CN102388303B - 折叠传感器 - Google Patents

折叠传感器 Download PDF

Info

Publication number
CN102388303B
CN102388303B CN2010800154813A CN201080015481A CN102388303B CN 102388303 B CN102388303 B CN 102388303B CN 2010800154813 A CN2010800154813 A CN 2010800154813A CN 201080015481 A CN201080015481 A CN 201080015481A CN 102388303 B CN102388303 B CN 102388303B
Authority
CN
China
Prior art keywords
substrate
sensor
light
optical
photocon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010800154813A
Other languages
English (en)
Other versions
CN102388303A (zh
Inventor
巴特·A·M·阿拉德
吕本·贝尔纳杜斯·艾尔弗雷德·夏普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Original Assignee
Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO filed Critical Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek TNO
Publication of CN102388303A publication Critical patent/CN102388303A/zh
Application granted granted Critical
Publication of CN102388303B publication Critical patent/CN102388303B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6445Measuring fluorescence polarisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • G01N21/6454Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/043Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/901Assemblies of multiple devices comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
    • G01N2021/7706Reagent provision
    • G01N2021/7723Swelling part, also for adsorption sensor, i.e. without chemical reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7783Transmission, loss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0628Organic LED [OLED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Radiology & Medical Imaging (AREA)
  • Multimedia (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Transform (AREA)

Abstract

在一个方面中,本发明提供了一种光学传感器(100),包括挠性基板(2)以及定位在基板上的光学元件(3、3’)。挠性基板包含影响光学元件的变形(5),并且变形在至少部分地环绕光学元件的基板变形区(4、4’)中提供。本发明的一个目的是提供一种与卷对卷制造协调一致的光学传感器构造。

Description

折叠传感器
本发明涉及在挠性箔(flexible foil)上制造光学传感器。
在典型的光学传感器中,光必须从发光源经过一些光导介质传播至光接收探测器。为增加光学传感器的测量精确性及可靠性,期望制造光学传感器的阵列而非单个传感器。这可通过在挠性箔上印刷有机发光二极管(OLED)以及有机光电二极管(OPD)来完成。为降低生产时间以及组装成本,优选地在卷对卷工艺(roll-to-roll process)中完成印刷。
然而,OLED和OPD都是伪二维的,并且只有当彼此面对时才能正常地相互作用。因此原型的传感器构造是这样的一种分层结构,即,每个光电组件与导向元件之间插入有一分隔层。在卷对卷工艺中通过例如层压和互连电子箔来组装像这样的传感器构造会是比较困难的。
一种降低与组装光学传感器有关的复杂性的方法是在相同的箔上制造OLED及OPD。这省去了如上所述的原型光学传感器中的一层。箔上定位有导向元件,以将光从OLED引导至OPD。公开US2007102654A15示出了这种方法的一个实例。不幸的是,光导元件在箔上的精确定位使得这种传感器构造不适于用在卷对卷工艺中。此外,将光导元件定位在平面光学元件上同时保持足够的反射率会是比较困难的。
本发明的一个目的是提供一种与卷对卷制造协调一致的光学传感器构造。
在一个方面中,本发明提供了一种光学传感器,包括挠性基板以及定位在基板上的光学元件。挠性基板包含影响光学元件的变形。变形在至少部分地环绕光学元件的基板变形区中提供。
在另一方面中,本发明提供了一种光学传感器,包括挠性基板以及定位在基板上的光学元件。挠性基板包含影响光学元件的变形。源及探测器中的至少一者的光学表面朝向基板,所述基板是光学有效的。
附图说明
图1:根据本发明的光学传感器的示例性实施例,示出了在至少部分地环绕光学元件的基板变形区中提供的变形。
图2:根据本发明的光学传感器的示例性实施例,其中,变形区至少部分地减弱。
图3:根据本发明的光学传感器的示例性实施例,其中,变形区至少部分地分离。
图4:根据本发明的光学传感器中的变形区的俯视图。
图5:根据本发明的光学传感器的示例性实施例。
图6:单个有机光学元件的一示例性叠层的截面图。
图7:光源和探测器对的截面图。
图8:根据本发明的光学传感器的示例性实施例。
图9:根据本发明的光学传感器的示例性实施例。
图10:包括光导元件的根据本发明的光学传感器的示例性实施例。
图11:根据本发明的光学传感器的示例性实施例,其中,传感器活性(active)材料改变光导元件的形状和/或尺寸。
图12:根据本发明的光学传感器的示例性实施例,其中,基板形成偏振滤光器。
图13:根据本发明的光学传感器的示例性实施例,其中,基板部分地对折。
图14:根据本发明的光学传感器的示例性实施例,其中,光导元件是一个完整的层。
图15:示例性的传感器阵列。
图16:一个完整传感器的示意图。
从下面结合附图对本发明的优选实施例的详细描述中,本发明将变得更明显。
具体实施方式
图1A示例性地示出了在基板2中已提供变形5之前根据本发明的光学传感器的一示例性实施例的第一生产阶段。传感器1包括挠性基板2以及定位在基板2上的两个光学元件3。基板2包括两个变形区4。
在图1B中示例性地示出了处于其完整形式中的光学传感器,其中,挠性基板2包括影响至少一个光学元件的变形5和5’。典型地,仅是基板2可变形,而光学元件3没有变形。变形5在至少部分地环绕光学元件的基板变形区4中提供。变形5(例如弯曲或折叠)可通过诸如但不限于模制或压花之类的技术而产生。
优选地,基板2在轧制方向和横切于轧制方向的方向上都是完全挠性的。然而,仅在轧制方向上是挠性的基板2就可与卷对卷制造协调一致。
为使基板2的变形5容易,基板变形区4可至少部分地减弱或者至少部分地与基板2分离。图2示出了根据本发明的传感器的一实施例100,其中,基板变形区4减弱。图2A和图2B分别示出了处于第一生产阶段中的和处于其完整形式中的光学传感器的一实施例。图2示出了两个光学元件3和3’。削弱的变形区4和4’例如可通过在基板2中设置削弱点来制造。局部削弱可通过诸如但不限于烧蚀、铣削或者溶剂或热的局部应用之类的方法而产生。在光学元件3周围设置削弱区或者部分地分离光学元件3同样可易于光学元件的重新定位。
图3中示出了与实施例100类似的传感器的一实施例101,但是其中,基板变形区4至少部分地与基板2分离。图3A示出了光学传感器的该实施例的第一生产阶段,而图3B示出了完整的传感器。部分地分离可通过诸如但不限于切割、铣削或钻孔之类的方法而产生。
切割或削弱区的方向可任意地选择,因而允许相对于基板2以及相对于彼此自由地定向。这可实现通过其它方法不易获得的光学构造。
基板2的挠性可用于克服一些由于卷对卷工艺(例如由于在关键的加工步骤之后改变基板2的形成)所造成的几何束缚。具体地,在卷对卷加工期间,基板2优选地是平的且挠性的。在传感器装置的关键加工之后,光学元件3可部分地与基板2分离,并且挠性可用于重新定位光学元件3。
光学元件3至少部分地被这样的一个区所环绕增加了关于光学元件构造的设计自由,即,其中,基板2减弱或者部分地分离基板2。
优选地,基板2由诸如聚萘二甲酸乙二醇酯或聚乙二醇对苯二甲酸酯的透明塑料薄片制成。然而同样可使用其他不透明的材料,诸如金属箔。光学元件3可使用各种结构及材料来构建。
在根据本发明的光学传感器中,光学元件可以是发光源、光接收探测器或光导元件。
图4示出了如图2和图3所述的传感器的两个实施例中的一个光学元件的俯视图。图4A图示了具有基板变形区4的传感器100的俯视图,其中,变形区至少部分地减弱并环绕元件3。图4B图示了传感器101的俯视图,其中,基板变形区4至少部分地与基板2分离。在本说明书所公开的实施例中,示出了至少部分地环绕涉及一种沿着直接紧邻光学元件的轮廓延伸的削弱或切割。轮廓在至少两个不同的方向上延伸,优选地沿着光学元件3的四面中的三面延伸。削弱区要近到足以影响光学功能,然而又要远到足以不危及元件。
在如图2、图3和图4所示的实施例100和101中,受影响的光学元件3可以是发光源及光接收探测器。光源和探测器对可用于探测、测量或分析施加在这两者之间的介质。在某些情况下,例如对于化学传感器,优选地通过介于源与探测器之间的光波导(optical waveguide)来使源和探测器变得复杂。波导可起到感测活性材料的作用,或者波导可包括传感器活性材料。
图5示出了包括发光源6、光接收探测器7以及光导元件8的根据本发明的光学传感器的实施例102。在该实施例中,光导元件8同样部分地与基板分离并受到基板2的变形5影响。
在一个实施例中,发光源6可包括有机发光二极管(OLED)或小分子有机发光二极管(SMOLED)。光接收探测器7可包括有机光电二极管(OPD)或小分子有机光电二极管(SMOPD)。
优选地使用非接触印刷技术将有机材料沉积在基板2上,以防止材料的污染。然而可使用接触涂覆技术,例如当在基板2的两面上加工光学元件3时,或者当在该层的顶部上印刷另一功能层之前通过阻挡层来保护具有特定功能的层时。
此外可将具有特定功能的箔层压到一起。对于印刷的、堆叠的或层压的光学元件3,可使用通过使用不同的发光聚合物材料而具有不同波长的OLED。单个光学元件3优选地用透明的挠性阻挡层封装,以防潮。
在期望通过箔省去波导的情况下,光学元件3可制造成在顶面上发射并接收光。光仅必须通过位于有机半导体聚合物的顶部上的薄层而被引导。与挠性基板2相比,这些层非常薄,且于是减少了光通过堆叠的层的内部引导。在现有技术中,这些元件称为顶部发光元件。
图6示出了对于单个有机光学元件的一种可能构造的截面图。挠性基板2沉积有图案化防潮类似陶瓷层9。在防潮类似陶瓷层9的顶部上,施加有机层10,以延长水气的扩散长度路径。有机层10同样可被图案化,但是在尺寸上要小一些。有机层10可被不透水的图案化陶瓷层11覆盖。图案化陶瓷层11的形状优选地覆盖有机层10。这些层完成挠性基板2上的阻挡叠层(barrier stack)。
施加到阻挡叠层的顶部上的活性有机光学元件3包括介于图案化阳极13与图案化阴极14之间的图案化有机光发射或接收材料12。用于阴极14的接触点是与阳极13的材料相同的材料,以防止阴极14由于氧气和水气而劣化。
可通过图案化封装件来防止电活性有机层受潮,所述图案化封装件包括图案化陶瓷层15、图案化有机层16(优选地在尺寸上小于图案化陶瓷层15,以延长水气的扩散长度路径)以及陶瓷层17(优选地与图案化陶瓷层15一样大)。
光学元件可以是底部发光的或者顶部发光的。图7A示出了对于一对底部发光的有机光学元件3、发光源6以及光接收探测器7的一种可能构造。源6和探测器7都包括图案化阻挡叠层、图案化透明阳极18(例如由氧化铟锡(ITO)制成)、图案化光发射聚合物19或光接收聚合物20、用于空穴(hole)21的图案化传输层以及图案化反射金属阴极22。该装置用图案化阻挡叠层封装,以防潮和防氧化。对于如图7A所示的底部发光的光学元件3,阴极22是反射性的,并且光23通过基板2上的阻挡件以及基板2本身分别被发射或接收。对于底部发光的光学元件3,基板2、基板2上的阻挡件、阳极18以及整个传输层21是透明的。
在顶部发光的有机光学元件3中,如图7B所示,源6和探测器7包括图案化阻挡叠层、作为阳极材料24的图案化反射金属层、图案化空穴传输层21、图案化光发射聚合物19或接收聚合物20、以及作为阴极材料以用于电子注入的图案化薄透明金属层25。对于顶部发光的装置,阳极24是反射性的,并且光23通过透明阴极25以及透明封装件分别被发射或接收。
这种叠层设计的一个特有的特点在于提供了无机阻挡层,从而使得这些阻挡层完全封装各个有机元件。因此,通过削弱区或分离(例如通过激光)来分离各个元件不会使有机元件暴露在环境中。因此保护有机光学元件免于水气进入切割区或削弱区中的元件。与水气的接触典型地会缩短有机元件的寿命,且因此是不期望的。
图8示出了根据本发明的光学传感器的其他三个实施例,其中,传感器包括定位在基板2上的发光源6以及光接收探测器7。探测器7响应于由源6发射的光23。基板2的变形5布置成使光源6和探测器7中的至少一者倾斜,以为从源6传播至探测器7的光提供光路26。
图8A示出了实施例103,其中,基板2的变形5布置成使发光源6倾斜,以为从源6传播至探测器7的光23提供光路26。图8B示出了实施例104,其中,基板2的变形5布置成为从源6传播至探测器7的光23提供光路26。图8C示出了实施例,其中,基板2的变形5布置成使发光源6和光接收探测器7二者倾斜,以为从源6传播至探测器7的光23提供光路26。
图9图示了本发明的实施例106,其中,源6和探测器7对可感测介质27的存在。图9A图示了来自源6的光23如何可被介质27反射或吸收,由此以反射的量为介质27的特征。图9B示意性地示出了实施例107,其中,介质27包括人或动物的皮肤28。传感器的此实施例可用在智能绷带(smart bandage)中,以用于体内或体表的测量。光23可基于毛细血管或血管28中的血的量和容量或多或少地被吸收。由于重新定位的光学元件3,创建了一个二维结构。二维结构相对于平面结构所具有的优点在于,当将传感器轻微地按压在皮肤上时,其可防止毛细血管关闭。
在图10所示的且基于图8C所示的传感器105的根据本发明的光学传感器的又一实施例108中,传感器还包括光导元件8。可用诸如但不限于印刷、压花或模制之类的技术来施加光导元件8。光导元件8可直接印刷、压花或模制在具有光学元件3的基板2上。可替代地,光导元件8可使用注射模塑或压花技术单独制造。在该实施例中,光导元件8至少部分地定位在源6与探测器7之间。光导元件8包括对流体中的被分析物的量敏感的传感器活性材料。术语流体应理解成用于环绕传感器的气体和液体的集体名词。可替代地,波导本身由传感器活性材料组成。
削弱区实现了对着或者围绕光导元件8弯曲有机光学元件3,从而相对于感测结构以最佳的方式定位光学元件3。
在另一实施例中,传感器活性材料依据环绕传感器的流体中的某些被分析物分子的量来改变光导元件8的光导性能,例如吸收特性。通过光导元件8传递的光的改变可通过探测器7(例如光电二极管)来测量。
在根据本发明的光学传感器的一个实施例中,传感器活性材料依据环绕传感器的流体中的被分析物的量来改变光导元件8的反射性能。
在图11所示的且基于图8C所示的传感器105的实施例109中,发光源6及光接收探测器7邻接光导元件8,并且传感器活性材料依据环绕传感器的流体中的被分析物的量来改变光导元件8的形状和/或尺寸,从而改变发光源6和/或光接收传感器7的倾斜角29。
由于被分析物的存在所引发的传感器活性材料的容量的改变可有助于改变其光学性能。容量改变还可用于机械地引发源6和/或探测器7的倾斜角的改变,从而改变光学元件3的对准。而且容量改变引发导向结构的厚度的变化。这些光学性能的改变、以及所引发的光学几何结构的改变影响光通过波导的传输。
通过上述结构,变得可将颜色的改变和容量的改变结合起来,以产生更敏感的或更具选择性的传感器。例如一个源6和探测器7对能够弯曲,由此基板2像铰链一样起作用,可测量由于改变的光学几何结构所导致的反射光的差异,同时一对具有固定位置的光学元件3可测量颜色的改变。
图11A示出了并没有暴露在包含一定量的被分析物的流体中的传感器109。在这种状态下,装置与光导元件8之间具有一定的倾斜角。在如图11B所示的其中传感器109暴露在包含一定量的被分析物的流体中的状态下,光导元件8的尺寸和/或形状已改变,且于是倾斜角已改变。角度的改变导致光导元件8的反射性能的改变,且因此改变光路26。
为将被分析物传输至传感器活性材料,光导元件8可包括流体运输系统。典型地,传感器活性材料的层包括用于流体或气体的传输的敞开结构,例如微型流体通道。流体传输系统可允许传感器活性材料与被分析物之间的充分接触。
在图12中示出了另一实施例110。在该实施例中,光学有效的基板2形成偏振滤波器。在图12A中示出了该实施例的第一生产阶段。传感器110包括定位在基板2上的发光源6以及光接收探测器7。源6和探测器7包括光学表面。对于光学表面,意指发光源6(例如OLED)的一个表面,其中,光耦合到源6外。对于光接收探测器7,例如OPD,光学表面是接收光的表面。基板2是光学有效的基板2。光学有效的意指基板2包括光学功能,例如偏振功能。然而,其它光学功能(诸如滤色器)也是可行的。源6和探测器7的光学表面直接朝向光学有效的基板2。因此,由源6发射的光通过光学有效的基板2传播,并且光通过光学有效的基板2被探测器7接收。
图12B示出了完整的传感器,其中,光导元件8至少部分地定位在源6与探测器7之间。光导元件8包括荧光染料32,当被光学激活时,所述荧光染料发射随机偏振的荧光39。荧光39的特点取决于环绕传感器的流体中的被分析物的量。从源6通过光导元件8传播至探测器7的光首先由于其上定位活性6的偏振滤波器的一部分而线性地偏振,其次由于其上定位有探测器7的基板2的一部分而线性地偏振,二次偏振相对于首次偏振转动90度。线性偏振光23通过光导元件8传播,并激活荧光染料32,以发射随机偏振的荧光39。探测器7接收随机偏振的荧光39的一部分的特点。与荧光染料32没有接触的线性偏振光将被转动90度的偏振挡住,并将没有被探测器7接收。从探测器7的信号,可确定环绕传感器的流体中的被分析物的量。
图12C示出了通过定位相对于基板31的偏振方向旋转45度的源6和探测器7的弯曲线30,光学传感器可获得在偏振方向上的90度旋转。
图12D示意性地呈现了如图12B所示的完整实施例的截面图。
光导元件8可包括用于将被分析物传输至荧光染料的流体传输装置。
使用挠性基板2在这样的结构中同样是有利的,即,其中挠性基板2上的至少一个光学元件部分地分离并折回至基板2,从而部分地对折基板2。在对折基板2之前,光学表面可远离基板2。在对折基板2之后,光学表面重新指向基板2,这使得可使用具有光学功能的挠性基板2。
图13示出了实施例111的截面图。该实施例是部分地对折的基板2的一种示例性结构,其中,基板2具有偏振功能。其上制造活性6的基板的第一部分33在从基板2’(基板2’显示在左边)切开之后折回至基板2。箭头40表示由于折叠所导致的基板X 41的一部分的移动。其上制造有探测器的基板的第二部分34在从基板2”(基板2”显示在右边)切开之后折回并定位在源6的顶部上,从而线性地偏振来自源6的光23。对于第二部分34,为了清楚起见,没有标出移动。在部分地对折的基板2的顶部上可施加有导向元件8,所述导向元件可包含荧光染料32。
线性偏振光23通过光导元件8传播,并激活荧光染料32,以发射随机偏振的荧光39。探测器7接收随机偏振的荧光39的一部分的特点。从探测器信号,可确定环绕传感器的流体中的被分析物的量。与荧光染料32没有接触的线性偏振光23耦合到光导元件8外,没有被探测器7记录到。需要强调的是,尽管图13示出了单个传感器节点的截面图,但该传感器节点可能是与图14、图15和图16所示的传感器阵列类似的传感器阵列的一部分。
另外,部分地对折基板2可提供捕获内部光反射的光导元件8。
图14示意性地图示了伪面内(in-plane)光学传感器阵列112。图14A示出了该阵列的第一生产阶段,所述阵列包括在面外重新定位在预定位置中的多对部分地分离的源6和探测器7。
在图14B的截面图示出了完整的传感器阵列。能够看出,用于光导目的的材料的整个层施加在其上制造活性6和探测器7的阵列的基板2的顶部上。从源6发射的光通过光导层而被引导并到达传感材料64。传感材料将影响将被探测器7接收的光23。
将一个完整的层用作光导元件8可避免与附设光学元件3有关的问题,例如移位的问题。光导材料包括感测材料或组件,或者感测材料或组件可沉积在光导层的顶部上。感测材料或组件还可沉积在光学元件40的顶部上。
一种制造传感器阵列112的方法是用诸如但不限于印刷、注射模塑或涂覆之类的技术在已定位有光学元件3的完整基板2区域的顶部上施加光导层。一种制造变型是在预定位置中形成源6和探测器之前涂覆光导材料。光学元件3必须在顶部上的层将变硬之前变形。光学元件3可部分地分离并压印到光导层中。
在一些应用中,诸如包含源6和探测器7的阵列的绷带,透明光导层可仅作为保护层而非感测层。
图15示出了根据如上所述的各种传感器节点的四个光学传感器阵列。到目前为止,仅脱离完整的光学传感器系统描述了单个传感器节点的构造。图15A、图15B和图15C中的传感器阵列包括基于具有发光源6和光接收探测器7、补充在这两者之间的光导介质的挠性基板2的透射或反射传感器节点的阵列。为完成这些传感器阵列,对着光导元件8弯曲源6和探测器。使用传感器节点的阵列而非单个测量节点可提高光学传感器的质量和可靠性。每个传感器节点或传感器节点组均可例如构造有对光的不同波长敏感的源6和探测器对。
为防止传感器阵列中的串扰(crosstalk),每个源6探测器对均可具有其自己的导向元件8。串扰是一种由于不完善的光学隔离所导致的探测器7无意中接收到来自邻近传感器元件的光的现象。
图15A示出了包括如图10所示的传感器节点108的传感器阵列的一个实例。在施加光波导之后,对着波导弯曲平面源6和探测器。
图15B示出了传感器阵列的一个实例,从而随机地选择削弱区的切割方向,以表现出弯曲装置的完全自由。通过其它方法不易获得这种设计。
图15C示出了将吸收的改变和容量的改变结合起来的示例性构造。一对源6和探测器具有固定位置,另一对源6和探测器能够弯曲,由此基板2作为如针对图11所示的传感器节点109所描述的铰链。
图15D示出了如针对图14中的实施例112所说明的没有光学导向系统的光学传感器阵列的一个实例。
图16图示了一个完整的光学传感器系统,包括传感器节点35的阵列、印刷电路36、电子元件37以及电池38。由于传感器的制造方法可保持平面基板2在很大程度上完整无缺,因此传感器阵列可容易地连接至传统的(挠性)印刷电路板(F)PCB。反之,基板本身可用作印刷电路板的替代物。而且可使用模制互连器件(MID),由此用模制技术来制造光学元件和PCB两者。
在根据本发明的光学传感器的另一实施例中,传感器包括挠性基板2以及定位在挠性基板2上的光学元件3。挠性基板2包括影响光学元件3的变形5。源6及探测器7中的至少一者的光学表面朝向光学有效的基板2。
具有光电元件3的箔可层压至单独制造的传感器活性光学元件。该光学元件包括感测材料、为了光学感测而相对于例如其光传导及其对于被分析物的渗透性已进行了优化的基体(matrix)或基板材料、以及辅助元件(诸如优选地用但不限于印刷、涂覆或压印技术来施加的反光镜或光栅)。
所给出的细节图、特定实例以及具体公式仅用于说明的目的。由于OLED叠层的许多层可造成内部光干涉,因此OLED的光输出轮廓将取决于视角。考虑到这点,基板的变形可布置成使源和探测器中的至少一者倾斜,以使源的光发射轮廓的主光发射方向指向探测器,或者使探测器的光接收轮廓的主光接收方向指向源。OLED的光发射轮廓的主光发射方向例如可相对于OLED的光学表面呈约45°的角。类似的考虑适用于包括有机光电二极管(OPD)或另一种有机电活性材料的光接收探测器。OPD或SMOPD可具有在光接收轮廓中相对于OPD或SMOPD的光学表面呈一定角度(例如45°的角)的主光接收方向。在不背离所附权利要求中所表述的本发明的范围的前提下,可对设计、操作条件、以及示例性实施例的布置进行其他替换、修改、改变、以及省略。

Claims (13)

1.一种光学传感器(1),所述传感器包括:
挠性基板(2),
光学元件(3),定位在所述基板(2)上,
所述挠性基板(2)包含影响所述光学元件(3)的变形(5),
其中,所述变形(5)在至少部分地环绕所述光学元件(3)的基板变形区(4)中提供,其中,所述基板变形区(4)至少部分地减弱或者至少部分地与所述基板(2)分离而形成削弱或切割,从而使所述基板(2)的变形容易;
其中,所述削弱或切割沿着直接邻近所述光学元件(3)的轮廓延伸,所述轮廓在至少两个不同方向上沿着所述光学元件(3)延伸。
2.根据权利要求1所述的光学传感器,其中,所述光学元件(3)来自发光源(6)、光接收探测器(7)以及光导元件(8)所构成的组。
3.根据权利要求2所述的光学传感器,其中,所述发光源(6)包括有机发光二极管(OLED)或小分子有机发光二极管(SMOLED)。
4.根据权利要求2所述的光学传感器,其中,所述光接收探测器(7)包括有机光电二极管(OPD)或小分子有机光电二极管(SMOPD)。
5.根据权利要求1所述的光学传感器,其中
所述传感器包括定位在所述基板(2)上的发光源(6)以及光接收探测器(7),所述探测器响应于由所述源(6)发射的光(23),并且
其中,所述基板(2)的所述变形(5)布置成使所述发光源(6)和所述光接收探测器(7)中的至少一者倾斜,以为从所述源(6)传播至所述探测器(7)的光(23)提供光路(26)。
6.根据权利要求5所述的光学传感器,其中,所述传感器进一步包括光导元件(8),所述光导元件(8)至少部分地定位在所述源(6)与所述探测器(7)之间,其中,所述光导元件(8)包含对环绕所述传感器的流体中的被分析物的量敏感的传感器活性材料。
7.根据权利要求6所述的光学传感器,其中,所述传感器活性材料依据环绕所述传感器的流体中的被分析物的量来改变所述光导元件(8)的光导性能。
8.根据权利要求7所述的光学传感器,其中,所述传感器活性材料依据环绕所述传感器的所述流体中的被分析物的量来改变所述光导元件(8)的反射性能。
9.根据权利要求7所述的光学传感器,其中,所述发光源(6)和所述光接收探测器(7)中的至少一者邻接所述光导元件(8),并且其中,所述传感器活性材料依据环绕所述传感器的所述流体中的被分析物的量来改变所述光导元件(8)的形状和/或尺寸,从而改变所述发光源(6)和/或所述光接收探测器(7)的倾斜角。
10.根据权利要求6-9中任一项所述的光学传感器,其中,所述光导元件(8)包括用于将所述被分析物传输至所述传感器活性材料的流体传输系统。
11.根据权利要求5所述的光学传感器,其中,所述源(6)和所述探测器(7)中的至少一者的光学表面朝向所述基板(2),所述基板是光学有效的。
12.根据权利要求11所述的光学传感器,其中,光学有效的所述基板(2)形成偏振滤光器。
13.根据权利要求12所述的光学传感器,其中
光导元件(8)至少部分地定位在所述源(6)与所述探测器(7)之间,
所述光导元件(8)包含荧光染料(32),当被光学激活时,所述荧光染料发射随机偏振的荧光(39),所述荧光(39)的特点取决于环绕所述传感器的流体中的被分析物的量。
CN2010800154813A 2009-02-04 2010-02-03 折叠传感器 Expired - Fee Related CN102388303B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09152056 2009-02-04
EP09152056.9 2009-02-04
PCT/NL2010/050048 WO2010090519A2 (en) 2009-02-04 2010-02-03 Origami sensor

Publications (2)

Publication Number Publication Date
CN102388303A CN102388303A (zh) 2012-03-21
CN102388303B true CN102388303B (zh) 2013-11-06

Family

ID=42101574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800154813A Expired - Fee Related CN102388303B (zh) 2009-02-04 2010-02-03 折叠传感器

Country Status (6)

Country Link
US (1) US20120056205A1 (zh)
EP (1) EP2394154B1 (zh)
JP (1) JP2012517016A (zh)
KR (1) KR20110118661A (zh)
CN (1) CN102388303B (zh)
WO (1) WO2010090519A2 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8314487B2 (en) * 2009-12-18 2012-11-20 Infineon Technologies Ag Flange for semiconductor die
US8907560B2 (en) * 2011-05-12 2014-12-09 Universal Display Corporation Dynamic OLED lighting
JP5682544B2 (ja) * 2011-11-28 2015-03-11 トヨタ自動車株式会社 雨滴検出装置
US20140021491A1 (en) * 2012-07-18 2014-01-23 Carsem (M) Sdn. Bhd. Multi-compound molding
DE102012220050A1 (de) 2012-11-02 2014-05-08 Osram Opto Semiconductors Gmbh Organisches optoelektronisches Bauelement und Verfahren zum Betrieb des organischen optoelektronischen Bauelements
DE102012220056A1 (de) 2012-11-02 2014-02-13 Osram Opto Semiconductors Gmbh Organisches optoelektronisches bauelement und verfahren zum betrieb des organischen optoelektronischen bauelements
DE102012220020A1 (de) 2012-11-02 2014-05-08 Osram Opto Semiconductors Gmbh Organisches optoelektronisches bauelement und verfahren zum betrieb des organischen optoelektronischen bauelements
DE102013219011A1 (de) 2013-09-20 2015-03-26 Osram Gmbh Sensoreinheit zur Lichtsteuerung
CN104635252A (zh) * 2015-02-13 2015-05-20 四川中测辐射科技有限公司 基于fpc的半导体探测器阵列及制作方法
EP3163633B1 (en) * 2015-10-28 2021-09-01 Nokia Technologies Oy A light-based sensor apparatus and associated methods
DE102016221303A1 (de) * 2016-10-28 2018-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Knickbares substrat mit bauelement
CN106872583B (zh) * 2017-01-16 2020-04-17 业成科技(成都)有限公司 超声波感测器
US10290512B2 (en) * 2017-05-17 2019-05-14 Nanya Technology Corporation Semiconductor structure having bump on tilting upper corner surface
WO2020143025A1 (zh) 2019-01-11 2020-07-16 京东方科技集团股份有限公司 柔性基板及其制作方法、显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353776A (en) * 1970-03-12 1974-05-22 Elliott S B Indication of changes in ambient conditions
US5015843A (en) * 1990-02-15 1991-05-14 Polysense, Inc. Fiber optic chemical sensors based on polymer swelling
US20070102654A1 (en) * 2003-06-17 2007-05-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Sensor comprising polymeric components
US20080258086A1 (en) * 2004-09-03 2008-10-23 Alan Mathewson Optical Detector

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1353776A (en) 1920-02-17 1920-09-21 Asbery T Mills Automatic-locking spring-washer
JPS63102404U (zh) * 1986-12-23 1988-07-04
EP0276749A1 (de) * 1987-01-26 1988-08-03 Siemens Aktiengesellschaft Optoelektronisches Koppelelement
JPS6428882A (en) * 1987-07-24 1989-01-31 Hitachi Ltd Photoelectronic device, manufacture thereof, and lead frame used in same manufacture
JPH02295542A (ja) * 1989-05-10 1990-12-06 Sumitomo Electric Ind Ltd 光センサ
JPH11281570A (ja) * 1998-03-26 1999-10-15 Toto Ltd センサ装置
JP2000321280A (ja) * 1999-05-11 2000-11-24 Suzuki Motor Corp 免疫反応測定装置
US6700052B2 (en) * 2001-11-05 2004-03-02 Amerigon Incorporated Flexible thermoelectric circuit
DE10254685A1 (de) * 2002-11-22 2004-06-03 Roche Diagnostics Gmbh Messeinrichtung zur optischen Untersuchung eines Testelements
JP4306286B2 (ja) * 2003-03-07 2009-07-29 三菱電機株式会社 光モジュールおよび光モジュールの製造方法
JP4237529B2 (ja) * 2003-04-11 2009-03-11 株式会社東芝 光導波路型侵襲センサーチップ及びセンサーチップ包装方法
JP3824233B2 (ja) * 2003-09-01 2006-09-20 セイコーエプソン株式会社 バイオセンサ及びバイオセンサの製造方法
JP4882519B2 (ja) * 2005-07-07 2012-02-22 ソニー株式会社 エバネッセント光を利用する物質情報取得方法と物質情報測定装置
DE102006022442A1 (de) 2006-05-13 2007-11-15 Degussa Gmbh Verfahren zur Herstellung von Polyarylenetherketon
DE112007001755T5 (de) 2006-07-25 2009-09-17 Mori Seiki U.S.A., Inc., Rolling Meadows Verfahren und Vorrichtung zur Kombinationsbearbeitung
JP2008275333A (ja) * 2007-04-25 2008-11-13 Canon Inc 遺伝子検出チップ、これを用いた核酸配列集積方法および遺伝子検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353776A (en) * 1970-03-12 1974-05-22 Elliott S B Indication of changes in ambient conditions
US5015843A (en) * 1990-02-15 1991-05-14 Polysense, Inc. Fiber optic chemical sensors based on polymer swelling
US20070102654A1 (en) * 2003-06-17 2007-05-10 Nederlandse Organisatie Voor Toegepast- Natuurwetenschappelijk Onderzoek Tno Sensor comprising polymeric components
US20080258086A1 (en) * 2004-09-03 2008-10-23 Alan Mathewson Optical Detector

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Integrated organic electronic based optochemical sensors using polarization filters;KRAKER ELKE;《APPLIED PHYSICS LETTER》;20080123;第92卷(第3期);第033302-1页左栏1-4行及附图1 *
KRAKER ELKE.Integrated organic electronic based optochemical sensors using polarization filters.《APPLIED PHYSICS LETTER》.2008,第92卷(第3期),第033302-1页左栏1-4行及附图1.
On-chip Fluorescence Detection Using Organic Thin Film Devices for a Diposable Lab-on-a-Chip;YUN SHUAI;《UNIVERSITY/GOVERNMENT/INDUSTRY MICRO/NANO SYMPOSIUM》;IEEE;20080713;第169-172页 *
YUN SHUAI.On-chip Fluorescence Detection Using Organic Thin Film Devices for a Diposable Lab-on-a-Chip.《UNIVERSITY/GOVERNMENT/INDUSTRY MICRO/NANO SYMPOSIUM》.IEEE,2008,第169-172页.

Also Published As

Publication number Publication date
JP2012517016A (ja) 2012-07-26
KR20110118661A (ko) 2011-10-31
CN102388303A (zh) 2012-03-21
EP2394154B1 (en) 2018-04-04
US20120056205A1 (en) 2012-03-08
WO2010090519A3 (en) 2010-09-30
WO2010090519A2 (en) 2010-08-12
EP2394154A2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
CN102388303B (zh) 折叠传感器
US11002702B2 (en) Capacitive DOE integrity monitor
US10905009B2 (en) Display module and display device including the same
JP6590804B2 (ja) コンパクトな光電子モジュール
KR101579872B1 (ko) 전사 기판, 이의 제조방법 및 유기 전계 발광소자의제조방법
JP7320006B2 (ja) 画像センサ及びディスプレイスクリーンを備えたデバイス
WO2018023722A1 (zh) 显示模组
JP2002090114A (ja) 光スポット位置センサ及び変位測定装置
US20190033223A1 (en) Assay device
JP5632285B2 (ja) 半導体構成要素を有するマトリックスセンサ
US20170236957A1 (en) Apparatus and method of forming an apparatus comprising a two dimensional material
CN107851706B (zh) 辐射热传感器
CN114284319B (zh) 显示面板及电子设备
EP4134923A1 (en) Sensing device and electronic device
WO2019031235A1 (ja) 光検出器
WO2017203240A1 (en) Assay device
JP2012098161A (ja) 計測用マーカ及びその製造方法
JP4880132B2 (ja) 光電式エンコーダ
JP3519922B2 (ja) 二次元入力モジュール素子
KR20220010480A (ko) 개선된 검출 결과를 제공하는 광 검출기
CN110249711A (zh) 光装置
CN105374812A (zh) 数字辐射传感器封装件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131106

Termination date: 20200203