CN102387747A - 超声波诊断装置以及血流动态的分布像的构成方法 - Google Patents
超声波诊断装置以及血流动态的分布像的构成方法 Download PDFInfo
- Publication number
- CN102387747A CN102387747A CN2010800143768A CN201080014376A CN102387747A CN 102387747 A CN102387747 A CN 102387747A CN 2010800143768 A CN2010800143768 A CN 2010800143768A CN 201080014376 A CN201080014376 A CN 201080014376A CN 102387747 A CN102387747 A CN 102387747A
- Authority
- CN
- China
- Prior art keywords
- brightness
- time
- image
- blood flow
- tic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8979—Combined Doppler and pulse-echo imaging systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/13—Tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/461—Displaying means of special interest
- A61B8/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/46—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
- A61B8/467—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
- A61B8/469—Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/481—Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8993—Three dimensional imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52053—Display arrangements
- G01S7/52057—Cathode ray tube displays
- G01S7/52071—Multicolour displays; using colour coding; Optimising colour or information content in displays, e.g. parametric imaging
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Remote Sensing (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Radar, Positioning & Navigation (AREA)
- Acoustics & Sound (AREA)
- Hematology (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本发明提供一种显示反映了血流动态的不同的彩色图的超声波诊断装置。将被注入造影剂的被检测者作为拍摄对象,通过探头相对于该造影对象进行超声波的收发。根据在探头接收到的信号来构成图像数据,根据图像数据的亮度值来生成时间亮度变化曲线。根据时间亮度变化曲线来计算用于构成血流动态的分布像的规定参数的值。根据参数的值来构成血流动态的分布像(彩色图)。彩色图是按照参数的值而用颜色区分的二维或三维的图像。作为参数,能使用造影剂的流入开始时间、平衡亮度到达时间、造影剂的消失开始时间、造影剂的持续时间、到达预先设置的阈值的时间、亮度上升率、亮度下降率、平衡状态的亮度、以及总流量中的至少一个。
Description
技术领域
本发明涉及向生物体内发送超声波,通过其接收信号将生物体内部的信息图像化的技术,特别涉及根据使用了造影剂的拍摄图像来算出与血流相关的信息,并进行图像化予以显示的超声波诊断装置。
背景技术
超声波诊断装置和MRI、CT一样,是在医疗领域广泛使用的图像装置的一种,具有是小型的装置、且空间分辨率和时间分辨率较高等的特征。近年来,随着超声波造影剂的普及,血管造影技术或肿瘤造影技术得到了发展,能期待诊断能力的提升。
肿瘤周边和内部的血流不仅示出有无病变,还示出肿瘤组织的性状,对鉴别诊断赋予了重要的信息。作为取得血管的图像的手段,到现在为止基于X射线的CTA(CT-Angiography)都是主流。在CTA方式中,静脉注射碘造影剂,通过对在造影剂正通过血管内的阶段所取得的多个X射线图像进行再构成,能使血管构造立体地可视化。另一方面,由于X射线的辐射以及注入造影剂,也会对患者身体带来负担。
与此相对,基于超声波的图像诊断在拍摄时不会受到辐射等的侵扰。另外,作为造影剂由于使用直径数μm的微小气泡,因此造影剂自身没有毒性。随着时间的经过,通过身体的自然的代谢机能将微小气泡排出到体外。因此,基于超声波的图像诊断具有对患者身体的负担较少的特征。由于微小气泡(超声波用造影剂)与医疗领域所利用的数MHz的超声波谐振发出较强的非线性信号,因此通过特异地检测出该非线性信号并将其图像化,能以高对比度描绘出微细的血管构造。
超声波用造影剂由于相对于超声波照射的反应不同而大致分为高声压型和低声压型。高声压型是通过高声压(机械指数(mechanical index):MI1.0~1.9)的超声波照射压碎气泡,通过此时发出的非线性信号来构成图像。由于每当照射都会让造影剂(微小气泡)消失,因此,为了观察同一区域的造影,需要适当地变更摄像面。另一方面,低声压型由于用通过(MI0.1~0.9)的超声波照射不压碎气泡而使其发生谐振,用由此获得的非线性信号来进行图像构成,因此,能持续地发挥造影效果,从而连续观察同一区域。另外,一部分的造影剂(微小气泡)会受到存在于联结动脉以及门脉和中心静脉的窦状隙中的枯氏细胞(Kupffer cell)的吞噬作用。因此,若在造影剂充满肝脏组织的状态下进行超声波照射,则在枯氏细胞正常发挥作用的区域会被高亮度地染色(染影),因此,能用亮度的缺失(defect)来识别肿瘤等的病变区域。进而,由于亮度的高低和染色的持续时间是评价枯氏细胞的机能的一个指标,因此,认为在肝脏的机能诊断中也是有效的。
如此,基于超声波的造影图像不仅在观察微细的血管构造上有效,在判断组织的机能上也有效,能在以腹部区域为中心广泛普及。
另外,上述的低声压型的造影剂由于通过超声波照射引起的谐振而发出非线性信号,因此具有造影效果能持续、能在同一摄像面观察染色的经过的优点。
超声波用造影剂的染色过程因组织不同而不同,例如在正常的肝脏的情况下,动脉、门脉、静脉的各血管由于其路径不同而在不同的时相被染色,之后组织被染色。但是,在肿瘤的情况下,由于按照血管的增生和活性的程度会呈现出不同的染色过程,因此通过详细观察该染色的动态能获知肿瘤的性状。这样的因组织不同而引起的染色过程的不同示出了以心脏为起点的血流的流路、流量、速度这些血流的变动即血流动态。
在对染色过程的不同进行定量化上成为重要指标的是将造影剂的流入所伴随的亮度随时间的变化进行绘图的亮度变化曲线(Time-IntensityCurve:TIC)。例如,在肝脏肿瘤的情况下,鉴别肿瘤血管是从动脉还是从门脉为起点来形成,这在鉴别上极为重要,但由于动脉沿着门脉而行进,若门脉的染色开始则用单一的造影图像来进行两者的判别较为困难。但是,通过比较各血管的TIC就能评价染色过程的不同,能客观地判断成为肿瘤血管的起点的血管。
专利文献1所记载的技术是根据在组合了高低各声压的发送顺序所计测的TIC来算出亮度平均值的指标值,根据该值来提示用颜色区分的图像的技术。以对充满了造影剂的组织照射高声压的超声波为触发而开始,通过在摄像面内在低声压照射之下来计测重新回流的造影剂的染色过程,由此来进行TIC计测。
专利文献1:特开2005-81073号公报
发明要解决的技术问题
但是,在上述的现有技术中,为了比较每个区域的血流动态需要反复再现运动图像同时目视进行观察。因此,不能同时观察缺乏信息的客观性的多个区域,有操作者的负担较大的问题。另外,为了评价组织的性状,观察以心脏为起点的血流动态非常重要,需要观察所注入的造影剂沿着本来的血流的回流而流动,从到达组织的时间点起的染色经过。
发明内容
本发明的目的在于提供一种超声波诊断装置,使用表示从造影剂的注入直到组织染色为止的染色在时间上变化的TIC,算出表示以心脏为起点的血流动态的评价指标,兵按照该值来构成彩色图。
根据本发明,提供如下的超声波诊断装置。即,提供一种超声波诊断装置,具有:探头,其针对拍摄对象进行超声波的收发;图像数据构成部,其根据探头所接收的信号来构成图像数据;亮度变化曲线运算部,其根据图像数据的亮度值来生成时间亮度变化曲线;分布像构成部,其根据基于时间亮度变化曲线而求出的规定的参数值,来构成血流动态的分布像;和显示部,其显示血流动态的分布像。
发明效果
根据本发明,能通过亮度变化曲线(TIC)来评价以心脏为起点的血流动态,并将表示血管以及组织性状的不同的图像进行彩色显示,由此,能提供一种能容易比较血流动态的不同的图像显示装置。
附图说明
图1是表示实施例1的超声波诊断装置的构成例的框图。
图2是表示实施例1的从造影剂注入起到彩色图的显示为止的处理步骤的流程图。
图3是说明实施例1的图像数据的保存触发的图。
图4(a)是表示实施例1的步骤102中的取得图像数据的相同像素的亮度值的处理的说明图;(b)是表示在步骤102中生成的TIC的曲线图;(c)是表示对在步骤102中生成的TIC进行了平滑化处理后的TIC的曲线图。
图5是表示在实施例1的装置构成中具备位置补正向量运算部的构成例的框图。
图6(a)是说明在实施例1中为了进行位置补正处理而在图像数据中设定基准区域的图;(b)是说明在图像数据中设定搜索区域,生成位置补正向量的图。
图7(a)是说明在实施例1中没有位置补正处理而生成TIC的情况下的构造物211的坐标和TIC取得位置(像素)212的坐标的图;(b)是说明进行位置补正处理而生成TIC的情况下的说明构造物211的坐标和TIC取得位置212的坐标的图;(c)是针对进行位置补正处理的情况和不进行位置补正处理的情况来说明TIC取得位置(像素)的坐标的图。
图8是说明实施例1的基于TIC的平滑化进行的位置补正方法的图。
图9是表示实施例1的显示方式(画面)的一例的说明图。
图10是表示实施例1的描绘信息的选择用的导航画面的一例的说明图。
图11是说明实施例1的TIC简化处理的图。
图12是表示实施例1的彩色图的显示状态(画面)的一例的说明图。
图13是表示将实施例1的彩色图并列显示的情况下的显示方式(画面)的一例的说明图。
图14是说明实施例1的色彩范围的变更的图。
图15是说明实施例1的通过在彩色图上的关注区域的范围内重新分配颜色来变更色彩范围的图。
图16是说明实施例1的通过以彩色图上的基准区域为基准来重新分配颜色从而变更色彩范围的图。
图17是表示实施例1的使偏离色彩范围的信息重叠显示的图像的说明图。
图18是表示实施例1的在彩色图上使背景图像重叠的图像的说明图。
图19是表示实施例2的超声波诊断装置的构成例的框图。
图20是表示实施例2的不同摄像面的位置关系的说明图。
图21是表示基于实施例2的各摄像面的图像数据的3D彩色图的构成的说明图。
图22是表示在实施例2的装置构成中具备位置补正向量运算部的构成例的框图。
图23是说明实施例2的位置补正处理的图。
符号说明:
1 拍摄对象
2 探头
3 发送波束形成器
4 D/A变换器
5 TGC(时间增益控制器)
6 A/D变换器
7 接收波束形成器
8 包络线检波部
9 SC(扫描变换器)
10 图像存储器
11 TIC(亮度变化曲线)运算控制部
12 TIC运算部
13 描绘信息输入部
14 参数值计算部
15 显示信息输入部
16 分布像构成部
17 显示部
18 位置补正向量运算部
19 发送控制部
41 显示画面
51 导航画面
211 构造物
212 TIC取得位置
具体实施方式
下面,使用附图来说明本发明的实施例。
在图1中示出实施例1的超声波诊断装置(图像显示装置)的框图。
本装置具有:探头2,其相对于拍摄单元1收发超声波信号;发送波束形成器3以及接收波束形成器7,其对构成探头2的压电元件给予形成所希望的收发波束的规定的时间延迟;D/A变换器4,其对发送信号进行数字/模拟变换;A/D变换器6,其对接收信号进行模拟/数字变换;TGC(时间增益控制器)5,其对超声波信号在生物体内传播的过程中所产生的振幅衰减进行补正;包络线检波部8,其对所接收的RF(radio frequency,无线电频率)信号进行检波,并变换为图像信号SC(扫描变换器)9,其根据图像信号来构成二维的图像数据;图像存储器10,其以在SC9中构成的规定的采样间隔对图像数据进行保存;TIC运算控制部11,其进行与TIC的生成有关的控制,例如设定关注区域等,在该关注区域进行图像数据的采样间隔、时间亮度变化曲线(下面称为TIC)的生成;TIC运算部12,其根据在TIC运算控制部11所设定的控制内容来生成TIC;描绘信息输入部13,其用于指定根据TIC而算出的评价指标(参数);参数计算部14,其根据由TIC运算部12所生成的TIC,算出由描绘信息输入部13所指定的参数的值;分布像构成部16,其根据算出的参数的值来构成彩色图;显示部17,其显示分布像构成部16所构成的图像;和显示信息输入部15,其受理在显示部17显示的彩色图或TIC的显示方式的变更。
如图1所示,将从由探头2接收到的信号至构成图像数据为止的系统称为图像数据构成部。由图像数据构成部所构成的图像是广泛使用的超声波诊断机的黑白图像(B模式)或造影剂图像(通过收发的顺序或过滤处理等对来自造影剂的信号进行强调的图像),由于图像构成方法为一般公知的方法,因此在此简单进行说明。探头2的超声波照射面是多个压电元件排列成一列的一维阵列的构成,各元件进行超声波的收发。来自发送波束形成器3的电压脉冲经由D/A变换器4被输入到各压电元件,通过元件的压电振动而向拍摄对象1照射超声波。此时,各压电元件被电子性地给予规定的时间延迟,从各压电元件发送的超声波在拍摄对象1内部的规定的位置结成焦点。在各压电元件接收来自拍摄对象1的反射回波,为了补正在传播过程中所产生的信号的衰减部分,在TGC5进行与传播距离相应的振幅补正。接下来,接收信号经由A/D变换器6被送到接收波束形成器7,并乘以与从焦点位置到各压电元件为止的距离对应的延迟时间,输出加法运算结果(定相加法运算)。
作为强调来自造影剂的信号来进行图像化的方法,例如发送彼此相位反转的2个信号,对该接收信号进行加法运算的方法广为人知。通过接收信号的加法运算能抑制以组织成分为主的基本频率分量,另一方面增强了以来自造影剂的信号为主的高频分量。
通过在沿着压电元件列的全部扫描线进行超声波收发,能获得拍摄对象1的二维反射回波分布。从接收波束形成器7输出被分为实部和虚部的RF信号,并将该RF信号送到包络线检波部8。被送到包络线检波部8的信号在被变换为视频信号之后,在SC9进行扫描线间的像素插补,在再次构成为二维的图像数据之后,显示于显示部17。
接下来,按照图2所示的流程图来说明使用了在SC9构成的图像数据的TIC的生成以及反映了血流动态的彩色图的制作处理过程。
首先,操作者用一般的使用方法操作探头2同时确认显示于显示部17的图像数据,在摄像面上确定关注的区域。接下来,在注入造影剂的同时,在图像存储器10中保存图像数据(步骤100、101)。在手动进行保存的开始以及结束的情况下,例如操作者操作设置于超声波诊断装置的操作面板上的开关,由此,将图像数据的保存开始的触发输入该TIC运算部12。所述触发信号被送到SC9,开始向图像存储器10的保存。若将TIC开关设于探头2,则其操作性会更加提高。另外,在自动开始保存的情况下,例如对所取得的图像数据和紧挨着该图像数据之前所取得的图像数据进行比较处理,从亮度变化变大的时间点起自动开始保存。这种情况下,操作性进一步提高。具体例如,通过所取得的图像数据和紧挨着该图像数据之前所取得的图像数据计算每个像素的差分值,并计算其总和。从该值例如经过0.5秒(在帧速率为20时,相当于10帧)持续增大的时间点起,自动保存图像数据。造影剂的流入开始时的亮度上升要达到数秒,造影剂流入到动脉、门脉以及其它血管中的时间差也需要1秒以上,因此,如前所述,在流入开始起0.5秒的时间点起,能取得图像数据来获得反映各血管的血流动态的数据。另外,预先保存所取得的图像数据,从由操作者进行的手动或自动保存图像数据的开始触发被启动的时间点起,将追朔预先设定的秒数(1秒到数秒)的时间之后的图像数据留下,将其之前的图像数据丢弃,通过设定这样的系统,从而还能够保存从注入造影剂之前开始的图像数据(图3)。这种情况下,由操作者预先在TIC运算控制部11设定保存于图像存储器10中的图像数据的采样间隔。虽然为了高精度地生成TIC(时间亮度曲线)而优选对在SC9所构成的全部图像数据进行保存,但在存储器的容量等有限的情况下,需要考虑取得图像数据的帧速率来设定采样间隔,减轻对存储器的负担。由于造影剂的流入所伴随的图像数据上的亮度上升在数秒后会达到平衡状态,因此,至少需要进行4Hz左右的采样。因此,例如在帧速率为20Hz的情况下,每5帧保存图像数据。
在步骤102,在TIC运算部12中,对构成保存于图像存储器10的图像数据(图像尺寸(Xmax×Ymax))的单一像素(x,y)(x=1……Xmax,y=1……Ymax)进行关注,如图4(a)所示,进行运算,从所取得的全部时间系列的图像数据中取得位于相同位置的像素的亮度值(f1(x,y),f2(x,y)……fn(x,y))。将横轴设为时间,将纵轴设为亮度值,来描绘所取得的亮度值。由此,如图4(b)所示,能生成像素(x,y)的TIC。关于TIC,由于从造影前开始的亮度变化重要,因此从各亮度值中减去初始值f1(x,y),以亮度值0为起始点。但能确认的是,由于保持了初始值的信息,因此操作者可以任意地复原为原来的TIC以进行确认。
也可以对保存于图像存储器10中的图像数据的全部像素来进行TIC的生成。另外,也可以预先设定像素范围,生成所述像素范围的平均亮度值的TIC。
另外,生成TIC的像素范围即进行图像构成的范围也可以限定在操作者设定于图像数据上的关注区域的范围内。关注区域的设定还可以如下:在开始图像数据的保存前,由操作者预先在显示部17显示的图像数据上设定,还可以是在结束了图像数据的保存之后,将所保存的图像数据中的适当的图像数据显示于显示部17,并由操作者在该图像数据上进行设定。在开始图像数据的保存之前设定关注区域的情况下,能将保存于图像存储器10中的图像数据自身限定在关注区域的范围内,这种情况下能降低对存储器的负担。限定生成TIC的像素范围的关注区域的信息通过操作者被输入到TIC运算控制部11。
接下来对所生成的TIC(图4(b))进行平滑化处理。平滑化处理是向TIC的时间轴方向的平均化处理,降低了像素位置的偏离和由于噪声影响而产生的亮度的起伏。由于维持了所生成的TIC的采样的点数,因此,在将TIC的各时间ti(i=1、2……)对应的亮度值作为Iti对5个点来执行平均化的情况下,处理后的各时间的亮度值用It1=(It1+It2+It3+It4+It5)/5、It2=(It2+It3+It4+It5+It6)/5来计算。在图4(c)中示出平滑化处理后的TIC。
在步骤102的TIC生成处理,除了对保存于图像存储器10中的图像数据设定关注区域的情况以外,是与图像数据的保存同时执行的。
在TIC运算部12中的TIC生成处理时,若身体移动或操作者的手抖动较大,则在图像数据内会产生拍摄对象的位置偏离,引起TIC的误生成。为了补正该位置偏离,如图5所示,设置具备位置补正向量运算部18的装置,能构成为按照需要在TIC生成处理的前面阶段进行位置补正处理。作为位置补正处理,使用一般所知的图案匹配处理。首先,如图6(a)所示,在取得的最初的图像数据61上设置成为位置补正的基准的基准区域62。接下来,如图6(b)所示,在成为位置补正的对象的图像数据上设定搜索区域63。搜索区域63的中心位置和基准区域62相同,其大小由操作者按照要补正的位置偏离的大小而任意决定。从搜索区域63中搜索看上去和基准区域62相同的匹配区域64,将联结匹配区域64的中心位置和搜索区域63的中心位置的向量作为位置补正向量65而生成(图6(b))。匹配区域64的搜索方法如下,例如在搜索区域63内将基准区域62按每个像素错开来计算差分绝对值的总和,将匹配区域64设为该差分绝对值最小的区域。作为搜索的指标的值,除了前述的查封绝对值的总和之外,还有最小平方和、彼此相关运算的相关值等。接下来,在TIC运算部12中,在从所保存的各图像数据中读取亮度值时,按照所生成的位置补正向量65调整所读取的像素位置,由此实现了抑制了拍摄对象的位置偏离的影响的TIC。图7(a)表示基准的图像数据ft0、成为位置补正的对象的图像(ft1、ft2、ft3、ft4、ft5)、这些图像中的构造物211的位置、TIC取得位置(像素)212,和各图像数据上的构造物211的位置坐标。如图7(a)所示,在不进行位置补正的情况下,TIC的取得位置212是固定的,与构造物211的位置变化无关(图7(c))。因此,为了取得相同像素(x0,y0)的亮度值,会产生由于位置偏离而引起的误差。另一方面,如图7(b)所示,在根据位置补正向量运算部18生成的位置补正向量65(图6(b))来移动TIC取得位置212的情况下,能使构造物211的坐标和TIC取得位置212的坐标一致(图7(c))。由此,生成正确的TIC。
另外,还存在一种方法,在TIC的起伏是因位置偏离而产生的前提下,从相邻的TIC选择接近平滑化的亮度,由此补正位置偏离的影响。下面用图8来说明具体的处理内容。在图8中,分别用圆形、三角形、四角形来表示补正对象的像素(x0,y0)以及与此相邻的2个像素(x1,y1),(x2,y2)从时刻t0到t8的亮度变化。如图8的虚线所示,像素(x0,y0)的补正前的TIC从时刻t3到t8起伏较大。对该像素(x0,y0)的TIC在下面进行平滑化处理。首先求取像素(x0,y0)的时刻t0的亮度值和时刻t2的亮度值的平均值,从时刻t1中的各像素(x0,y0)、(x1,y1)、(x2,y2)的亮度值中选择与此最接近的亮度值,将其决定为像素(x0,y0)在时刻t1的亮度值,并用于TIC。同样地,在t2的亮度值也是在时刻t2的各像素的亮度值中选择最接近于时刻t1和时刻t3的亮度的平均值的值。反复该处理,用周围的像素的亮度值来补正所关注的像素的TIC的起伏,从而进行平滑化,由此生成图8的实线所示的TIC。在此,假设用相邻的2个像素来进行补正处理,但像素的个数并不受到限制,也可以用相邻的8个全部的像素来进行补正。但是,补正精度和处理负担之间是此消彼长的关系,考虑与处理时间之间的平衡来决定补正中所用到的像素。
在步骤103中,与操作者在操作面板上或显示画面上进行的规定的开关操作对应来启动描绘信息输入部13,开始表示血流动态的彩色图的构成处理。与描绘信息输入部13的启动同时,如图9所示那样,将保存于图像存储器10中的图像数据作为运动图像(造影图像)90按时序再现在显示部17上。显示部17所显示的运动图像可以通过SC9的压缩处理而保持,也可以是直接交给显示部17的图像。
如图9所示,若操作者在所再现的造影图像90上设定关注区域91,则在显示画面41上与造影图像90并排显示所述关注区域TIC。能在任意的位置设置多个关注区域91。在显示多个TIC的情况下,操作者能够自由选择并列显示93和重叠显示92。另外,操作者能对显示方式进行自由编辑,例如选择重叠显示92来显示由操作者指定的关注区域91或TIC,选择并排显示93来显示此外的TIC等。
在步骤104中,操作者从描绘信息列表中选择要构成彩色图的描绘信息。表示TIC的特征的评价指标(参数)分别和各描绘信息对应。描绘信息的选择如图10所示,在显示于显示部17的导航画面51进行。在图10示出导航画面51的一例。在导航画面51中示出适当的TIC(TIC的示意图或图9所示的任一TIC)52、和代表性的描绘信息的列表53,在TIC52上示出与各描绘信息对应的值或范围。
针对描绘信息列表53的各描绘信息进行说明。“流入开始时间”是从静脉注入的造影剂流入到所关注的区域并开始染色的时间(图10的TIC52上所示的(1));“平衡亮度到达时间”是造影剂充分回流直到平衡状态的时间(图10的TIC52上所示的(2));“消失开始时间”是造影剂从平衡状态消失从而TIC开始降低的时间(图10的TIC52上所示的(3));“持续时间”是到达作为阈值的亮度之后造影剂消失,从而再次到达所述阈值的时间(图10的TIC52上所示的(4));“阈值亮度到达时间”是到达设为阈值的亮度的时间(图10的TIC52上所示的(5));“TIC上升率”是反映了血流速度的指标,是开始染色起直到到达平衡状态的TIC随时间的变化率(图10的TIC52上所示的(6));“TIC下降率”是反映了造影剂的消失速度的指标,是TIC从平衡状态下降时TIC随时间的变化率(图10的TIC52上所示的(7));“平衡亮度”是反映了血流量的指标,是造影剂充分回流而到达平衡状态时的亮度值(图10的TIC52上所示的(8));积分值是暗示取得TIC期间内的总流量的指标,是TIC随时间的积分值(图10的TIC52上所示的(9)的斜线区域)。
操作者通过操作显示于显示部17的指针来选择所希望的编号,由此来从描绘信息列表53中选择描绘信息。如图10所示,用下划线或粗线等来强调所选择的描绘信息以及对应的TIC52上的编号,能容易地识别出所设置的项目。
在导航画面51显示的描绘信息列表53的描绘信息的顺序,例如可设定为根据操作者过去所选择的频度和在肿瘤诊断中的重要性等来赋予级别,按照级别高的描绘信息位于上方的方式进行显示。另外,也可设定为可由操作者自由变更描绘信息的顺序。
计算阈值亮度到达时间和持续时间时所需要的阈值是通过操作者移动设置于图10的TIC52上的箭头(图10中表示(5)或(4)的箭头)来进行设定的。此时,与箭头指定的位置对应的亮度值也显示于导航画面51上。
另外,图10的描绘信息列表53的描绘信息是一例,构成为操作者能自由编辑描绘信息,除了项目的追加/删除、所显示的文字的变更以外,还能新定义根据TIC而能取得的描绘信息等。
在步骤105中,在参数计算部14中算出与在步骤104选择的描绘信息对应的参数(评价指标)的值。首先,将TIC运算部12生成的TIC简化为具有预先确定的典型的TIC特征的函数的形式,针对简化后的TIC算出参数的值。在图11中表示TIC运算部12所生成的TIC(虚线)和用既定的函数简化过的TIC(直线)。既定的函数设为如下形式,从亮度值0开始,在第1时间点线性地上升,在第2时间点到达平衡状态的亮度值,之后,在成为一定时间的平衡状态之后,在第3时间点线性地下降。下面,说明用既定函数简化的TIC的生成方法和针对简化后的TIC所求取的参数。首先算出表示从第1时间点到第2时间点的亮度上升的倾斜度。分别针对上升时和下降时来求出从时间平均化处理后的TIC成为平均亮度值(Iavg)以及平均亮度值的1/2(Iavg/2)的时间(数1以及数2),并用它们通过数3以及数4来求取每单位时间的亮度变化,并将它们作为与描绘信息的“TIC上升率”以及“TIC下降率”对应的参数值。
数1
数2
数3
数4
将根据在算出上升率时所用到的值而确定的2个计测点(数5、数6)连接成直线,并延长直线,将直线到达亮度值0的时间设为第1时间点。该第1时间点的时间是与描绘信息的“流入开始时间”对应的参数的值。
数5
数6
接下来,在数7的范围内再次算出TIC的亮度平均值。将该值作为与描绘信息的“平均亮度”对应的参数的值。
数7
与算出第1时间点时相同,将算出“TIC上升率”时的2个计测点(数5、数6)联结成直线,求取该直线的延长线到达平衡亮度值的时间点,并将其作为第2时间点。该第2时间点的时间是与“平均亮度到达时间”对应的参数的值。同样地,将根据算出“TIC下降率”时求取的值而确定的2个计测点(数8、数9)联结成直线,求取该直线的延长线到达“平衡亮度”的时间点,并将其作为第3时间点。该第3时间点是与“消失开始时间”对应的参数值。
数8
数9
在TIC的下降未到达Iavg/2的情况下,假设从第2时间点起平衡状态持续,则将第3时间点的时间作为计算(数据取得)的结束时间,将第3时间点的亮度作为平衡亮度值。
关于“持续时间”、“阈值亮度到达时间”、“积分值”,由于是操作者直接输入阈值,并不需要上述那样的特别的处理而更直接根据TIC算出,因此并不一定需要简化的处理,通过预先算出表示TIC的特征的值,能将描绘信息的变更立即反映在彩色图中。
为了减轻图像存储器10的负担,可以在构成图像数据的各像素中,将所保存的信息限定为用TIC的简化处理算出的TIC的初始值、第1时间点、第2时间点、第3时间点、以及TIC下降率。只要有这5个信息,就能重现各像素的TIC的概括,就能构成彩色图。
另外,关于既定的函数,将第1时间点以后的亮度设为平衡亮度A、时间设为t,造影剂的注入所伴随的亮度变化设为β,将函数设为y=A(1-e-βt),也可以用一般公知的拟合(fitting)处理来保持成为TIC的特征的值、A、β。另外,通过导入造影剂的流入开始时间作为参数t0,设函数为y=A(1-e-β(t+t0)),其中设0<t<t0并且y=A,由此能对造影剂流入的前阶段开始的数据进行拟合处理。
在步骤106,根据在步骤105算出的参数的值,构成按照各值的大小来将像素用颜色区分的彩色图。
在图12示出彩色图的显示方式的一例。在显示部17的显示画面41中,显示有:作为所保存的图像数据的造影图像90、与所选择的关注区域对应的TIC的重叠显示92、将选择的描绘信息和与其对应的值在TIC的重叠显示92上表示的箭头94、以及用像素的颜色来表示与描绘信息对应的值的彩色图95。在彩色图95上附带有色带96,表示参数的值和颜色的对应关系。参数的值与颜色的对应关系可由操作者自由变更。例如,能对颜色的灰度、颜色的浓淡等与参数值的大小之间的对应关系进行变更。还能在色带96中除了“慢”、“快”这样的定性信息以外,还显示实际算出的参数的值来表示定量信息。
描绘信息的选择能由操作者自由变更。在操作者选择多个描绘信息的情况下,如图13所示,在显示部17的显示画面41中,并列显示与所选择的描绘信息对应的多个彩色图95。通过并列显示多个彩色图95,能容易比较血流量和流入开始时间的不同。
在肝脏肿瘤的情况下,成为肿瘤血管的起点的血管、肿瘤组织的血流量等是诊断上重要的信息,通过并列显示并比较基于“流入开始时间”、“平均亮度”或“积分值”等描绘信息的彩色图,从而例如能够评价以动脉为起点而增生的血管、肿瘤组织的分布或密度等。
所显示的信息能够由操作者自由组合并选择TIC重叠显示92、描绘信息的列表53、造影图像90以及彩色图95中的1种或2种以上,能由操作者自由编辑配置和大小。
接下来,说明彩色图95的显示方式。
可以根据色带96或彩色图95的任一者来进行彩色图95的显示方式的变更。
在根据色带96来进行彩色图95的显示方式的变更的情况下,进行如下步骤。在步骤107中,如图14所示在色带96中显示2个箭头97。操作者能通过进行使箭头97在显示画面41上移动的操作从而限定在彩色图上所关注的颜色的区域即参数值的范围,在该区域内进行颜色的最优化。例如,若对于“阈值亮度到达时间”的彩色图95的色带,将显示范围限定在5秒到15秒,则在所限定的5秒到15秒的范围内进行颜色的重新分配。同时,如图14所示,在TIC的重叠显示92中显示表示所限定的范围(5秒到15秒)的区域。也能以TIC上的值为基准来进行限定该参数值的范围的处理,例如,通过由操作者指定在TIC的重叠显示92上进行评价的时间和亮度的范围从而进行变更。通过适当地缩小参数值的范围,也能强调显示表示类似的血流动态的区域。
在根据彩色图95来进行显示方式的变更的情况下,进行如下步骤。有些情况下对于造影剂不回流的区域不算出正确的参数,而是在彩色图上显示作为噪声。为了将造影剂不回流的区域从彩色图中去除,如图14所示,在TIC的重叠显示92上设定成为阈值的亮度98,使未超过该阈值的区域在彩色图95上为0。另外,根据需要适当使用中值过滤器(medianfilter),除去在彩色图95中产生的马赛克,提高视觉辨认性。
另外,如图15所示,能在彩色图95中设定关注区域81,能构成为在所设定的关注区域81的范围中进行颜色的再分配。通过该处理,能扩大所关注的区域的范围的颜色范围,能用颜色的不同来明确区别参数的微小不同。
另外,如图16所示,若在彩色图95上设定基准区域,则可进行以该基准区域99的参数值为基准进行的颜色的再分配。例如,在表示“流入开始时间”的彩色图的情况下,若操作者指定特定的血管作为基准区域99,则在箭头160显示与色带对应的颜色的位置。在此,显示了参数的值为0秒到20秒的色带的范围,在基准区域99的参数值即8秒的位置显示箭头160。若确定了基准区域99,则用8秒以后的参数值来进行颜色的重新分配,从而重新构成彩色图95。色带96被重新设定为自基准值8秒起到20秒的范围。在色带96上,和原来的参数值一起,还记录了将基准区域99的参数值设为0秒时的换算值161(例如,在图16的色带96a中将换算值161记为括号中的值)。如图16所示,在TIC的重叠显示92上显示所限定的参数值的范围。在TIC的重叠显示92上,操作者通过变更该范围,从而能调整参数值的范围。通过该处理能详细评价造影剂开始流入血管的基准定时的不同。
通过变更彩色图的区域、参数的范围,使偏离色带的范围的区域从彩色图中消失,因此,存在难以把握整体图像的情况。因此,为了补足缺失的信息,在色带上设定用于显示缺失的信息的颜色,使之与彩色图重叠来进行补充。例如在如图16所示的流入开始时间的彩色图的情况下,由于将参数限定在8秒以后,因而缺失了0秒到7秒的信息。因此,如图17所示,可准备由8秒到20秒的参数构成的范围内的彩色图95a的图像、同时准备0秒到7秒这样的范围外的彩色图95b的图像,构成使两者重叠的重叠图像171。
虽然上述的彩色图的显示方式的变更是根据色带或彩色图来进行的,但各变更也被反映在TIC的重叠显示92中。因此,还可进行基于TIC的重叠显示92的显示方式的变更,如图14或图16所示,操作者在TIC上设定限定参数范围的区域141,并使其反映在彩色图95以及以及色带96上。
另外,如图18所示,从再现图像中选择特定的造影图像90,将该造影图像90作为背景图像181,生成重叠于彩色图95上的重叠图像182,并进行显示。背景图像181还可使用对所保存的图像进行血管强调等图像处理后的图像。作为一例,能使用进行过根据针对各像素而生成的TIC算出最大亮度或TIC的平均亮度来强调血管构造的处理的最大亮度图像183或平均亮度图像184。另外,还能将多个彩色图95彼此重叠来显示。另外,背景图像181并不限于造影图像,也可以使用表示组织弹性的图像、CT图像、MRI图像、或PET图像等。
通过上述的构成,除了彩色图之外,还能并排显示或重叠显示多普勒图像、造影图像等一般公知的超声波图像、CT图像、MRI图像等各种医疗图像,因此,能够进行特殊化为操作者所需要的信息的图像显示。
通过将多个彩色图并列显示从而能够容易进行比较在肝脏肿瘤的鉴别上很重要的、主要肿瘤血管、肿瘤组织的血流量、肿瘤组织的染色的扩展方向。另外,通过比较治疗前后的彩色图,从而在治疗效果的判定上被认为有效。另外,存在通过激光、药剂或高声压超声波等来堵塞肿瘤血管,从而使下游的主要组织坏死的治疗方法,但在实施该治疗方法时,在作为堵塞对象的血管的确定、堵塞状况的确认、治疗结果的确认、治疗效果的判定这些治疗的全部步骤中,并排显示彩色图等的本实施例的构成是有效的。
对TIC运算控制部11、描绘信息输入部13、显示信息输入部15输入的信息,既可以作为初始设定由操作者预先输入,也可以省略操作者的输入作业而自动进行初始设定。此时,在临床上按照不同用途预先将初始设定的内容打包,从而能简化初始设定。例如,在肝脏的肿瘤诊断用途中,获知肿瘤血管以及肿瘤组织的性状很重要。即,以心脏为起点的肿瘤血管以及肿瘤组织的染色开始的定时和肝脏的枯氏细胞所取入的造影剂的量等成为重要的指标。因此,可从图10所示的描绘信息的列表53中事先将“流入开始时间”、“持续时间”、“积分值”等被认为是最低限度需要的信息作为打包信息并选择作为肿瘤诊断用描绘信息。由此,操作者省去了繁杂的设定的输入,通过选择肿瘤诊断用描绘信息的项目(打包信息)便能够自动显示所需要的信息。
实施例2
下面,利用附图来说明本发明的实施例2。
实施例2的超声波诊断装置(图像显示装置)是将实施例1所记载的技术扩展到三维的技术。在图19示出该装置构成。探头2只要是能拍摄三维信息的探头,则其性状、内部构成以及动作形态就没有特别的限制。只要是在实施例1所记载的一维阵列的探头中具有电动机等驱动装置来机械地执行移动的部件、或只要是具有二维阵列的探头即可。
在发送波束形成器3具备发送控制部19,对取得多个不同断层的图像数据的发送顺序进行控制。发送顺序是根据取得三维信息的区域的大小(方位方向、深度方向、切片方向)和图像数据的帧速率、以及生成TIC时的图像数据的采样间隔而决定的。TIC生成时的图像数据的采用间隔也如实施例1所记载那样需要4Hz程度。为此,在图像数据的帧速率为20Hz的情况下,在切片方向不同的位置能进行最多5个断层的拍摄。在将取得三维信息的切片方向的区域宽度设定为5mm的情况下,各摄像断层的间隔成为1mm,该值被设定为在探头进行拍摄时在切片方向上进行移动的间隔。为了增大摄像断层的张数或TIC的采样间隔,只要提高取得图像数据的帧速率即可,为此,若缩短方位方向或深度方向的区域宽度等,则能按照操作者的用途来进行调整,使得所关注的区域被包含在内。
关于基于所取得的图像数据的TIC生成、描绘信息的输入、参数值的算出以及显示于显示部17的各种显示方式,由于都和实施例1相同,因此省略说明。接下来说明分布像构成部16中的处理。
作为例子,假设如图20所示,使1维阵列的探头在切片方向上移动,在第1摄像面到第5摄像面这5个不同的位置进行拍摄的情况。发送顺序是从第1摄像面到第5摄像面为止依次进行拍摄,将其作为1次扫描反复执行直到操作者结束计测为止。如图21所示,所取得的图像数据210按每个摄像断层进行分配,在按每个摄像断层进行TIC生成和参数的计算之后,按每个摄像断层构成二维的彩色图95。在各彩色图95中应用中值过滤器等去噪过滤器。所构成的二维彩色图95以拍摄时的各摄像面的位置间隔而立体地配置。对于在摄像断层之间产生的空间,通过线性插补处理等来进行像素的插补,从而构成3D彩色图211。通过彩色图的三维化,能立体地观察组织中的血流动态的不同。
为了降低TIC生成时所产生的拍摄对象的位置偏离的影响,在图22中示出在如图19所示的装置构成中具备位置补正向量运算部18的构成。
关于采用位置补正向量运算部18进行位置补正的方法,与实施例1所记载的方法相同,但搜索范围扩展到三维。针对关注于图20或图21所示的第3摄像面,使用差分绝对值作为搜索的指标的情况进行说明。首先,如图23所示,从同一摄像面即第3摄像面中成为位置补正的对象的图像数据61的搜索区域63中,搜索与基准区域62之间的差分绝对值为最小的区域。接下来从相邻的第2摄像面以及第4摄像面的图像数据中,选择在与之前进行过搜索的图像数据相同的时相(扫描)所取得的图像数据66、68,设定搜索区域67、69来算出搜索指标的最小值。比较在各摄像面中算出的最小值,将最小值最小的区域作为匹配区域来确定位置补正向量。
将所关注的像素的TIC和周围的像素的TIC进行比较来进行平滑化的方法也能和实施例1同样地应用。补正所采用的像素既可以从相同摄像面中选择,也可以从相邻的其它的摄像面中选择。每个时刻的亮度的选择方法也和实施例1所记载的方法相同。
所构成的三维的彩色图能和CT图像、MRI图像、以及PET图像并列显示或重叠显示。
另外,上述的图像显示装置是以像素为单位来取得图像数据上的亮度变化作为TIC,并将根据所述TIC而算出的参数变换为彩色图的技术。因此,本发明的应用范围并不限于超声波图像,还能应用到MRI图像、CT图像、PET图像等所有数字图像数据中。
本发明的图像显示装置的特征如下所述。
一种图像显示装置,具有:探头,其针对拍摄对象进行超声波的收发;图像数据构成部,其根据所述探头所接收的信号来构成图像数据;图像存储器,其用于保存图像数据;TIC运算控制部,其进行图像数据取得的控制,并控制TIC的生成;TIC运算部,其用于根据图像数据上的亮度值来生成TIC;参数计算部,其用于根据TIC算出图像构成所需要的评价指标(参数)的值;分布像构成部,其用于根据参数的值构成反映了血流动态的二维彩色图;显示部,其用于显示由分布像构成部所构成的彩色图;和显示信息输入部,其用于变更所显示的图像的显示方式。
一种图像显示装置,其特征在于,还具有:TIC运算控制部,其对所保存的图像数据设定关注区域,还设定采样的间隔,所述图像显示装置进行与图像数据的保存以及TIC生成的处理步骤相关的控制。
一种图像显示装置,其特征在于,由TIC运算部生成的TIC通过维持了计测点(采样点)的数量的在时间方向的平均化处理来进行平滑化。
一种图像显示装置,其特征在于,对所保存的图像数据的全部像素执行或对每个预先设定的区域执行TIC运算部中的TIC生成处理。
一种图像显示装置,其特征在于,在TIC运算部中,用预先设定的既定函数将造影剂的回流所引起的亮度变化进行简化,算出TIC的特征性的计测点。
一种图像显示装置,其特征在于,在TIC运算部中设定的函数如下:从计测开始到第1时间点为止为恒定值,从第1时间点到第2时间点为止线性上升,从第2时间点到第3时间点为止成为恒定值,从第3时间点起线性下降,或者是从开始计测起到第1时间点为止为恒定值,第1时间点以后是设平衡亮度为A、设时间为t、设造影剂的流入所伴随的亮度变化为β的情况下的一般公知的表示TIC的函数y=A(1-e-βt)。
一种图像显示装置,其特征在于,还具有:描绘信息输入部,其用于输入操作者所需要的描绘信息,在参数计算部中根据TIC而算出的参数反映了描绘信息。
一种图像显示装置,其特征在于,描绘信息输入部由操作者根据在显示于显示部的导航画面中显示的描绘信息以及反映了表示描绘信息的信息的TIC来进行输入。
一种图像显示装置,其特征在于,描绘信息输入部中的描绘信息的输入通过预先设定描绘信息而省略。
一种图像显示装置,其特征在于,在图像信息控制部中显示的导航画面或描绘信息可以由操作者自由编辑,例如项目的追加、删除、文字的变更等。
一种图像显示装置,其特征在于,在显示部中显示所取得的图像数据的静止图像或运动图像,且并排显示或重叠显示由操作者在静止图像或运动图像上设定的关注区域的TIC,关于重叠显示的TIC,由操作者来指定关注区域或TIC。
一种图像显示装置,其特征在于,输入到描绘信息输入部的信息是造影剂的流入开始时间、平衡亮度到达时间、造影剂的消失开始时间、造影剂的持续时间、到达预先设定的阈值的时间、亮度上升率或下降率、平衡状态的亮度、总流量等与血流动态相关的信息。
一种图像显示装置,其特征在于,由参数计算部算出的参数反映了输入到描绘信息输入部中的信息,是根据表示造影剂的回流所伴随的亮度变化的TIC而算出的值。
一种图像显示装置,其特征在于,由分布像构成部所构成的图像是按照由参数计算部算出的值而用颜色区分的彩色图。
一种图像显示装置,其特征在于,关于显示部中的彩色图的显示状态,操作者可以自由地编辑描绘信息、所取得的图像数据的静止图像或运动图像、操作者指定的关注区域的TIC、彩色图中所显示的信息的组合、配置和大小。
一种图像显示装置,其特征在于,关于由分布像构成部所构成的彩色图,操作者可以在彩色图上所设定的关注区域的范围内对颜色范围进行最优化。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,通过用附属在彩色图中的表示参数与颜色之间的关系的色带上所显示的箭头来指定关注的颜色的范围,在彩色图上指定的范围内所包含的区域中重新构成彩色图,能够使颜色的范围最优化。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,通过在彩色图上指定基准区域,从而重新构成以基准区域为基准的彩色图。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,能够对在所关注的区域的TIC上在彩色图中显示的参数范围进行限定。
一种图像显示装置,其特征在于,显示信息输入部受理由操作者输入的显示状态的全部信息,例如根据所生成的TIC、所保存的图像数据、所构成的彩色图等信息来进行所显示的组合或显示的大小、背景图像和重新构成的图像彼此的组合等,并反映给分布像构成部或显示部。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,构成在所关注的参数范围内包含和不包含的彩色图,用颜色的浓淡或颜色的分配来区别所关注的区域或者不包含在关注区域内的区域之后,使两个图像重叠。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,对以不同的描绘信息所构成的彩色图、超声波图像、MRI图像、CT图像、PET图像、以及其它拍摄相同拍摄对象的图像作为背景图像进行组合并显示。
一种图像显示装置,其特征在于,在由分布像构成部所构成的彩色图中,使用所取得的图像数据将进行过血管强调等的图像处理的图像作为背景图像,在该背景图像上重叠显示彩色图。
一种图像显示装置,其特征在于,在描绘信息输入部以及显示信息输入部中,操作者输入的信息可在手术前预先设定,另外能够保存设定内容并反映到下次。
一种图像显示装置,其特征在于,在描绘信息输入部中,显示于导航画面的描绘信息可以根据过去操作者选择的频度较高的信息或根据肿瘤诊断重要的信息等附加等级,能由操作者自由更换排列顺序来进行显示。
一种图像显示装置,具有:探头,其针对拍摄对象进行超声波的收发;图像数据构成部,其根据探头所取得的信号来构成图像数据;发送控制部,其用于控制发送顺序;图像存储器,其用于保存图像数据;TIC运算控制部,其控制TIC的生成;TIC运算部,其用于根据图像数据上的亮度值来生成TIC;描绘信息输入部,其用于输入操作者所需要的描绘信息;参数计算部,其用于根据TIC算出与描绘信息对应的参数;分布像构成部,其用于根据参数来构成反映了血流动态的三维的彩色图;显示部,其用于显示由分布像构成部构成的3D彩色图;和显示信息输入部,其用于变更所显示的图像的显示方式。
探头是指在一维阵列型的探头中具备电动机等驱动部的部件,是二维阵列型的探头,能取得多个不同摄像面中的图像数据。
一种图像显示装置,其特征在于,在分布像构成部中构成的3D彩色图是对在不同摄像面所构成的二维彩色图进行立体组合而形成的彩色图。
一种图像显示装置,其特征在于,TIC运算部中的TIC的生成是通过位置补正向量运算部来补正拍摄对象在空间上的位置偏离而实现的。
一种图像显示装置,其特征在于,关于由分布像构成部构成的3D彩色图,是对由不同的描绘信息构成的3D彩色图、超声波图像、MRI图像、CT图像、PET图像、以及其拍摄相同拍摄对象的图像作为背景图像进行组合来显示的。
Claims (15)
1.一种超声波诊断装置,具有:
探头,其针对拍摄对象进行超声波的收发;
图像数据构成部,其根据所述探头所接收的信号来构成图像数据;
亮度变化曲线运算部,其根据所述图像数据的亮度值来生成时间亮度变化曲线;
分布像构成部,其根据基于所述时间亮度变化曲线而求出的规定的参数值,来构成血流动态的分布像;和
显示部,其显示所述血流动态的分布像。
2.根据权利要求1所述的超声波诊断装置,其特征在于,
所述超声波诊断装置还具有:
位置补正向量运算部,其运算所述拍摄对象在空间的位置补正向量,
所述亮度变化曲线运算部根据所述位置补正向量来补正所述拍摄对象在空间的位置,并生成补正后的拍摄对象在空间的位置的时间亮度变化曲线。
3.根据权利要求1所述的超声波诊断装置,其特征在于,
所述超声波诊断装置还具有:
描绘信息输入部,其受理由操作者进行的描绘信息的输入;和
参数计算部,其根据所述时间亮度变化曲线来计算出与所述描绘信息输入部所受理的所述描绘信息对应的预先确定的参数值,来作为所述参数值。
4.根据权利要求3所述的超声波诊断装置,其特征在于,
所述描绘信息是与血流动态相关的信息,是造影剂的流入开始时间、平衡亮度到达时间、造影剂的消失开始时间、造影剂的持续时间、到达预先设定的阈值的时间、亮度上升率、亮度下降率、平衡状态的亮度、以及总流量中的至少一者。
5.根据权利要求3所述的超声波诊断装置,其特征在于,
所述参数计算部计算出的所述参数值是根据表示对所述拍摄对象注入的造影剂的回流所伴随的亮度变化的时间亮度变化曲线而计算出的值。
6.根据权利要求1所述的超声波诊断装置,其特征在于,
所述分布像构成部,根据所述参数值来构成按颜色区分的二维或三维的彩色图像。
7.根据权利要求1所述的超声波诊断装置,其特征在于,
所述超声波诊断装置还具有:
显示信息输入部,其受理由操作者进行的显示方式的设定,
所述分布像构成部构成图像,其中该图像是以所述显示信息输入部所受理的所述显示方式来显示所述描绘信息、所取得的图像数据的静止图像或运动图像、关注区域的时间亮度变化曲线、以及根据所述参数值按颜色区分的血流动态的分布像中的至少一者的图像。
8.一种血流动态的分布像的构成方法,包括:
将被注入了造影剂的被检测者作为拍摄对象,通过探头针对该造影对象收发超声波的步骤;
根据所述探头所接收的信号来构成图像数据的步骤;
根据所述图像数据的亮度值来生成时间亮度变化曲线的步骤;
根据所述时间亮度变化曲线,计算出用于构成血流动态的分布像的规定的参数值的步骤;和
根据所述参数值来构成血流动态的分布像的步骤。
9.根据权利要求8所述的血流动态的分布像的构成方法,其特征在于,
还包含对位置补正向量进行运算的步骤,该位置补正向量是用于对所述拍摄对象在空间的位置进行补正的向量,
在运算所述时间亮度变化曲线的步骤中,通过所述位置补正向量来补正所述拍摄对象的位置,根据位置补正后的所述拍摄对象的图像数据来生成所述时间亮度变化曲线。
10.根据权利要求8所述的血流动态的分布像的构成方法,其特征在于,
还包含受理操作者进行的描绘信息的输入的步骤,
在计算所述参数值的步骤中,根据所述时间亮度变化曲线来计算出与所受理的所述描绘信息对应的预先确定的参数值,来作为所述参数值。
11.根据权利要求10所述的血流动态的分布像的构成方法,其特征在于,
所述描绘信息是与血流动态相关的信息,是造影剂的流入开始时间、平衡亮度到达时间、造影剂的消失开始时间、造影剂的持续时间、到达预先设定的阈值的时间、亮度上升率、亮度下降率、平衡状态的亮度、以及总流量中的至少一者。
12.根据权利要求10所述的血流动态的分布像的构成方法,其特征在于,
在计算所述参数的步骤中计算出的参数值,是根据表示对所述拍摄对象注入的造影剂的回流所伴随的亮度变化的时间亮度变化曲线而算出的值。
13.根据权利要求8所述的血流动态的分布像的构成方法,其特征在于,
在构成所述血流动态的分布像的步骤中,根据所述参数值来构成按颜色区分的二维或三维的彩色图像。
14.根据权利要求13所述的血流动态的分布像的构成方法,其特征在于,
在所述彩色图像中,附带有表示颜色和所述参数值之间的对应的色带,
通过由操作者进行的所述色带中附带的箭头的位置变更操作,来受理在所述彩色图像中显示的参数值的范围以及颜色区域的至少一方的设定变更。
15.根据权利要求9所述的血流动态的分布像的构成方法,其特征在于,
在运算所述时间亮度变化曲线的步骤中,基于根据所述位置补正向量进行位置补正后的拍摄对象的空间图像数据,来生成所述拍摄对象的同一部位的所述时间亮度变化曲线。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009095535 | 2009-04-10 | ||
JP2009-095535 | 2009-04-10 | ||
PCT/JP2010/056329 WO2010117025A1 (ja) | 2009-04-10 | 2010-04-07 | 超音波診断装置、および、血流動態の分布像の構成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102387747A true CN102387747A (zh) | 2012-03-21 |
Family
ID=42936306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010800143768A Pending CN102387747A (zh) | 2009-04-10 | 2010-04-07 | 超声波诊断装置以及血流动态的分布像的构成方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8971600B2 (zh) |
EP (1) | EP2417912B1 (zh) |
JP (1) | JP5753489B2 (zh) |
CN (1) | CN102387747A (zh) |
WO (1) | WO2010117025A1 (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104246832A (zh) * | 2012-05-14 | 2014-12-24 | 哈特弗罗公司 | 用于提供来自患者特异性血流模型的信息的方法和系统 |
CN104720851A (zh) * | 2013-12-23 | 2015-06-24 | Ge医疗系统环球技术有限公司 | 计算机断层扫描成像的方法和装置 |
CN105380680A (zh) * | 2014-09-01 | 2016-03-09 | 三星麦迪森株式会社 | 超声诊断设备和操作该超声诊断设备的方法 |
WO2019085348A1 (zh) * | 2017-11-06 | 2019-05-09 | 深圳市德力凯医疗设备股份有限公司 | 一种脑血流数据的显示方法、装置以及存储介质 |
CN109938759A (zh) * | 2013-04-01 | 2019-06-28 | 佳能医疗系统株式会社 | 医用图像处理装置以及x射线诊断装置 |
CN109938760A (zh) * | 2013-12-11 | 2019-06-28 | 东芝医疗系统株式会社 | 图像解析装置以及x射线诊断装置 |
CN110167448A (zh) * | 2017-01-04 | 2019-08-23 | 皇家飞利浦有限公司 | 基于时间的参数对比增强超声成像系统和方法 |
CN110458834A (zh) * | 2019-02-25 | 2019-11-15 | 腾讯科技(深圳)有限公司 | 一种乳腺肿瘤图像处理系统、方法及装置 |
CN113301854A (zh) * | 2019-01-17 | 2021-08-24 | 佳能医疗系统株式会社 | 图像解析装置 |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101117879B1 (ko) * | 2010-05-27 | 2012-03-07 | 삼성메디슨 주식회사 | 컬러 재구성 영상을 제공하는 초음파 시스템 및 방법 |
JP5632203B2 (ja) * | 2010-06-08 | 2014-11-26 | 株式会社東芝 | 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム |
JP2012005601A (ja) * | 2010-06-23 | 2012-01-12 | Toshiba Corp | 超音波診断装置 |
JP2012024132A (ja) * | 2010-07-20 | 2012-02-09 | Toshiba Corp | 超音波診断装置、画像管理装置及びプログラム |
US8315812B2 (en) * | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
US10292445B2 (en) * | 2011-02-24 | 2019-05-21 | Rochester Institute Of Technology | Event monitoring dosimetry apparatuses and methods thereof |
WO2012137431A1 (ja) * | 2011-04-05 | 2012-10-11 | パナソニック株式会社 | 超音波診断装置、及び、超音波診断画像の出力方法 |
JP5949558B2 (ja) * | 2011-06-07 | 2016-07-06 | コニカミノルタ株式会社 | 超音波診断装置および超音波診断装置の制御方法 |
KR101501515B1 (ko) * | 2012-01-04 | 2015-03-11 | 삼성메디슨 주식회사 | 진단 영상 장치 및 그 동작 방법 |
JP6354584B2 (ja) * | 2012-08-07 | 2018-07-11 | コニカミノルタ株式会社 | 医用データ処理装置、医用データ処理方法、及び超音波診断装置 |
JP6305742B2 (ja) * | 2012-11-30 | 2018-04-04 | キヤノンメディカルシステムズ株式会社 | 医用画像診断装置、表示方法 |
JP6100603B2 (ja) * | 2013-05-13 | 2017-03-22 | 東芝メディカルシステムズ株式会社 | 医用画像撮影解析装置 |
EP3046648A4 (en) * | 2013-09-16 | 2017-04-05 | Enverid Systems Inc. | Method and system for filtering formaldehyde from indoor air |
US11076830B2 (en) * | 2014-09-02 | 2021-08-03 | Samsung Electronics Co., Ltd. | Ultrasound imaging apparatus and method of controlling the same |
WO2016059913A1 (ja) * | 2014-10-16 | 2016-04-21 | オリンパス株式会社 | 超音波観測装置 |
EP3023059A1 (en) * | 2014-11-18 | 2016-05-25 | Samsung Medison Co., Ltd. | Ultrasound imaging apparatus and method of controlling the same |
EP3220828B1 (en) | 2014-11-18 | 2021-12-22 | C.R. Bard, Inc. | Ultrasound imaging system having automatic image presentation |
CN107106124B (zh) | 2014-11-18 | 2021-01-08 | C·R·巴德公司 | 具有自动图像呈现的超声成像系统 |
US10406472B2 (en) * | 2015-03-12 | 2019-09-10 | 3M Innovative Properties Company | Collapsible air filter |
KR102525616B1 (ko) * | 2015-10-08 | 2023-04-26 | 삼성메디슨 주식회사 | 조영제 초음파 진단 장치 및 방법 |
FR3042888A1 (fr) | 2015-10-26 | 2017-04-28 | Continental Automotive France | Procede d'adaptation automatique des conditions d'etablissement de diagnostic par un systeme de diagnostic embarque |
CN108475328B (zh) * | 2015-12-30 | 2022-05-03 | 文塔纳医疗系统公司 | 用于实时化验监测的系统和方法 |
US11123045B2 (en) * | 2016-05-26 | 2021-09-21 | Canon Medical Systems Corporation | Ultrasonic diagnostic apparatus and medical image processing apparatus |
JP2019025187A (ja) * | 2017-08-02 | 2019-02-21 | 株式会社トプコン | 眼科情報処理装置及び眼科撮影装置 |
US11751835B2 (en) * | 2017-09-14 | 2023-09-12 | Shimadzu Corporation | Radiographic imaging apparatus |
TWI648035B (zh) * | 2018-03-22 | 2019-01-21 | 亞洲大學 | 最小割脊椎分節演算法 |
WO2020121617A1 (ja) * | 2018-12-13 | 2020-06-18 | 株式会社島津製作所 | 診断画像システムおよび診断画像管理方法 |
US20200273181A1 (en) * | 2019-02-26 | 2020-08-27 | Canon Medical Systems Corporation | Analysis apparatus and ultrasound diagnosis apparatus |
CN111084631B (zh) * | 2019-12-03 | 2023-09-08 | 上海市胸科医院 | 一种timi心肌灌注帧数获取方法、介质及电子设备 |
JP2022080735A (ja) * | 2020-11-18 | 2022-05-30 | キヤノンメディカルシステムズ株式会社 | 超音波診断装置およびプログラム |
CN114519707B (zh) * | 2022-02-14 | 2024-06-04 | 逸超医疗科技(北京)有限公司 | 一种血流灌注参数提取方法及设备 |
WO2023186948A1 (en) * | 2022-03-31 | 2023-10-05 | Koninklijke Philips N.V. | Systems and methods for color mapping for contrast enhanced ultrasound parametric imaging |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10305035A (ja) * | 1997-05-08 | 1998-11-17 | Toshiba Corp | 超音波診断装置 |
JP2001269341A (ja) * | 2000-03-24 | 2001-10-02 | Ge Yokogawa Medical Systems Ltd | 超音波画像生成方法、超音波画像生成装置および超音波診断装置 |
JP2002165795A (ja) * | 2000-11-29 | 2002-06-11 | Ge Medical Systems Global Technology Co Llc | 関心領域設定方法および装置並びに超音波撮影装置 |
US6659953B1 (en) * | 2002-09-20 | 2003-12-09 | Acuson Corporation | Morphing diagnostic ultrasound images for perfusion assessment |
CN1593348A (zh) * | 2003-09-11 | 2005-03-16 | 株式会社东芝 | 超声波诊断装置和图像处理装置 |
CN101352355A (zh) * | 2007-07-26 | 2009-01-28 | Ge医疗系统环球技术有限公司 | 超声成像装置和超声成像方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4932415A (en) * | 1988-11-14 | 1990-06-12 | Vingmed Sound A/S | Method of color coding two dimensional ulltrasonic doppler velocity images of blood flow on a display |
US5170792A (en) * | 1989-11-27 | 1992-12-15 | Acoustic Imaging Technologies Corporation | Adaptive tissue velocity compensation for ultrasonic Doppler imaging |
US5255683A (en) * | 1991-12-30 | 1993-10-26 | Sound Science Limited Partnership | Methods of and systems for examining tissue perfusion using ultrasonic contrast agents |
JP3139858B2 (ja) * | 1992-12-24 | 2001-03-05 | ジーイー横河メディカルシステム株式会社 | 超音波診断装置 |
US5615680A (en) * | 1994-07-22 | 1997-04-01 | Kabushiki Kaisha Toshiba | Method of imaging in ultrasound diagnosis and diagnostic ultrasound system |
US5471990A (en) | 1994-11-23 | 1995-12-05 | Advanced Technology Laboratories, Inc. | Ultrasonic doppler power measurement and display system |
JP3683945B2 (ja) | 1995-07-13 | 2005-08-17 | 株式会社東芝 | 超音波診断装置 |
JP3946815B2 (ja) * | 1997-06-11 | 2007-07-18 | 東芝医用システムエンジニアリング株式会社 | 超音波診断装置 |
US5910119A (en) * | 1998-05-12 | 1999-06-08 | Diasonics, Inc. | Ultrasonic color doppler velocity and direction imaging |
JP4408988B2 (ja) | 1999-05-31 | 2010-02-03 | 株式会社東芝 | 超音波診断装置 |
JP3495710B2 (ja) * | 2001-02-01 | 2004-02-09 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 血流イメージング装置および超音波診断装置 |
JP2003061959A (ja) * | 2001-08-22 | 2003-03-04 | Toshiba Corp | 超音波診断装置 |
JP3689095B2 (ja) * | 2003-05-19 | 2005-08-31 | 株式会社東芝 | 超音波診断装置 |
JP4610011B2 (ja) * | 2003-07-22 | 2011-01-12 | 株式会社日立メディコ | 超音波診断装置及び超音波画像表示方法 |
JP4369206B2 (ja) * | 2003-11-06 | 2009-11-18 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波画像生成装置 |
JP4427507B2 (ja) * | 2005-11-14 | 2010-03-10 | 株式会社東芝 | 超音波診断装置 |
US20080081998A1 (en) * | 2006-10-03 | 2008-04-03 | General Electric Company | System and method for three-dimensional and four-dimensional contrast imaging |
EP1958570B1 (de) * | 2007-02-15 | 2011-01-12 | BrainLAB AG | Verfahren zur Darstellung anatomischer Patientenstrukturen im interessierenden Bereich eines Bilderfassungsgeräts |
JP5280020B2 (ja) * | 2007-06-26 | 2013-09-04 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | 超音波撮像装置 |
JP2009100971A (ja) * | 2007-10-24 | 2009-05-14 | Ge Medical Systems Global Technology Co Llc | 超音波撮像装置 |
JP5395396B2 (ja) * | 2008-10-15 | 2014-01-22 | 株式会社東芝 | 超音波診断装置、医用画像処理装置、及び医用画像処理プログラム |
-
2010
- 2010-04-07 US US13/263,184 patent/US8971600B2/en active Active
- 2010-04-07 JP JP2011508381A patent/JP5753489B2/ja active Active
- 2010-04-07 WO PCT/JP2010/056329 patent/WO2010117025A1/ja active Application Filing
- 2010-04-07 EP EP10761724.3A patent/EP2417912B1/en active Active
- 2010-04-07 CN CN2010800143768A patent/CN102387747A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10305035A (ja) * | 1997-05-08 | 1998-11-17 | Toshiba Corp | 超音波診断装置 |
JP2001269341A (ja) * | 2000-03-24 | 2001-10-02 | Ge Yokogawa Medical Systems Ltd | 超音波画像生成方法、超音波画像生成装置および超音波診断装置 |
JP2002165795A (ja) * | 2000-11-29 | 2002-06-11 | Ge Medical Systems Global Technology Co Llc | 関心領域設定方法および装置並びに超音波撮影装置 |
US6659953B1 (en) * | 2002-09-20 | 2003-12-09 | Acuson Corporation | Morphing diagnostic ultrasound images for perfusion assessment |
CN1593348A (zh) * | 2003-09-11 | 2005-03-16 | 株式会社东芝 | 超声波诊断装置和图像处理装置 |
CN101352355A (zh) * | 2007-07-26 | 2009-01-28 | Ge医疗系统环球技术有限公司 | 超声成像装置和超声成像方法 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104246832A (zh) * | 2012-05-14 | 2014-12-24 | 哈特弗罗公司 | 用于提供来自患者特异性血流模型的信息的方法和系统 |
US11826106B2 (en) | 2012-05-14 | 2023-11-28 | Heartflow, Inc. | Method and system for providing information from a patient-specific model of blood flow |
CN109938759A (zh) * | 2013-04-01 | 2019-06-28 | 佳能医疗系统株式会社 | 医用图像处理装置以及x射线诊断装置 |
CN109938760B (zh) * | 2013-12-11 | 2024-03-12 | 东芝医疗系统株式会社 | 图像解析装置以及x射线诊断装置 |
CN109938760A (zh) * | 2013-12-11 | 2019-06-28 | 东芝医疗系统株式会社 | 图像解析装置以及x射线诊断装置 |
CN104720851A (zh) * | 2013-12-23 | 2015-06-24 | Ge医疗系统环球技术有限公司 | 计算机断层扫描成像的方法和装置 |
CN104720851B (zh) * | 2013-12-23 | 2019-07-16 | Ge医疗系统环球技术有限公司 | 计算机断层扫描成像的方法和装置 |
US10743835B2 (en) | 2014-09-01 | 2020-08-18 | Samsung Medison Co., Ltd. | Ultrasound diagnosis apparatus and method of operating the same |
CN105380680A (zh) * | 2014-09-01 | 2016-03-09 | 三星麦迪森株式会社 | 超声诊断设备和操作该超声诊断设备的方法 |
CN110167448A (zh) * | 2017-01-04 | 2019-08-23 | 皇家飞利浦有限公司 | 基于时间的参数对比增强超声成像系统和方法 |
WO2019085348A1 (zh) * | 2017-11-06 | 2019-05-09 | 深圳市德力凯医疗设备股份有限公司 | 一种脑血流数据的显示方法、装置以及存储介质 |
CN113301854A (zh) * | 2019-01-17 | 2021-08-24 | 佳能医疗系统株式会社 | 图像解析装置 |
CN110458834A (zh) * | 2019-02-25 | 2019-11-15 | 腾讯科技(深圳)有限公司 | 一种乳腺肿瘤图像处理系统、方法及装置 |
US11928816B2 (en) | 2019-02-25 | 2024-03-12 | Tencent Technology (Shenzhen) Company Limited | Image processing method, apparatus, and system, electronic device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
EP2417912A1 (en) | 2012-02-15 |
US8971600B2 (en) | 2015-03-03 |
US20120027282A1 (en) | 2012-02-02 |
WO2010117025A1 (ja) | 2010-10-14 |
EP2417912B1 (en) | 2018-09-05 |
JPWO2010117025A1 (ja) | 2012-10-18 |
JP5753489B2 (ja) | 2015-07-22 |
EP2417912A4 (en) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102387747A (zh) | 超声波诊断装置以及血流动态的分布像的构成方法 | |
EP1501419B1 (en) | Contrast-agent enhanced color-flow imaging | |
Kruskal et al. | Optimizing Doppler and color flow US: application to hepatic sonography | |
US7713209B2 (en) | Targeted contrast agent imaging with medical diagnostic ultrasound | |
US8529455B2 (en) | Systems and methods for estimating the size and position of a medical device to be applied within a patient | |
EP1517636B1 (en) | Contrast agent imaging with synchronized persistence | |
KR20110097734A (ko) | 초음파 진단 이미지화를 위한 볼륨 측정 양자화 | |
US20050281444A1 (en) | Methods and apparatus for defining a protocol for ultrasound imaging | |
JPH0653117B2 (ja) | 超音波血流量自動測定装置 | |
JPH09164138A (ja) | コントラスト剤を使用した超音波診断画像処理方法および該診断装置 | |
US6652463B2 (en) | System and method for non-linear detection of ultrasonic contrast agents at a fundamental frequency | |
EP3569155A1 (en) | Method and ultrasound system for shear wave elasticity imaging | |
CN103876776B (zh) | 一种超声造影成像方法及装置 | |
CN101945615A (zh) | 超声波摄像装置 | |
Saris et al. | A comparison between compounding techniques using large beam-steered plane wave imaging for blood vector velocity imaging in a carotid artery model | |
US20100324420A1 (en) | Method and System for Imaging | |
CN101406400B (zh) | 超声波诊断装置及超声波诊断方法 | |
US20090187103A1 (en) | Contrast agent destruction effectiveness determination for medical diagnostic ultrasound imaging | |
JP2011110211A (ja) | 医用画像表示装置及び血流動態の分布像構成方法 | |
US11219429B2 (en) | Ultrasound imaging apparatus and controlling method for the same | |
JP4301606B2 (ja) | 超音波画像診断装置 | |
CN106170254B (zh) | 超声波观测装置 | |
JP3405578B2 (ja) | 超音波診断装置 | |
US20230225711A1 (en) | Systems and methods for automatically determining and displaying a vascular depth measurement on an ultrasound image displayed on a device | |
Di Ianni et al. | Portable vector flow imaging compared with spectral doppler ultrasonography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20120321 |