CN102386817B - 电动马达扭矩估算 - Google Patents

电动马达扭矩估算 Download PDF

Info

Publication number
CN102386817B
CN102386817B CN2011102309694A CN201110230969A CN102386817B CN 102386817 B CN102386817 B CN 102386817B CN 2011102309694 A CN2011102309694 A CN 2011102309694A CN 201110230969 A CN201110230969 A CN 201110230969A CN 102386817 B CN102386817 B CN 102386817B
Authority
CN
China
Prior art keywords
torque
axle
motor
shaft current
torque command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2011102309694A
Other languages
English (en)
Other versions
CN102386817A (zh
Inventor
J·吴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to CN201310124299.7A priority Critical patent/CN103259482B/zh
Publication of CN102386817A publication Critical patent/CN102386817A/zh
Application granted granted Critical
Publication of CN102386817B publication Critical patent/CN102386817B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

本发明提供了一种控制包括永磁(PM)同步马达的车辆的方法。校准马达以使得对于每个扭矩指令均具有对应的直轴(d轴)和交轴(q轴)电流指令。该方法包扩建立扭矩指令T*。分别确定对应于扭矩指令T*的d轴和q轴电流指令Id*、Iq*。基于Id*、Iq*控制马达。分别测量d轴和q轴电流Id、Iq。根据扭矩指令T*与扭矩差之和估算输出扭矩。根据Id*、Iq*、Id、和Iq的函数确定扭矩差。可基于估算的输出扭矩控制车辆。

