CN102394245B - 金属氧化物半导体场效应晶体管及其制作方法 - Google Patents

金属氧化物半导体场效应晶体管及其制作方法 Download PDF

Info

Publication number
CN102394245B
CN102394245B CN201110362992.9A CN201110362992A CN102394245B CN 102394245 B CN102394245 B CN 102394245B CN 201110362992 A CN201110362992 A CN 201110362992A CN 102394245 B CN102394245 B CN 102394245B
Authority
CN
China
Prior art keywords
doped region
tagma
region
mosfet
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110362992.9A
Other languages
English (en)
Other versions
CN102394245A (zh
Inventor
唐纳德·迪斯尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Monolithic Power Systems Co Ltd
Original Assignee
Chengdu Monolithic Power Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Monolithic Power Systems Co Ltd filed Critical Chengdu Monolithic Power Systems Co Ltd
Publication of CN102394245A publication Critical patent/CN102394245A/zh
Application granted granted Critical
Publication of CN102394245B publication Critical patent/CN102394245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明的实施例公开了一种制作金属氧化物半导体(MOS)晶体管的方法,包括:提供衬底和具有第一掺杂类型的体区;经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质以形成具有第一掺杂类型的掺杂区,以选择性地提高体区的掺杂浓度。其中所述掺杂区包括:第一掺杂区,位于栅极区下方;第二掺杂区,位于源极区和漏极区下方。第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面。这种制作方法可制作短沟道长度的MOSFET,而且避免了短沟道效应。

Description

金属氧化物半导体场效应晶体管及其制作方法
技术领域
本发明涉及电子元器件,尤其涉及金属氧化物半导体场效应晶体管(MOSFET)及其制作方法。
背景技术
采用互补金属氧化物半导体(Complementary Metal-OxideSemiconductor,CMOS)工艺制造的器件可用于多种电路,包括集成电路(IC)形式的电路。采用CMOS工艺制造的器件有很多,常见的有金属氧化物半导体场效应晶体管(Metal-Oxide SemiconductorField Effect Transistor,MOSFET)。众所周知,MOSFET具有源极、漏极和栅极。对增强型MOSFET而言,当向其栅极施加一个大于阈值电压的正向电压时,沿着栅极区与体区的交界处将产生反型层(也称之为沟道),MOS晶体管导通。沟道提供了从源极到漏极的电流通路。当栅极电压减小使得沟道消失时,MOSFET关断。
通常,为了在给定的集成电路尺寸内封装更多的MOS晶体管,常常将这些晶体管设计为具有较短的沟道长度。然而沟道长度的减小会导致不期望的短沟道效应,例如穿通效应和热载流子效应。现有的解决短沟道效应的方案包括减小栅极氧化层的厚度和提高体区的掺杂浓度。然而这些解决方案也存在缺点:减小栅极氧化层的厚度会限制晶体管的最大栅极电压,而提高体区掺杂浓度将减小MOS晶体管的击穿电压,并加剧热载流子效应。
发明内容
为了解决前面描述的一个问题或者多个问题,本发明提出一种金属氧化物半导体场效应晶体管及其制作方法。
根据本发明一实施例的金属氧化物半导体(MOSFET)的制作方法,包括:提供衬底和具有第一掺杂类型的体区;经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质以形成具有第一掺杂类型的掺杂区,以选择性地提高体区的掺杂浓度。其中所述掺杂区包括:第一掺杂区,位于栅极区下方;第二掺杂区,位于源极区和漏极区下方。第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面。
根据本发明一实施例的MOSFET,包括:源极区;栅极区;漏极区;以及具有第一掺杂类型的体区,该体区包括阶梯形掺杂区,其中阶梯形掺杂区的掺杂浓度高于体区上表面的掺杂浓度。该阶梯形掺杂区包括:第一掺杂区,位于栅极区下方;第二掺杂区,位于源极区和漏极区下方;其中第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面。
根据本发明一实施例的金属氧化物半导体(MOSFET)的制作方法,包括:在体区上形成掩膜;通过掩膜的开口经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质,以提高体区中位于栅极区下方,靠近MOSFET上表面区域的掺杂浓度,其中第一杂质与体区的掺杂类型相同。
根据本发明提供的实施例,可制作尺寸小、沟道长度短的MOSFET,并且避免了如穿通效应和热载流子效应的短沟道效应。
附图说明
为了更好的理解本发明,将根据以下附图对本发明进行详细描述:
图1是根据本发明一实施例的PMOS晶体管的剖视图;
图2是根据本发明另一实施例的PMOS晶体管的剖视图。
具体实施方式
下面参照附图充分描述本发明的示范实施例。这些实施例公开了大量的细节,例如所用材料、制作工艺以及结构来清楚的说明本发明。本领域技术人员将理解,没有一些具体细节,本发明同样可以实施。为了清晰明了的阐述本发明,本文省略了一些具体的公知技术的描述。此外,在一些实施例中已经详细描述过的类似的结构和功能,在其它实施例中不再赘述。
尽管本发明是结合PMOS晶体管的具体实施例来描述的,但由于PMOS晶体管的各个掺杂区域的类型与NMOS晶体管相反,因此本发明的实施例仅仅需要稍作改变就可以应用于NMOS晶体管。NMOS晶体管同样满足本发明的精神和保护范围。
图1是根据本发明一实施例的PMOS晶体管的剖视图。该PMOS晶体管位于硅衬底101中的N型体区102内。在一个实施例中,PMOS晶体管是增强型P沟道金属氧化物半导体场效应晶体管(PMOSFET)。如图1所示,PMOS晶体管包括P+源极区105、栅极区106和P+漏极区107。在另一个实施例中,PMOS晶体管还包括用作栅极绝缘层的栅极氧化层103、N+体区接触区104、轻掺杂的漏极区110(LDD)和侧壁间隔层112。在一个实施例中,栅极氧化层103可以包括热处理的和/或淀积的二氧化硅。侧壁间隔层112可包括氧化物、多晶硅或者氮化硅材料。N+体区接触区104为电耦接至体区102的电极提供接触区域。在一个实施例中,栅极区106包括厚度为4000埃~8000埃的多晶硅。
前面所述材料或区域的掺杂类型和掺杂浓度都是可改变的,还可根据不同的应用场合来制备掺杂类型合适的其它材料或区域。
P+源极区105和P+漏极区107是采用离子注入工艺制作而成。在一个实施例中,掩膜108和侧壁间隔层112一起界定了在N型体区102中形成P+源极区105和P+漏极区107的那个区域。掩膜108可包括光刻常用的遮蔽材料,例如光刻胶。与传统的MOS晶体管一样,P+源极区105与P+漏极区107从MOS晶体管的上表面向下延伸。
图2是根据本发明另一实施例的PMOS晶体管的剖视图。在图2所示实施例中,对图1所示PMOS晶体管进行高能离子注入,以在N型体区102内形成阶梯形掺杂区120。在一个实施例中,高能离子注入工艺通过已有掩膜的开口实施,高能离子注入工艺与其它的离子注入工艺共用该掩膜。在如在图2所示的实施例中那样,再次采用制作P+源极区105与P+漏极区107时用的那个掩膜108来制作阶梯形掺杂区120。可以原位(in-situ)执行高能离子注入,按照这种制作方法,只需将衬底置于离子注入机中一次,即可完成源极区105和漏极区107的离子注入工艺和高能离子注入工艺。在另一实施例中,高能离子注入工艺通过使用与制作轻掺杂漏极区110的那个掩膜相同的掩膜来实施。与其他离子注入工艺共用掩膜可以节省步骤、降低成本。
在又一实施例中,制作阶梯形掺杂区120的高能离子注入工艺通过专用掩膜层的开口来实施,在任何其他的离子注入工艺中不使用该掩膜,以使得只向特定的区域注入掺杂杂质或者掺杂剂。掩膜应该足够厚以充分阻挡杂质的注入,使得任何穿透掩膜进入的杂质掺杂剂都不能对底层的元件产生显著的不利影响。
如图2所示,阶梯形掺杂区120是采用高能离子注入工艺向N型体区102注入N型杂质(例如磷)形成的。对于N沟道的MOS晶体管,高能离子注入工艺向P型体区注入P型杂质(例如硼)。
在一个实施例中,N型杂质穿过栅极区106、栅极氧化层103被注入N型体区102内。在一个实施例中,N型杂质还穿过侧壁间隔层112被注入N型体区102内。
一般地,注入的离子仅能在材料中穿透一定的深度,,这一穿透深度被称为注入深度。注入深度与注入的离子种类、注入能量以及注入设备与衬底间的角度有关。当离子被注入一叠不同厚度的材料实施时,注入深度自然地与这叠材料的外部形状对应。因此,掺杂区120是阶梯形的,包括穿过栅极区106形成的第一掺杂区131和穿过栅极区106外的区域(p+源极区105和p+漏极区107)形成的第二掺杂区132,第一掺杂区131比与第二掺杂区132的深度浅,更靠近栅极氧化层103。
阶梯形掺杂区120选择性地提高了N型体区102的掺杂浓度,也就是说,阶梯形掺杂区120在选择的部分中,例如提高了N型体区102内部分区域的掺杂浓度,而没有提高其他区域的掺杂浓度,以此来抑制穿通效应。第一掺杂区131的边界与栅极区106或侧壁间隔层112的边界是自对准的,第一掺杂区131不会延伸到p+源极区105和P+漏极区107的正下方区域。如图2所示,第一掺杂区131相比于第二掺杂区132更靠近N型体区102的上表面。高能离子注入工艺使得离子能够穿过栅极区106。在一个实施例中,采用大于200keV(千电子伏特),例如400keV~800keV的注入能量,使磷离子穿过厚度大约为6000埃的栅极区106,以形成阶梯形掺杂区120的第一掺杂区131。这样栅极区106下方的区域是逆向掺杂的,即N型体区上表面的掺杂浓度低于其下方第一掺杂区131的掺杂浓度。在一个实施例中,阶梯形掺杂区120位于栅氧层103下方0.5μm~1.5μm处。
PMOS晶体管的阈值电压受栅氧层103的厚度和N型体区102上表面附近的掺杂浓度影响,因此,阶梯形掺杂区120的第一掺杂区131应制作得足够深,以使得N型体区102上表面附近的掺杂浓度不会因为过高而明显提高PMOS晶体管的阈值电压。高能离子注入工艺采用的注入剂量和注入能量因器件而异,可通过模拟仿真和实验优化来选择。一般地,因高能离子注入而引入的额外掺杂浓度最好小于N型体区102原有的(background)掺杂浓度。在一个实施例中,高能注入引入的额外掺杂浓度小于N型体区102表面掺杂浓度的十分之一。
第一掺杂区131离栅极氧化层103较近,增大了N型体区102中,P+源极区105和P+漏极区107之间的区域的掺杂浓度,最有效地减小了诸如穿通效应这样的短沟道效应。此外,栅极区106下方的区域是逆向掺杂的,第一掺杂区131不会对MOS晶体管的阈值电压造成实质性的影响。第二掺杂区132(例如掺杂区120中不包括栅极区106下方的区域)与P+源极区105和P+漏极区107的垂直距离较远,有助于减小对热载流子效应和击穿电压的影响。这样,阶梯形掺杂区120一方面保证了MOS晶体管的短沟道,另一方面避免了前述的短沟道效应。
此外,制作阶梯形掺杂区120的高能离子注入工艺一般在MOS晶体管的制作后期实施,以最小化热推进(drive-in)并保持它的掺杂区域分布。在一个实施例中,高能离子注入工艺起码是在制作了N型体区102、栅极氧化层103和栅极区106之后实施的。在双扩散型双极性CMOS-DMOS晶体管的制作过程中,高能离子注入工艺在P型体区推进以及相关的热推进工艺之后实施。
根据一个实施例,提供了一种金属氧化物半导体场效应晶体管MOSFET的制作方法,包括步骤:提供衬底和具有第一掺杂类型的体区;以及经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质,形成具有第一掺杂类型的掺杂区,以选择性地提高体区的掺杂浓度,所述掺杂区包括:第一掺杂区,位于栅极区下方;第二掺杂区,位于源极区和漏极区下方;其中,第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面。
根据一实施例,MOSFET可以为P沟道MOSFET,第一掺杂类型可以为N型。
根据一实施例,可以采用注入能量大于200千电子伏特的高能离子注入工艺来形成掺杂区。
根据一实施例,所述源极区和漏极区是通过向体区注入第二杂质来制作的,源极区和漏极区的制作与第一杂质的注入使用同一掩膜。
根据一实施例,掺杂区位于体区上表面下方的第一深度处,其中第一深度为0.5μm~1.5μm。
根据一实施例,所述体区上表面的掺杂浓度低于体区内掺杂区的掺杂浓度。
本发明的另一实施例是一种金属氧化物半导体场效应晶体管MOSFET,包括:源极区;栅极区;漏极区;以及具有第一掺杂类型的体区,该体区包括阶梯形掺杂区,其中阶梯形掺杂区的掺杂浓度高于体区上表面的掺杂浓度,该阶梯形掺杂区包括:第一掺杂区,位于栅极区下方;第二掺杂区,位于源极区和漏极区下方;其中,第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面。
根据该实施例,MOSFET可以为P沟道MOSFET,第一掺杂类型可以为N型。另外,阶梯形掺杂区位于体区上表面下方的第一深度处,其中第一深度为0.5μm~1.5μm。
本发明的又一实施例是一种金属氧化物半导体场效应晶体管MOSFET的制作方法,包括步骤:在体区上形成掩膜;通过掩膜的开口经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质,以提高体区中位于栅极区下方,靠近MOSFET上表面区域的掺杂浓度,其中第一杂质的类型与体区的掺杂类型相同。
根据该实施例,所述源极区和漏极区是通过向体区注入第二杂质来制作的,源极区和漏极区的制作与第一杂质的注入使用同一掩膜。
本发明的实施例公开了一种可改善短沟道效应的MOS器件及其制作方法。尽管本发明中详细描述的与特定实施例相结合,并给出一些特定的细节。但是,本发明仍有许多其他实施方式。在实际执行时可能有些变化,但仍然包含在本发明主旨范围内,因此,本发明旨在包括所有落入本发明和所述权利要求范围及主旨内的替代例、改进例和变化例等。

Claims (5)

1.一种金属氧化物半导体场效应晶体管MOSFET的制作方法,包括步骤:
提供衬底和具有第一掺杂类型的体区;
经MOSFET的源极区、栅极区和漏极区向体区内注入第一杂质,形成具有第一掺杂类型的掺杂区,以选择性地提高体区的掺杂浓度,所述掺杂区的掺杂浓度高于体区上表面的掺杂浓度,所述掺杂区包括:
第一掺杂区,位于栅极区下方;
第二掺杂区,位于源极区和漏极区下方;
其中,第一掺杂区比第二掺杂区的深度浅,更靠近体区的上表面;以及
其中使用同一光刻掩膜来原位执行离子注入以形成源极区、漏极区以及掺杂区,通过该光刻掩膜来定位源极区、漏极区以及体区中的掺杂区。
2.如权利要求1所述的制作方法,其中所述MOSFET为P沟道MOSFET,第一掺杂类型为N型。
3.如权利要求1所述的制作方法,其中采用注入能量大于200千电子伏特的高能离子注入工艺来形成掺杂区。
4.如权利要求1所述的制作方法,其中所述源极区和漏极区通过向体区注入第二杂质来制作。
5.如权利要求1所述的制作方法,其中所述掺杂区位于体区上表面下方的第一深度处,其中第一深度为0.5μm~1.5μm。
CN201110362992.9A 2010-11-18 2011-11-16 金属氧化物半导体场效应晶体管及其制作方法 Active CN102394245B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/949,272 US8664067B2 (en) 2010-11-18 2010-11-18 CMOS devices with reduced short channel effects
US12/949,272 2010-11-18

Publications (2)

Publication Number Publication Date
CN102394245A CN102394245A (zh) 2012-03-28
CN102394245B true CN102394245B (zh) 2014-05-21

Family

ID=45861503

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110362992.9A Active CN102394245B (zh) 2010-11-18 2011-11-16 金属氧化物半导体场效应晶体管及其制作方法
CN2011204539145U Expired - Fee Related CN202332858U (zh) 2010-11-18 2011-11-16 一种金属氧化物半导体场效应晶体管

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011204539145U Expired - Fee Related CN202332858U (zh) 2010-11-18 2011-11-16 一种金属氧化物半导体场效应晶体管

Country Status (3)

Country Link
US (1) US8664067B2 (zh)
CN (2) CN102394245B (zh)
TW (1) TWI496219B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772867B2 (en) 2012-12-03 2014-07-08 Monolithic Power Systems, Inc. High voltage high side DMOS and the method for forming thereof
TWI562377B (en) * 2014-11-04 2016-12-11 Macronix Int Co Ltd Semiconductor device and method for fabricating the same
US9893146B1 (en) 2016-10-04 2018-02-13 Monolithic Power Systems, Inc. Lateral DMOS and the method for forming thereof
CN109119483A (zh) * 2018-11-05 2019-01-01 深圳市鹏朗贸易有限责任公司 一种晶体管及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365475B1 (en) * 2000-03-27 2002-04-02 United Microelectronics Corp. Method of forming a MOS transistor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042626B2 (ja) * 1976-05-18 1985-09-24 松下電器産業株式会社 半導体装置の製造方法
DE2706623A1 (de) * 1977-02-16 1978-08-17 Siemens Ag Mis-fet fuer hohe source-drain-spannungen
US4697198A (en) * 1984-08-22 1987-09-29 Hitachi, Ltd. MOSFET which reduces the short-channel effect
US5376580A (en) * 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5413949A (en) * 1994-04-26 1995-05-09 United Microelectronics Corporation Method of making self-aligned MOSFET
US5605855A (en) * 1995-02-28 1997-02-25 Motorola Inc. Process for fabricating a graded-channel MOS device
JP3511970B2 (ja) * 1995-06-15 2004-03-29 日亜化学工業株式会社 窒化物半導体発光素子
US5719081A (en) * 1995-11-03 1998-02-17 Motorola, Inc. Fabrication method for a semiconductor device on a semiconductor on insulator substrate using a two stage threshold adjust implant
US5792699A (en) * 1996-06-03 1998-08-11 Industrial Technology Research Institute Method for reduction of reverse short channel effect in MOSFET
US6221724B1 (en) * 1998-11-06 2001-04-24 Advanced Micro Devices, Inc. Method of fabricating an integrated circuit having punch-through suppression
US6440805B1 (en) * 2000-02-29 2002-08-27 Mototrola, Inc. Method of forming a semiconductor device with isolation and well regions
US6468852B1 (en) * 2001-08-03 2002-10-22 Micron Technology, Inc. Methods of forming field effect transistors; methods of forming DRAM circuitry
US6780686B2 (en) * 2002-03-21 2004-08-24 Advanced Micro Devices, Inc. Doping methods for fully-depleted SOI structures, and device comprising the resulting doped regions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6365475B1 (en) * 2000-03-27 2002-04-02 United Microelectronics Corp. Method of forming a MOS transistor

Also Published As

Publication number Publication date
TW201230205A (en) 2012-07-16
US8664067B2 (en) 2014-03-04
CN202332858U (zh) 2012-07-11
TWI496219B (zh) 2015-08-11
US20120126340A1 (en) 2012-05-24
CN102394245A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
US9660074B2 (en) Methods and apparatus for LDMOS devices with cascaded RESURF implants and double buffers
US8120105B2 (en) Lateral DMOS field effect transistor with reduced threshold voltage and self-aligned drift region
US7928508B2 (en) Disconnected DPW structures for improving on-state performance of MOS devices
CN1317834A (zh) 半导体装置及其制造方法
CN101728274A (zh) 通过共注入碳和氮降低多晶硅耗尽
US8501567B2 (en) Manufacturing method of high voltage device
CN103545218B (zh) 用于栅极边缘二极管泄漏电流减少的袋状反向掺杂
CN102315260A (zh) 半导体元件及其制造方法
KR20100064264A (ko) 반도체 소자 및 이의 제조 방법
US20200006549A1 (en) Drain extended transistor
CN102394245B (zh) 金属氧化物半导体场效应晶体管及其制作方法
US20080121992A1 (en) Semiconductor device including diffusion barrier region and method of fabricating the same
KR101781220B1 (ko) 디프레션형 mos 트랜지스터를 갖는 반도체 장치
CN101661889B (zh) 一种部分耗尽的绝缘层上硅mos晶体管的制作方法
CN107785425B (zh) 半导体器件及其形成方法
CN101621071B (zh) 金属氧化物半导体器件及其制造方法
CN104916675B (zh) 半导体器件及其制造方法
KR100650901B1 (ko) 매립 게이트를 갖는 금속 산화물 반도체 트랜지스터
CN102569077A (zh) 用于制作半导体器件的源/漏区的方法
CN109346440B (zh) 半导体器件的制造方法和集成电路的制造方法
CN108109908A (zh) 一种半导体器件及其制造方法
KR20100046354A (ko) Ldmos 트랜지스터 및 그의 제조 방법
CN108574014B (zh) Ldmos器件及其制造方法
CN111092120A (zh) 场效应管器件及其制造方法
KR100628241B1 (ko) 반도체 소자의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant