二导电图案层314,其中第二导电图案层314通过通孔电极310而电性连接至第一导电图案层。如此一来,便可完成本实施例的散热结构。上述散热结构可进一步装配于一电子装置(例如,发光二极管芯片或其它半导体芯片)下方,以形成具有散热结构的三维集成电路(3DIC)。
根据前述实施例,由于超纳米结晶钻石薄膜具有优于散热片的导热是数(即,约1000W/(m·K)),因此可提供封装基板或半导体芯片更优的散热效果。再者,相较于传统散热片,超纳米结晶钻石薄膜符合装置尺寸持续缩小的趋势。另外,由于超纳米结晶钻石薄膜可完全覆盖含硅绝缘层且在在上视方向不与导电图案重迭,因此可排除钻石薄膜加工困难以及与金属附着性不佳的问题,进而降低提升装置的可靠度及良率。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当视本发明权利要求范围所界定的为准。

Claims (23)

1.一种用于电子装置的散热结构,包括:
一主体,具有一第一表面及相对于该第一表面的一第二表面;
一含硅绝缘层,设置于该主体的该第一表面上;
一超纳米结晶钻石薄膜,设置于该含硅绝缘层上;
一第一导电图案层,设置于该含硅绝缘层上且被该超纳米结晶钻石薄膜包围,其中该超纳米结晶钻石薄膜与该第一导电图案层在上视方向彼此不重迭;以及
第二导电图案层,设置于该主体的该第二表面上;
其中,该主体内具有至少一通孔电极,其电性连接于该第一导电图案层与该第二导电图案层之间。
2.如权利要求1所述的用于电子装置的散热结构,其中该主体为一电路板或一封装基板。
3.如权利要求1所述的用于电子装置的散热结构,其中该主体为一半导体芯片,且其内具有至少一半导体元件及电性连接该半导体元件的至少一内联线结构。
4.如权利要求3所述的用于电子装置的散热结构,其中该第一导电图案层电性连接至该内联线结构。
5.如权利要求1所述的用于电子装置的散热结构,其中该通孔电极自该主体的该第二表面延伸至该第一导电图案层内。
6.如权利要求1所述的用于电子装置的散热结构,其中该通孔电极与该主体之间具有一绝缘层,使该通孔电极与该主体电性绝缘。
7.如权利要求6所述的用于电子装置的散热结构,其中该绝缘层包括:氮化硅、二氧化硅或超纳米结晶钻石。
8.如权利要求1所述的用于电子装置的散热结构,其中该第一导电图案层包括至少一阻挡材料层。
9.如权利要求1所述的用于电子装置的散热结构,其中该含硅绝缘层包括氮化硅、四乙基酸盐氧化物或二氧化硅。
10.一种电子封装,包括:
如权利要求1所述的散热结构;以及
一电子装置,设置于该超纳米结晶钻石薄膜或该第一导电图案层上,且电性连接至该第一导电图案层。
11.如权利要求10所述的电子封装,其中该电子装置通过至少一接线或至少一凸块而电性连接至该第一导电图案层。
12.如权利要求10所述的电子封装,其中该电子装置包括发光二极管芯片或半导体芯片。
13.一种用于电子装置的散热结构的制造方法,包括:
提供一主体,其具有一第一表面及相对于该第一表面的一第二表面;
在该主体的该第一表面上形成一含硅绝缘层;
在该含硅绝缘层上形成一第一导电图案层及一超纳米结晶钻石薄膜,其中该第一导电图案层被该超纳米结晶钻石薄膜包围,且该超纳米结晶钻石薄膜与该第一导电图案层在上视方向彼此不重迭;
在该主体内形成至少一通孔电极,其中该通孔电极自该主体的该第二表面延伸至该第一导电图案层内;以及
在该主体的该第二表面上形成一第二导电图案层,其中该第二导电图案层通过该通孔电极而电性连接至该第一导电图案层。
14.如权利要求13所述的用于电子装置的散热结构的制造方法,其中该主体为一电路板或一封装基板。
15.如权利要求13所述的用于电子装置的散热结构的制造方法,其中该主体为一半导体芯片,且其内具有至少一半导体元件及电性连接该半导体元件的至少一内联线结构。
16.如权利要求15所述的用于电子装置的散热结构的制造方法,其中该第一导电图案层电性连接至该内联线结构。
17.如权利要求13所述的用于电子装置的散热结构的制造方法,其中形成该第一导电图案层包括:
在该含硅绝缘层上形成一阻挡材料层;
在该阻挡材料层上形成一光刻胶层,其中该光刻胶层内具有一开口图案;
在该开口图案内填入一导电层;以及
依序去除该光刻胶层及位于该光刻胶层下方的该阻挡材料层,以形成该第一导电图案层。
18.如权利要求13所述的用于电子装置的散热结构的制造方法,其中形成该通孔电极包括:
在该第一导电图案层内形成至少一开口,并延伸进入该主体内;
在该开口的侧壁及底部上形成一绝缘层;
在该开口内填入一导电层;以及
自该主体的该第二表面去除部分的该主体,直至露出位于该主体的该开口内的该导电层,以形成该通孔电极。
19.如权利要求18所述的用于电子装置的散热结构的制造方法,其中该绝缘层包括:氮化硅、二氧化硅或超纳米结晶钻石。
20.如权利要求13所述的用于电子装置的散热结构的制造方法,其中该主体具有至少一开口,使位于该主体的该第一表面上的该含硅绝缘层延伸进入该开口的侧壁及底部。
21.如权利要求20所述的用于电子装置的散热结构的制造方法,其中形成该第一导电图案层包括下列步骤:
在该含硅绝缘层上形成一阻挡材料层;
在该阻挡材料层上形成一导电层并填入该主体的该开口内;以及
图案化该导电层及下方的该阻挡材料层,以形成该第一导电图案层。
22.如权利要求21所述的用于电子装置的散热结构的制造方法,还包括:
自该主体的该第二表面去除部分的该主体直至露出位于该主体的该开口内的该阻挡材料层或该导电层,以在该主体内形成一通孔电极;以及
在该主体的该第二表面上形成一第二导电图案层,其中该第二导电图案层通过该通孔电极而电性连接至该第一导电图案层。
23.如权利要求13所述的用于电子装置的散热结构的制造方法,其中该含硅绝缘层包括氮化硅、四乙基酸盐氧化物或二氧化硅。
CN 201010283714 2010-09-15 2010-09-15 电子封装、用于电子装置的散热结构及其制造方法 Active CN102403284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010283714 CN102403284B (zh) 2010-09-15 2010-09-15 电子封装、用于电子装置的散热结构及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010283714 CN102403284B (zh) 2010-09-15 2010-09-15 电子封装、用于电子装置的散热结构及其制造方法

Publications (2)

Publication Number Publication Date
CN102403284A CN102403284A (zh) 2012-04-04
CN102403284B true CN102403284B (zh) 2013-08-28

Family

ID=45885348

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010283714 Active CN102403284B (zh) 2010-09-15 2010-09-15 电子封装、用于电子装置的散热结构及其制造方法

Country Status (1)

Country Link
CN (1) CN102403284B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127286B2 (en) * 2001-02-28 2006-10-24 Second Sight Medical Products, Inc. Implantable device using ultra-nanocrystalline diamond
JP2010509081A (ja) * 2006-11-10 2010-03-25 エージェンシー フォー サイエンス, テクノロジー アンド リサーチ マイクロメカニカル構造体およびマイクロメカニカル構造体の製造方法
TW201009902A (en) * 2008-08-28 2010-03-01 Univ Tamkang A manufacturing method of a semiconductor-based ultra nano-crystalline diamond and product thereof

Also Published As

Publication number Publication date
CN102403284A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
US9159602B2 (en) Apparatus and methods for constructing semiconductor chip packages with silicon space transformer carriers
US7863189B2 (en) Methods for fabricating silicon carriers with conductive through-vias with low stress and low defect density
CN102332435B (zh) 电子元件及其制作方法
US8866258B2 (en) Interposer structure with passive component and method for fabricating same
US6936536B2 (en) Methods of forming conductive through-wafer vias
KR100569590B1 (ko) 고주파 반도체 장치 및 그 제조방법
KR101483273B1 (ko) 구리 패드와 패드 장벽층을 포함하는 반도체 소자와 그의 배선 구조 및 그 제조 방법들
CN109524314A (zh) 封装件及其形成方法
US8552554B2 (en) Heat dissipation structure for electronic device and fabrication method thereof
US7781887B2 (en) Semiconductor device including an interconnect
CN109755213A (zh) 管芯堆叠结构及其制作方法
CN102169841A (zh) 凹入的半导体基底和相关技术
CN108428679A (zh) 具有热导柱的集成电路封装
US8877563B2 (en) Microfabricated pillar fins for thermal management
US11217560B2 (en) Die assembly and method of manufacturing the same
US20140141569A1 (en) Semiconductor devices having through-via and methods of fabricating the same
CN107134413A (zh) 半导体装置以及制造的方法
US8173539B1 (en) Method for fabricating metal redistribution layer
CN102403284B (zh) 电子封装、用于电子装置的散热结构及其制造方法
TWI396267B (zh) 電子封裝、用於電子裝置的散熱結構及其製造方法
JP2012156316A (ja) 半導体装置の製造方法及び半導体装置
CN111769088B (zh) 基于背部液冷导入的堆叠封装结构及其制备方法
CN110223971A (zh) 具有散热特性的三维可堆叠式半导体组体
CN102339810B (zh) 硅基基板及其制作方法
CN116033673A (zh) 电路板级封装方法及电路板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant