CN102380395B - 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用 - Google Patents

三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用 Download PDF

Info

Publication number
CN102380395B
CN102380395B CN2011102753863A CN201110275386A CN102380395B CN 102380395 B CN102380395 B CN 102380395B CN 2011102753863 A CN2011102753863 A CN 2011102753863A CN 201110275386 A CN201110275386 A CN 201110275386A CN 102380395 B CN102380395 B CN 102380395B
Authority
CN
China
Prior art keywords
feo
catalyst
macroporous structure
dimensional ordered
ordered macroporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011102753863A
Other languages
English (en)
Other versions
CN102380395A (zh
Inventor
戴洪兴
吉科猛
邓积光
张磊
曹怡佳
刘赛
吴冰月
徐冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN2011102753863A priority Critical patent/CN102380395B/zh
Publication of CN102380395A publication Critical patent/CN102380395A/zh
Application granted granted Critical
Publication of CN102380395B publication Critical patent/CN102380395B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)

Abstract

三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用,属于多孔功能材料合成及多相催化领域。先采用硬模板法制备出具有三维有序大孔结构的Eu0.6Sr0.4FeO3,然后以三维有序大孔结构的Eu0.6Sr0.4FeO3为载体,以硝酸亚钴为钴源,采用等体积浸渍法制备氧化钴高度分散的具有三维有序大孔结构的CoOx/Eu0.6Sr0.4FeO3催化剂。所制备的Eu0.6Sr0.4FeO3和CoOx/Eu0.6Sr0.4FeO3对甲苯氧化反应显示出优良的催化性能。所发明的三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂在氧化消除挥发性有机物方面具有良好的应用前景。

Description

三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用
技术领域
本发明涉及一种用于高效氧化甲苯的三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用。该催化剂对甲苯氧化反应显示出优良的催化性能。该发明属于多孔功能材料合成及多相催化领域。 
背景技术
挥发性有机物(VOC)污染大气环境,而催化氧化法是最有效的治理VOC的手段之一。钙钛矿型氧化物(ABO3)是一类在A、B阳离子位均可用异价离子进行同晶取代的化合物,其优越的热稳定性、丰富的结构缺陷以及具有多种氧化态的B位过渡金属离子使得此类化合物成为理想的VOC氧化催化材料。将ABO3制成三维有序大孔(3DOM)材料,既可以提高材料比表面积,又有利于客体分子从各个方向进入孔内而降低其扩散阻力,也有利于客体分子更易到达活性位。因此,三维有序大孔结构的ABO3在作为载体、催化剂和分离材料等诸多领域有着广阔的应用前景。 
借助硬模板剂[如聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等]及软模板剂[如三嵌段共聚物(P123)、十六烷基三甲基溴化铵(CTAB)等],人们已合成出大量的高比表面积三维有序大孔或介孔结构的ABO3。例如,Sadakane等以PMMA为模板合成出了三维有序大孔结构的LaFeO3(比表面积为21~32m2/g)(M.Sadakane et al.,J.Solid State Chem.,2010,183:1365)和La1-xSrxFeO3(比表面积为24~49m2/g)(M.Sadakane et al.,Chem.Mater.,2005,17:3546);Kim等制备出了三维有序大孔结构的La0.7Ca0.3-xSrxMnO3(比表面积为24m2/g)(Y.N.Kim et al.,J.Mater.Chem.,2004,14:1774);Xu等合成了LaCoxFe1-xO3(x=0~0.5) (J.F.Xu et al.,Catal.Today,2010,153:136)。本课题组采用PMMA硬模板法,也已经制备出了具有不同孔结构的三维有序大孔LaMnO3(中国发明专利,申请号:201010152354.X和201010241853.6)、SrFeO3(中国发明专利,申请号:201010532428.2)及La2CuO4(中国发明专利,申请号:201010103399.8)。此外,许多研究者为了提高体相ABO3的催化活性,克服其比表面积较小的缺点,常将ABO3负载到比表面积比较大的载体上,或将贵金属高分散地负载到钙钛矿上,从而达到改善催化活性的目的。Alifanti等制备了EuCoO3/Ce0.9Zr0.1O2催化剂,其对甲苯氧化具有良好的催化活性(M.Alifanti et al.,Catal.Today,2006,117:329),10~20wt%LaCoO3/Ce1-xZrxO2(x=0~0.3)则表现出优异的低浓度苯和甲苯的催化燃烧活性(M.Alifanti et al.,Appl.Catal.B,2007,70:400);Wang等通过比较Ag/La0.6Sr0.4MnO3、Ag/6La0.6Sr0.4MnO3/Al2O3、0.1wt%Pd/Al2O3和1wt%Pt/Al2O3对甲醇和乙醇氧化的催化活性后发现,银掺杂的钙钛矿型氧化物催化剂的活性高于Al2O3负载贵金属催化剂的(W. Wang et al.,Appl.Catal.B,2000,24:219);Huang等采用共沉淀和沉积-沉淀法分别制备了0.5wt%Au掺杂的Au-La0.8Sr0.2MnO3和Au/La0.8Sr0.2MnO3催化剂,Au掺杂明显增强了催化剂表面氧的活动性,提高了其低温燃烧甲苯的催化活性(H.F.Huang et al.,React.Kinet.Mechan.Catal.,2010,101:417);Fujii等观察到ZrO2负载的LaCoO3和La0.8Sr0.2CoO3对丙烷完全氧化反应的催化活性高于相应的体相钙钛矿型氧化物的(H.Fujii et al.,Chem.Lett.,1987,16:2147);Wei等则首次将贵金属负载到三维有序大孔结构的钙钛矿型氧化物上,合成出的三维有序大孔Aun/LaFeO3对碳烟燃烧表现出优异的催化性能(Y.C.Wei et al.,Angew.Chem.Int.Ed.2011,50:2326)。Hosseini等采用溶胶凝胶自燃烧法制备了La1-xEuxFeO3(x=0.1~0.2)纳米粒子催化剂(S.A.Hosseini et al.,Chin.J.Catal.,2011,32:1465),观察到La0.8Eu0.2FeO3在350℃和 5000h-1空速的条件下对甲苯氧化反应具有良好的催化性能(甲苯转化率接近95%)。 
虽然目前文献已有制备EuFeO3方法的报道,但迄今为止,国内外尚无文献和专利报道过三维有序大孔结构的Eu0.6Sr0.4FeO3以及CoOx/Eu0.6Sr0.4FeO3的制备方法及其在氧化消除甲苯方面的应用。 
发明内容
本发明的目的在于提供一种用于高效氧化甲苯的三维有序大孔结构Eu0.6Sr0.4FeO3和CoOx/Eu0.6Sr0.4FeO3催化剂,具体地说涉及先采用胶晶模板法制备具有三维有序大孔结构的Eu0.6Sr0.4FeO3,然后以此为载体,采用等体积浸渍法制备钴的氧化物高度分散的具有三维有序大孔结构的CoOx/Eu0.6Sr0.4FeO3催化剂。本发明中采用的硬模板PMMA依据文献(H.N Li et al.,Inorg.Chem.,2009,48(10):4421)所述方法制备,合成的PMMA微球大小均一,排列高度有序,平均球径约为298nm。 
本发明提供的一种三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂,其特征在于,是以三维有序大孔结构Eu0.6Sr0.4FeO3为载体,CoOx为钴的氧化物,均匀地分散在Eu0.6Sr0.4FeO3载体上,CoOx的负载量(CoOx按Co3O4计)为3wt%或10wt%。 
本发明提供的制备具有优良甲苯催化性能的三维有序大孔结构Eu0.6Sr0.4FeO3的方法,其特征在于,将柠檬酸络合法与胶晶模板法联用,具体包括以下步骤:(1)按摩尔比0.6∶0.4∶1.0称取硝酸铕、硝酸锶和硝酸铁溶于无水甲醇与去离子水的混合溶液中,其中无水甲醇与去离子水体积比4∶5,待完全溶解后再按铕、锶和铁总的金属离子与柠檬酸摩尔比1∶1的量向其中加入柠檬酸,持续搅拌得到混合均匀的金属离子络合溶液;(2)常温常压下,将PMMA倾入到 上述金属离子络合溶液中浸渍4h;(3)经抽滤及室温下充分干燥(干燥时间≥12h)后,将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至500℃并恒温3h,待降至70℃时切换成空气气氛,再以1℃/min的速率升至750℃并恒温4h;即得到三维有序大孔结构的钙钛矿型氧化物Eu0.6Sr0.4FeO3。 
在甲苯浓度为1000ppm、甲苯/氧气摩尔比为1/400和空速为20000mL/(g h)条件下,三维有序大孔结构的Eu0.6Sr0.4FeO3催化剂的T20%(甲苯转化率达到20%所需的反应温度)和T80%(甲苯转化率达到80%所需的反应温度)分别为250℃和300℃。上述制备方法中,铕、锶和铁总的金属离子浓度优选控制在1.0~2.0mol/L。 
本发明提供的具有优良甲苯催化性能的三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3的制备方法,其特征在于,以三维有序大孔结构的Eu0.6Sr0.4FeO3作为载体,以硝酸亚钴为钴源,采用等体积浸渍法制备三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3,具体包括以下步骤:(1)确定单位质量三维有序大孔结构Eu0.6Sr0.4FeO3催化剂的堆体积;(2)称取Eu0.6Sr0.4FeO3,按CoOx∶Eu0.6Sr0.4FeO3质量比(其中CoOx按Co3O4计)分别为3wt%或10wt%称取硝酸亚钴,配置成与Eu0.6Sr0.4FeO3等体积的钴盐溶液(溶液体积可稍过量),搅拌均匀后将Eu0.6Sr0.4FeO3倾入上述钴盐溶液中,轻微晃动使均匀润湿,形成混合体系;(3)将步骤(2)中形成的混合体系置于70℃烘箱中,蒸干溶剂,得到固体;(4)将步骤(3)中得到的固体置于管式炉中,以1℃/min的速率升至400℃并恒温4h;即得到负载型催化剂CoOx/Eu0.6Sr0.4FeO3。因硝酸亚钴在400℃时可分解为Co3O4、Co2O3或两者的混合物等,故本发明中的CoOx泛指生成的各种钴氧化物。在甲苯浓度为1000ppm、甲苯/氧气摩尔比为1/400和空速为20000mL/(g h)条件下,3wt%CoOx/Eu0.6Sr0.4FeO3和10wt%CoOx/Eu0.6Sr0.4FeO3催化剂的T20%(T80%)分别为240℃(262℃)和241℃(269℃)。 
本发明所述方法制备出的三维有序大孔结构的催化剂Eu0.6Sr0.4FeO3和CoOx/Eu0.6Sr0.4FeO3,结晶度好,原料廉价易得,产物热稳定性好,催化氧化甲苯活性好,在催化领域具有巨大的应用前景。 
利用D8ADVANCE型X射线衍射仪(XRD)、ZEISS SUPRA 55型扫描电子显微镜(SEM)、气相色谱GC-2010等仪器测定所得目标产物的晶体结构、粒子形貌以及对甲苯氧化的催化活性。结果表明,采用本发明的方法所制得的催化剂样品为三维有序大孔结构,负载后样品中氧化钴高度分散,对甲苯氧化反应显示出优良的催化性能。 
附图说明
图1为所制得的钙钛矿型氧化物y wt%CoOx/Eu0.6Sr0.4FeO3(y=0,3,10)样品的XRD谱图; 
其中曲线(a)、(b)、(c)分别为实施例1、实施例2和实施例3所得样品的XRD谱图; 
图2为所用硬模板PMMA和所制备Eu0.6Sr0.4FeO3样品的SEM照片; 
其中曲线(a)和(b)分别为制备的PMMA和实施例1所制备样品的SEM照片;图3为所制得的y wt%CoOx/Eu0.6Sr0.4FeO3(y=0,3,10)样品对甲苯氧化的催化活性曲线; 
其中曲线(a)、(b)、(c)分别为实施例1、实施例2和实施例3所得样品的催化活性曲线。 
具体实施方式
为了进一步了解释本发明,下面以实施例作详细说明,并给出附图描述本发明得到对甲苯氧化反应显示出优良催化性能的Eu0.6Sr0.4FeO3和CoOx/Eu0.6Sr0.4FeO3。 
实施例1:在搅拌条件下,将0.006mol Eu(NO3)3·6H2O、0.004mol Sr(NO3)2和0.01mol Fe(NO3)3·9H2O溶解溶于4ml无水甲醇和5ml去离子水配成的混合溶液中,待完全溶解后加入0.02mol柠檬酸,持续搅拌直至形成均一的金属离子络合溶液;称取2.0g PMMA微球作为硬模板,缓慢倾入盛有上述混合溶液的烧杯中,浸渍4h后抽滤,将得到的样品在室温下干燥12h以上;最后将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至500℃并恒温3h,待降至70℃时切换成空气气氛,再以1℃/min的速率升至750℃并恒温4h;即得到三维有序大孔结构Eu0.6Sr0.4FeO3。在甲苯浓度为1000ppm、甲苯/氧气摩尔比为1/400和空速为20000mL/(g h)条件下,测定样品对甲苯氧化反应的催化活性。其XRD谱图见图1曲线(a),SEM照片见图2照片(b),活性曲线见图3曲线(a)。所得三维有序大孔结构Eu0.6Sr0.4FeO3催化剂具有单相正交钙钛矿晶体结构,大孔孔径为140~230nm,孔壁厚度为15~30nm,T20%和T80%分别为250℃和300℃。 
实施例2:在搅拌条件下,将0.0157g Co(NO3)2·6H2O将溶于1.0mL去离子水中,待搅拌均匀后将实施例1制备的0.2g三维有序大孔结构的Eu0.6Sr0.4FeO3倾入上述钴盐溶液中,轻微晃动使润湿均匀,然后将其转移至70℃烘箱中,将蒸干溶剂后得到的物质置于管式炉中,以1℃/min的速率升至400℃并恒温4h;即得到三维有序大孔结构3wt%CoOx/Eu0.6Sr0.4FeO3。在甲苯浓度为1000ppm、甲苯/氧气摩尔比为1/400和空速为20000mL/(g h)条件下,测定样品对甲苯氧化反应的催化活性。其XRD谱图见图1曲线(b),活性曲线见图3曲线(b)。所得三维有序大孔结构3wt%CoOx/Eu0.6Sr0.4FeO3催化剂为单相正交钙钛矿晶体结构,T20%和T80%分别为240℃和262℃。 
实施例3:在搅拌条件下,将0.0523g Co(NO3)2·6H2O将溶于1.0mL去离子 水中,待搅拌均匀后将实施例1制备的0.2g三维有序大孔结构的Eu0.6Sr0.4FeO3倾入上述钴盐溶液中,轻微晃动使润湿均匀,然后将其转移至70℃烘箱中,将蒸干溶剂后得到的物质置于管式炉中,以1℃/min的速率升至400℃并恒温4h;即得到三维有序大孔结构10wt%CoOx/Eu0.6Sr0.4FeO3。在甲苯浓度为1000ppm、甲苯/氧气摩尔比为1/400和空速为20000mL/(g h)条件下,测定样品对甲苯氧化反应的催化活性。其XRD谱图见图1曲线(c),活性曲线见图3曲线(c),所得三维有序大孔结构10wt%CoOx/Eu0.6Sr0.4FeO3催化剂具有单相正交钙钛矿晶体结构,T20%和T80%分别为241℃和269℃。 

Claims (5)

1.一种三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂,其特征在于,是以三维有序大孔结构Eu0.6Sr0.4FeO3为载体,CoOx为钴的氧化物,均匀地分散在Eu0.6Sr0.4FeO3载体上,CoOx的负载量按Co3O4计为3wt%或10wt%;三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂制备方法,具体包括以下步骤:
1)、Eu0.6Sr0.4FeO3的制备(1)按摩尔比0.6:0.4:1.0称取硝酸铕、硝酸锶和硝酸铁溶于无水甲醇与去离子水的混合溶液中,其中无水甲醇与去离子水体积比4:5,待完全溶解后再按铕、锶和铁总的金属离子与柠檬酸摩尔比1:1的量向其中加入柠檬酸,持续搅拌得到混合均匀的金属离子络合溶液;(2)常温常压下,将PMMA倾入到上述金属离子络合溶液中浸渍4h;(3)经抽滤及室温下充分干燥后,将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至500℃并恒温3h,待降至70℃时切换成空气气氛,再以1℃/min的速率升至750℃并恒温4h,即得到三维有序大孔结构的钙钛矿型氧化物Eu0.6Sr0.4FeO3
2)、CoOx/Eu0.6Sr0.4FeO3的制备(1)确定单位质量三维有序大孔结构的钙钛矿型氧化物Eu0.6Sr0.4FeO3的堆体积;(2)称取Eu0.6Sr0.4FeO3,按CoOx:Eu0.6Sr0.4FeO3质量比为3wt%或10wt%称取硝酸亚钴,配置成与Eu0.6Sr0.4FeO3等体积的钴盐溶液,搅拌均匀后将Eu0.6Sr0.4FeO3倾入上述钴盐溶液中,轻微晃动使均匀润湿,形成混合体系;(3)将步骤(2)中形成的混合体系置于70℃烘箱中,蒸干溶剂,得到固体;(4)将步骤(3)中得到的固体置于管式炉中,以1℃/min的速率升至400℃并恒温4h,即得到三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂。
2.按照权利要求1的催化剂,其特征在于,铕、锶和铁总的金属离子浓度优选控制在1.0~2.0mol/L。
3.三维有序大孔结构的钙钛矿型氧化物Eu0.6Sr0.4FeO3的制备方法,其特征在于,将柠檬酸络合法与胶晶模板法联用,具体包括以下步骤:(1)按摩尔比0.6:0.4:1.0称取硝酸铕、硝酸锶和硝酸铁溶于无水甲醇与去离子水的混合溶液中,其中无水甲醇与去离子水体积比4:5,待完全溶解后再按铕、锶和铁总的金属离子与柠檬酸摩尔比1:1的量向其中加入柠檬酸,持续搅拌得到混合均匀的金属离子络合溶液;(2)常温常压下,将PMMA倾入到上述金属离子络合溶液中浸渍4h;(3)经抽滤及室温下充分干燥后,将所得固体物质置于管式炉中,先在氮气气氛中以1℃/min的速率升至500℃并恒温3h,待降至70℃时切换成空气气氛,再以1℃/min的速率升至750℃并恒温4h,即得到三维有序大孔结构的钙钛矿型氧化物Eu0.6Sr0.4FeO3
4.权利要求1所述的一种三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂用作氧化甲苯的催化剂。
5.如权利要求3所述方法制备得到的三维有序大孔结构的钙钛矿型氧化物
Eu0.6Sr0.4FeO3用作氧化甲苯的催化剂。
CN2011102753863A 2011-09-16 2011-09-16 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用 Expired - Fee Related CN102380395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011102753863A CN102380395B (zh) 2011-09-16 2011-09-16 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011102753863A CN102380395B (zh) 2011-09-16 2011-09-16 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用

Publications (2)

Publication Number Publication Date
CN102380395A CN102380395A (zh) 2012-03-21
CN102380395B true CN102380395B (zh) 2013-04-17

Family

ID=45820468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011102753863A Expired - Fee Related CN102380395B (zh) 2011-09-16 2011-09-16 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用

Country Status (1)

Country Link
CN (1) CN102380395B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728388B (zh) * 2012-06-21 2014-06-11 北京工业大学 单晶Ag纳米片/Co3O4/Eu0.6Sr0.4FeO3复合催化剂、制备及应用
CN102728387B (zh) * 2012-06-21 2014-06-11 北京工业大学 三维有序大孔结构Ag微米束/Eu0.6Sr0.4FeO3复合催化剂、制备及应用
CN103007946B (zh) * 2012-11-23 2014-12-03 北京工业大学 Co3O4/三维有序大孔La0.6Sr0.4CoO3催化剂、制备法及应用
CN109319753B (zh) * 2018-11-26 2020-07-28 同济大学 一种三维有序大孔镍铁磷化物材料及其制备和应用
CN113304744B (zh) * 2021-06-10 2023-03-03 中国科学院城市环境研究所 一种催化剂及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983931B (zh) * 2010-10-22 2012-07-04 北京工业大学 制备链条状、多孔空心球、板状和管状SrFeO3的新方法

Also Published As

Publication number Publication date
CN102380395A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
Wei et al. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts
Zheng et al. Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal–organic frameworks
Yang et al. Oxygen vacancies and lewis acid sites synergistically promoted catalytic methane combustion over perovskite oxides
Fan et al. Highly active rod-like Co3O4 catalyst for the formaldehyde oxidation reaction
CN102380395B (zh) 三维有序大孔结构CoOx/Eu0.6Sr0.4FeO3催化剂、制备方法及应用
Wang et al. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion
Wang et al. MOFs-based coating derived Me-ZIF-67@ CuOx materials as low-temperature NO-CO catalysts
Vickers et al. Mesoporous Mn-and La-doped cerium oxide/cobalt oxide mixed metal catalysts for methane oxidation
CN102921407B (zh) 一种锰铈复合氧化物、制备方法及其应用
Zhang et al. Boosting catalytic purification of soot particles over double perovskite-type La2–x K x NiCoO6 Catalysts with an ordered macroporous structure
CN102060534B (zh) 具有介孔孔壁的三维有序大孔La1-xSrxCrO3的制备方法
Kim et al. MnO2 Nanowire–CeO2 Nanoparticle Composite Catalysts for the Selective Catalytic Reduction of NO x with NH3
CN103007946B (zh) Co3O4/三维有序大孔La0.6Sr0.4CoO3催化剂、制备法及应用
CN103406029A (zh) 一种耐高温氧化锌纳米棒支撑的三明治结构含锌金属有机骨架膜的制备方法
Demizu et al. Oxygen Storage Property and Chemical Stability of SrFe1–x Ti x O3− δ with Robust Perovskite Structure
CN102389792A (zh) 三维有序大孔LaMnO3负载的高分散MnOx的催化剂、制备方法及应用
CN101905903B (zh) 具有介孔孔壁的三维有序大孔锰酸镧的双模板制备法
Xiong et al. Ordered macro-mesoporous nanostructure of Pd/ZrO2 catalyst for boosting catalytic NO-assisted soot oxidation
CN110433814A (zh) 活性物种高分散的铜铈催化剂制备方法
CN105214682A (zh) 三维有序大孔二氧化铈负载Co-Pd纳米合金催化剂、制备方法及应用
CN108380203B (zh) 一种介孔壁中空核壳球形LaMnO3钙钛矿催化剂及其制备方法
Huang et al. Fabrication of rhodium nanoparticles with reduced sizes: An exploration of confined spaces
Wu et al. In situ self-assembly encapsulation of CoFeOx nanoparticles in ordered mesoporous TiZrOx channels for enhanced catalytic combustion of o-dichlorobenzene
Wu et al. Boosting the surface oxygen activity for high performance Iron-based perovskite oxide
CN101112683A (zh) 一种介孔结构铈锆铝复合氧化物固溶体及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130417

Termination date: 20140916

EXPY Termination of patent right or utility model