Description

电动马达扭矩估算
技术领域
本发明涉及电动马达扭矩估算。本发明还涉及使用永磁(PM)马达的混合动力及电动车辆。
背景技术
永磁(PM)同步马达的使用已变得十分广泛。总体上,PM同步马达包括转子,其具有安装在转子周边或隐藏在马达内部的永磁体。
在一些PM同步马达的应用中,需要估算产生的马达扭矩。
现有扭矩估算方法基于扭矩方程:
T=P/2[phi×Iq+(Ld-Lq)×Id×Iq]
其中P为磁极数,phi为永磁体磁链(flux linkage),Id和Iq为测量并转换至马达的d轴、q轴的电流,Ld和Lq为d轴、q轴的电感。Ld和Lq还由于磁路的饱和特性而受到Id和Iq的影响。
通常,可容易地精确测量电流,而phi仅随着温度线性变化并因此可容易地进行调节。
尽管该方法在一些应用中较为合适,然而该方法的问题在于估算的精确性总体上依赖于对Ld和Lq的估算,而这十分难以达到。
专利文件US2006/0006825A1、US2009/0179602A1、WO2007066182A1、EP1014554A2、US7586286和EP1401093A2中公开了背景信息。2001年1月出版的《亚历山大工程学》杂志(AlexandriaEngineering Journal)第40卷第1期中Y.S.Mohamed和A.A.Hassan撰写的《改善的直接扭矩控制的感应马达驱动的性能》(Performance of modifieddirect torque controlled induction motor drives)一文中可得到更多的背景信息。
发明内容
本发明的目的在于提供一种改进的电动马达扭矩估算。更为详细地,本发明的目的在于通过使用电流反馈和电流指令提供对电机的扭矩估算的改善。
根据本发明的一个方面,提供了一种控制包括有永磁(PM)同步马达的方法。校准马达以使得对于每个扭矩指令均具有对应的直轴(d轴,direct-axis)和交轴(q轴,quadrature axis)电流指令。该方法包含建立扭矩指令T*,并分别确定对应于扭矩指令T*的d轴和q轴电流指令Id*、Iq*。
该方法还包含基于Id*、Iq*控制马达,并分别测量d轴和q轴电流Id、Iq。根据扭矩指令T*与扭矩差之和估算输出扭矩。根据Id*、Iq*、Id、和Iq的函数确定扭矩差。可基于估算的输出扭矩控制车辆。
更为详细地,本发明预见到在本发明的任意实施例中可分别或以合适的组合包括多种其它特征。例如,扭矩指令T*可基于车辆工况。车辆可包括存储器,且基于估算的输出扭矩控制车辆可包括将诊断代码存储在存储器中(例如在估算的输出扭矩处于该值的正常期待范围之外时)。
在一些实施例中,通过建立查值表将扭矩指令映射至对应的直轴(d轴)和交轴(q轴)电流指令。
在一个实施例中,该方法还包含分别计算d轴和q轴电流误差Id_e和Iq_e,其中Id_e=Id-Id*,Iq_e=Iq-Iq*。随后,根据下列方程确定扭矩差:
T_diff=P/2×[Phi×Iq_e+(Ld-Lq)×(Id_e×Iq*+Iq_e×Id*+Id_e×Iq_e)]
其中T_diff为扭矩差,P为磁极数,phi为永磁体磁链,Ld为d轴的电感,Lq为q轴的电感。
应了解,本发明实施例在使用永磁(PM)马达的混合动力和电动车辆中尤为有用。另外,可在其它应用中采用本发明实施例。
根据本发明的另一个方面,提供了一种控制永磁(PM)同步马达的方法。校准马达以使得对于每个扭矩指令均具有对应的直轴(d轴)和交轴(q轴)电流指令。该方法包含建立扭矩指令T*,并分别确定对应于扭矩指令T*的d轴和q轴电流指令Id*、Iq*。该方法还包含基于Id*、Iq*控制马达,并分别测量d轴和q轴电流Id、Iq。根据扭矩指令T*和扭矩差之和估算输出扭矩。根据Id*、Iq*、Id和Iq的函数确定扭矩差。可产生指示估算的输出扭矩的输出信号。
根据本发明的一个实施例,该方法还包含:产生指示估算的输出扭矩的输出信号。
根据本发明的一个实施例,该方法还包含:建立查值表用于将各个扭矩指令映射至对应的直轴(d轴)和交轴(q轴)电流指令。
根据本发明的一个实施例,该方法还包含:分别计算d轴和q轴电流误差Id_e、Iq_e;其中Id_e=Id-Id*;且Iq_e=Iq-Iq*。
根据本发明的一个实施例,该方法还包含根据下列方程确定扭矩差:
T_diff=P/2×[Phi×Iq_e+(Ld-Lq)×(Id_e×Iq*+Iq_e×Id*+Id_e×Iq_e)]
其中T_diff为扭矩差,P为磁极数,phi为永磁体磁链,Ld为d轴的电感,Lq为q轴的电感。
根据本发明的再一个方面,提供了一种控制控制永磁(PM)同步马达的装置。该装置包含马达控制器,其配置用于:分别基于对应于扭矩指令T*的d轴和q轴电流指令Id*、Iq*控制马达。马达控制器分别测量d轴和q轴电流Id、Iq。根据扭矩指令T*和扭矩差之和估算输出扭矩,其中根据Id*、Iq*、Id和Iq的函数确定扭矩差。可产生指示估算的输出扭矩的输出信号。
附图说明
图1为动力分离动力系统配置的示意图。
图2为框图形式的动力系统动力流向图的示意图。
图3说明了电动马达装置,包括马达控制器和永磁(PM)同步马达。
图4说明了控制永磁(PM)同步马达的方法。
图5说明了控制包括永磁(PM)同步马达的车辆的方法。
图6进一步说明了估算输出扭矩更为详细的方面。
具体实施方式
根据需要,本说明书中公开了本发明的具体实施例。然而应理解,所公开的实施例仅为本发明的示例,其可以多种替代形式实施。附图无需按比例绘制,可放大或缩小一些特征以显示特定组件的细节。因此,本说明书中公开的具体结构性和功能性细节不应解释为限定,而仅为用于教导本领域技术人员以多种方式实施本发明的代表性基础。
本发明涵盖了电动马达扭矩估算的多个方面。下面将更为详细地描述其示例。
在一个特定实施例中,马达校准期间对扭矩的测量相对精确;获得各个扭矩值对应的直轴(d轴)和交轴(q轴)电流指令以建立查值表用于将各个扭矩指令映射至对应的直轴(d轴)和交轴(q轴)电流指令。在马达运转期间,基于车辆工况建立扭矩指令T*,并从查值表分别确定对应于扭矩指令T*的d轴和q轴电流指令。向马达发布电流指令Id*、Iq*。分别测量实际d轴和q轴电流Id、Iq。
如果Id、Iq反馈与指令Id*、Iq*匹配得很好,则扭矩应当非常接近扭矩指令T*。假定校准100%精确,如果Id、Iq与Id*、Iq*相比误差为零,则与扭矩指令T*相比应当为零扭距误差。
通过将Id改写为Id*+Id_e并将Iq改写为Iq*+Iq_e(其中Id_e和Iq_e为误差),扭矩估算可为:T=P/2×[phi×(Iq*+Iq_e)+(Ld-Lq)×(Id*+Id_e)×(Iq*+Iq_e)]。假设零电流误差等同于零扭距误差,扭矩指令T*=P/2×[phi×Iq*+(Ld-Lq)×Id*×Iq*]。将扭矩估算分解为P/2×[phi×Iq*+(Ld-Lq)×Id*×Iq*]+P/2×[Phi×Iq_e+(Ld-Lq)×Id_e×Iq*+Iq_e×Id*+Id_e×Iq_e)],可基于先前的假设以T*取代第一部分并仅计算由Id和Iq的差所导致的扭矩差。该方法可减少对细化Ld和Lq估算或计算(其较为困难且常常不够精确)的需要。
可在多种应用中实施本发明实施例。一个示例为混合动力电动车辆动力系。
图1中显示了混合动力电动车辆动力系。车辆系统控制器(VSC)10、电池及电池能量控制模块(BECM)12、和传动系统14以及马达-发电机子系统包含控制器局域网(CAN)。由VSC10控制的内燃发动机16通过扭矩输入轴18将扭矩分配至传动系统14。
传动系统14包括行星齿轮单元20,其包含环形齿轮22、中心齿轮24、和行星架总成26。环形齿轮22将扭矩分配至变速齿轮(包含啮合齿轮元件28、30、32、34、及36)。传动系统14的扭矩输出轴38通过差速器及车桥机构42可驱动地连接至车辆牵引轮40。
齿轮30、32、及34安装在中间轴上,齿轮32接合马达驱动的齿轮44。电动马达46驱动齿轮44,其作用为中间轴齿轮机构的扭矩输入。
电池通过能量流路径48、54向马达传递电能。如52处,发电机50所示的已知方式电连接至电池及马达46。
如本领域技术人员所了解的,图1的动力分离动力系统可以多种不同模式运转。如图所示,传动系有两个动力源。第一动力源为发动机和发电机子系统的组合,其使用行星齿轮单元20连接在一起。另一动力源包括电力驱动系统(包括马达46、发电机50、和电池),其中电池作用为发电机50和马达46的能量存储介质。
总体上,VSC10计算满足驱动轮动力要求加上所有附件负载所需的总发动机动力,并独立安排带有或不带有实际发动机性能的反馈的发动机转速和负载运转点以满足总动力要求。此类型的方法通常特意用于最大化燃料经济性并可用在其他类型的动力系统(例如VSC)中。
图2中说明了图1中所示的动力分离动力系统图的多个元件之间的能量流路径。基于驾驶员和其它输入安排燃料供应计划。发动机16向行星齿轮单元20传输动力。附件负载减少了可用发动机制动力。通过行星环形齿轮将动力传递至中间轴齿轮30、32、34。来自传动系统的动力输出驱动车轮。
发电机50在作用为马达时可向行星齿轮机构传递动力。当作用为发电机时,发电机50由行星齿轮机构驱动。类似地,可以任意方向分配在马达46和中间轴齿轮30、32、34之间的动力分配。
如图1、2中所示,发动机动力输出可通过控制发电机50分离为两条路径。在运转时,系统确定驾驶员对扭矩的需求并在两个动力源之间实现动力的最佳分离。
图3说明了电动马达70。电动马达70包括马达控制器72和永磁(PM)同步马达74。可根据本发明实施例控制电动马达70。本发明实施例在使用PM同步马达的混合动力及电动车辆中较为有用。例如,马达46或发电机50(图1、2)可采用PM同步马达,而电动马达70可代表马达46或发电机50。本发明实施例在其它应用中也十分有用,电动马达70可代表一些其它的电动马达。总体上在本示例中,通过向控制PM同步马达74的马达控制器72提供扭矩指令来运转电动马达70并试图提供指令的扭矩输出。如本领域技术人员所了解的,马达控制器72可接收其它输入(例如可用电压和当前马达转速)。本领域技术人员应理解,计算来自电动马达70的输出扭矩较为困难。对于某些应用,需要知道其输出扭矩。例如,在车辆应用中,可将估算的电动马达扭矩与该值的期待范围相比较用于诊断目的。
更为详细地,图4说明了控制PM同步马达74的示例方法。如查值表80处所示,校准电动马达使得对于每个扭矩指令均有对应的直轴(d轴)和交轴(q轴)电流指令。在此示例中,查值表80用于基于提供给马达控制器的扭矩指令T*和DC总线电压及马达转速来确定d轴电流指令Id*和q轴电流指令Iq*。基于Id*和Iq*控制PM同步马达74。随后测量实际d轴电流Id和q轴电流Iq,并在框82处估算输出扭矩。更为具体地,根据扭矩指令T*和扭矩差之和估算输出扭矩。根据Id*、Iq*、Id、和Iq的函数确定扭矩差。将估算的输出扭矩T(或扭矩差T*)提供给合适的车辆控制器以在控制车辆(包括例如诊断分析)时使用。
图5说明了控制包括永磁(PM)同步马达的车辆的方法。在框90处,校准马达并建立查值表用于将各个扭矩指令映射至对应的直轴(d轴)和交轴(q轴)电流指令。用于建立这种查值表的技术对本领域技术人员是已知的。在框92处,基于车辆工况建立扭矩指令T*。在框94处,分别确定对应于扭矩指令T*的d轴和q轴电流指令Id*、Iq*。在框96处,基于Id*和Iq*控制马达。在框98处,分别测量d轴和q轴电流Id、Iq。
在框100处根据本发明实施例估算输出扭矩。更为详细地,根据扭矩指令T*和扭矩差之和估算输出扭矩。根据Id*、Iq*、Id、和Iq的函数确定扭矩差。如框102处所指示,可以多种方式使用估算的输出扭矩。例如,可基于估算的输出扭矩控制车辆,可将诊断代码存储在存储器中、或者可产生指示估算的输出扭矩的输出信号。
图6说明了估算输出扭矩的其它更为详细的方面。在框110处,根据I_e=Id-Id*和Iq_e=Iq-Iq*分别计算d轴和q轴电流误差Id_e、Iq_e。
在框112处,根据下列方程计算扭矩差:
T_diff=P/2×[Phi×Iq_e+(Ld-Lq)×Id_e×Iq*+Iq_e×Id*+Id_e×Iq_e)]
其中T_diff为扭矩差,P为磁极数,phi为永磁体磁链,Ld为d轴的电感,Lq为q轴的电感。
尽管上文已经描述了本文的示例性实施例,其并非意为着这些实施例描述了本发明的所有可能形式。应当理解为,本说明书中所使用的词语为描述性词语而非限定,且应理解可作出多种改变而不脱离本发明的实质和范围。另外,可组合多种实施例的特征以构成本发明的其它实施例。

Claims (3)

1.一种控制永磁(PM)同步马达的装置,所述装置包含:
马达控制器,配置用于:
分别基于对应于扭矩指令T*的d轴电流指令Id*和q轴电流指令Iq*控制所述马达;
分别测量d轴电流Id和q轴电流Iq;以及
根据所述扭矩指令T*和扭矩差之和估算输出扭矩,根据Id*、Iq*、Id和Iq的函数确定所述扭矩差,
其中,所述马达控制器进一步配置用于:
分别计算d轴电流误差Id_e和q轴电流误差Iq_e,其中,Id_e=Id-Id*,Iq_e=Iq-Iq*,
其中,根据下列方程确定所述扭矩差:
T_diff=P/2×[Phi×Iq_e+(Ld-Lq)×(Id_e×Iq*+Iq_e×Id*+Id_e×Iq_e)],其中,T_diff为所述扭矩差,P为磁极数,phi为永磁体磁链,Ld为所述d轴的电感,Lq为所述q轴的电感。
2.根据权利要求1所述的装置,其中,所述马达控制器进一步配置用于:
产生指示所述估算的输出扭矩的输出信号。
3.根据权利要求1所述的装置,其中,所述马达控制器进一步配置用于:
建立查值表用于将各个扭矩指令映射至对应的直轴(d轴)电流指令和交轴(q轴)电流指令。
CN2011102309694A 2010-08-26 2011-08-12 电动马达扭矩估算 Active CN102386817B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310124299.7A CN103259482B (zh) 2010-08-26 2011-08-12 电动马达扭矩估算

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/869,399 US8080956B2 (en) 2010-08-26 2010-08-26 Electric motor torque estimation
US12/869399 2010-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201310124299.7A Division CN103259482B (zh) 2010-08-26 2011-08-12 电动马达扭矩估算

Publications (2)

Publication Number Publication Date
CN102386817A CN102386817A (zh) 2012-03-21
CN102386817B true CN102386817B (zh) 2013-05-29

Family

ID=44142174

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310124299.7A Active CN103259482B (zh) 2010-08-26 2011-08-12 电动马达扭矩估算
CN2011102309694A Active CN102386817B (zh) 2010-08-26 2011-08-12 电动马达扭矩估算

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201310124299.7A Active CN103259482B (zh) 2010-08-26 2011-08-12 电动马达扭矩估算

Country Status (2)

Country Link
US (1) US8080956B2 (zh)
CN (2) CN103259482B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648555B2 (en) * 2011-02-28 2014-02-11 Deere & Company Method and system for controlling an electric motor at or near stall conditions
KR101339239B1 (ko) * 2011-11-29 2013-12-09 기아자동차 주식회사 모터를 구비한 차량의 제어방법
US8729847B2 (en) 2012-01-05 2014-05-20 GM Global Technology Operations LLC Methods, systems and apparatus for generating current commands used to control operation of an electric machine
US8886408B2 (en) 2012-01-30 2014-11-11 Honda Motor Co., Ltd. Vehicle steering control system and method
US9735720B2 (en) 2012-09-07 2017-08-15 Ford Global Technologies, Llc Electric motor torque control
US9929688B2 (en) 2012-09-07 2018-03-27 Ford Global Technologies, Llc Electric machine torque capability determination
US9893657B2 (en) 2012-09-07 2018-02-13 Ford Global Technologies, Llc Electric motor mode control
EP2747273B1 (en) 2012-12-20 2015-05-27 Siemens Aktiengesellschaft Method and arrangement for torque estimation of a synchronous machine
DE102013204239A1 (de) * 2013-03-12 2014-09-18 Bayerische Motoren Werke Aktiengesellschaft Fahrzeug mit elektrischer Antriebsmaschine
FR3005380B1 (fr) * 2013-05-03 2015-04-17 Renault Sa Procede de verification du fonctionnement d'un groupe motopropulseur equipant un vehicule automobile et systeme correspondant
US10254374B2 (en) 2013-07-16 2019-04-09 Ford Global Technologies, Llc Method of current sensor related torque error estimation for IPMSM e-drive system
CN103427752B (zh) * 2013-07-31 2016-01-13 新誉集团有限公司 永磁同步电机转矩参数测量方法及装置
US10336212B2 (en) 2013-11-27 2019-07-02 Ford Global Technologies, Llc Torque monitoring system and method
TWI502210B (zh) * 2014-04-01 2015-10-01 Nuvoton Technology Corp 遙控伺服馬達的扭矩估測電路及其扭矩偵測方法
CN106100482B (zh) * 2016-07-22 2018-09-21 北京新能源汽车股份有限公司 一种电机控制方法、系统及车辆
CN108574441A (zh) * 2018-03-13 2018-09-25 江西精骏电控技术有限公司 一种基于工况的车用永磁同步电机转矩估计方法
CN110417317A (zh) * 2019-08-05 2019-11-05 东风电子科技股份有限公司 实现电动汽车驱动电机的矢量控制电流参数生成和标定的工艺方法
WO2023117035A1 (en) 2021-12-20 2023-06-29 Volvo Truck Corporation Robust actuator control methods for heavy-duty vehicle motion management
WO2023143717A1 (en) 2022-01-27 2023-08-03 Volvo Truck Corporation Heavy-duty vehicle motion support device capability feedback
CN115476701A (zh) * 2022-10-17 2022-12-16 潍柴动力股份有限公司 一种电机扭矩确定方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69916765T2 (de) 1998-12-18 2005-04-21 Toyota Motor Co Ltd Vorrichtung und Verfahren zur Feststellung des elektrischen Winkels und Motorregelvorrichtung
EP1211798B1 (en) * 2000-11-22 2018-01-10 Nissan Motor Co., Ltd. Motor control apparatus and motor control method
US6741060B2 (en) * 2001-04-05 2004-05-25 Delphi Technologies, Inc. Method and system for controlling a permanent magnet machine during fault conditions
TW584688B (en) * 2001-06-06 2004-04-21 Toshiba Corp Washing machine
JP3695436B2 (ja) 2002-09-18 2005-09-14 株式会社日立製作所 位置センサレスモータ制御方法および装置
US6850033B1 (en) * 2003-08-26 2005-02-01 Delphi Technologies, Inc. System and method for clamp current regulation of induction machines
US7242163B2 (en) * 2003-08-26 2007-07-10 Delphi Technologies, Inc. System and method for clamp current regulation in field-weakening operation of permanent magnet (PM) machines
JP4685509B2 (ja) 2004-07-12 2011-05-18 株式会社豊田中央研究所 交流電動機の駆動制御装置および駆動制御方法
JP4649252B2 (ja) * 2005-03-23 2011-03-09 東芝三菱電機産業システム株式会社 電力変換装置
JP2007159368A (ja) 2005-12-08 2007-06-21 Toyota Motor Corp モータ駆動システムの制御装置
JP2008029082A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 回転電機制御装置、回転電機制御方法及び回転電機制御プログラム
US7643929B2 (en) * 2006-10-10 2010-01-05 Gm Global Technology Operations, Inc. Method for adapting torque model for improved zero torque identification
US7586286B2 (en) * 2006-11-17 2009-09-08 Continental Automotive Systems Us, Inc. Method and apparatus for motor control
US7733051B2 (en) * 2006-11-21 2010-06-08 Asm Assembly Automation Ltd. Model-based active electronic damping for stepper motors
JP2008295200A (ja) * 2007-05-24 2008-12-04 Aisin Seiki Co Ltd 同期モータの制御装置、及び同期モータ制御の最適化方法
JP5227102B2 (ja) * 2008-07-04 2013-07-03 トヨタ自動車株式会社 モータ駆動制御装置および方法
US8242721B2 (en) * 2008-10-31 2012-08-14 R&D Dynamics Corporation Position-sensorless control system and method of operation for a synchronous motor

Also Published As

Publication number Publication date
CN103259482A (zh) 2013-08-21
US8080956B2 (en) 2011-12-20
US20110140643A1 (en) 2011-06-16
CN102386817A (zh) 2012-03-21
CN103259482B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
CN102386817B (zh) 电动马达扭矩估算
US7979171B2 (en) Permanent magnet temperature estimation
US9484851B2 (en) Technique for correcting resolver offset
CN101445064B (zh) 用于操作联接到多个功率源的电动机的方法和系统
CN102848930B (zh) 电动车辆及控制电动车辆的方法
CN103023416B (zh) 用于电动马达操作的电流估计的系统和方法
EP2825403B1 (en) An electric drive axle arrangement for a road vehicle
JPWO2012049756A1 (ja) 電動車両の表示システムおよびそれを備える電動車両
Peters et al. A precise open-loop torque control for an interior permanent magnet synchronous motor (IPMSM) considering iron losses
US10336212B2 (en) Torque monitoring system and method
CN101943736A (zh) 用于确定高压电缆连接状态的系统
CN103107762A (zh) 用于控制包括电机的车辆的系统和方法
JP2012222856A (ja) 電気車両におけるモータ駆動制御方法
CN104290611A (zh) 用于基于电力驱动系统的ipmsm的与电流传感器相关的扭矩误差估计的方法
CN104057952A (zh) 一种混合动力汽车坡道阻力获取方法
CN103986390A (zh) 交流电机的控制装置
CN104350675A (zh) 用于控制高速同步机器的电磁转矩的方法
Verbelen et al. Comparison of an optimized electrical variable transmission with the Toyota Hybrid System
CN108327551A (zh) 电动车续航里程的估算方法及装置
Koch et al. Accurate physics-based modeling of electric vehicle energy consumption in the SUMO traffic microsimulator
Shabbir et al. Efficiency analysis of a continuously variable transmission with linear control for a series hybrid electric vehicle
Ghanaatian et al. Application and simulation of dual‐mechanical‐port machine in hybrid electric vehicles
KR20130110555A (ko) 모터 제어 장치와, 이를 포함하는 전기 자동차, 및 이의 모터 제어 방법
Li et al. Sizing of modular cascade machines system for electric vehicles
Ceraolo et al. Hybridisation of forklift trucks

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant