CN102343259A - 一种低温制备二氧化钛纳米薄膜的方法 - Google Patents

一种低温制备二氧化钛纳米薄膜的方法 Download PDF

Info

Publication number
CN102343259A
CN102343259A CN2011100920490A CN201110092049A CN102343259A CN 102343259 A CN102343259 A CN 102343259A CN 2011100920490 A CN2011100920490 A CN 2011100920490A CN 201110092049 A CN201110092049 A CN 201110092049A CN 102343259 A CN102343259 A CN 102343259A
Authority
CN
China
Prior art keywords
titanium dioxide
film
low temperature
dioxide nano
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100920490A
Other languages
English (en)
Inventor
赵高凌
张俊娟
何凯
宋斌
陈志君
韩高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2011100920490A priority Critical patent/CN102343259A/zh
Publication of CN102343259A publication Critical patent/CN102343259A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种低温制备二氧化钛纳米薄膜的方法,该方法是将钛的化合物溶解于有机溶剂中,通过钛的化合物在过量的水中发生水解缩聚反应,形成含有二氧化钛纳米晶的水性溶胶,再加入有机成膜剂,干燥后即得到二氧化钛纳米薄膜。本发明无需特殊装置和高温条件,制备方法简单,在常温条件下即可得到二氧化钛纳米薄膜。有机成膜剂的加入提高了二氧化钛薄膜的孔隙率和通量,使其具有优异的亲水性能和光催化性能。

Description

一种低温制备二氧化钛纳米薄膜的方法
技术领域
本发明涉及一种低温制备二氧化钛纳米薄膜的方法,即在常温下通过加入有机成膜剂实现二氧化钛纳米薄膜的制备,并以此来提高其亲水性能和光催化性能的方法,属于新材料领域。
背景技术
纳米二氧化钛(TiO2)作为当前应用前景最为广泛的一种纳米功能材料,它在光催化高新技术产业、电子、环保以及太阳能的利用等诸多领域,都显示出巨大的潜力和长久的生命力。TiO2具有氧化活性较高,化学稳定性好,对人体无毒害,成本低,无污染等优点,可有效地降解烷、醛、烯、苯系物等多种有机污染物。然而光催化技术中通常使用的TiO2是以分散相悬浮在溶液中反应的,由于TiO2粉末颗粒很小,悬浮粒子会影响光线的吸收和光照的辐射深度,存在着催化剂易失活、易凝聚、难回收,造成二次污染及光能利用率低等缺点,限制了悬浮体系实际应用,如何有效的固定二氧化钛纳米光催化剂成为光催化学研究方向的热点。
近年来,国内外就TiO2纳米光催化剂的固定化技术做了许多研究工作。将TiO2固定化可以克服悬浮相催化剂的缺点,也是一个用活性组分和载体的各种功能的组合来设计催化剂反应器的理想途径。研究发现,TiO2纳米薄膜既具有固定催化剂的优点,又由于尺寸细化而具有纳米材料的量子尺寸效应、表面效应、小尺寸效应等特征而有可能提高其光催化活性。并且TiO2纳米薄膜具有超亲水性,从而具有光自洁功能,其在污染物防治方面也具有广阔的应用前景。
发明内容
本发明的目的是提供一种低温制备具有优异的亲水性能和光催化性能的二氧化钛纳米薄膜的方法。
本发明的低温制备二氧化钛纳米薄膜的方法,其步骤如下:
1)按照钛的化合物:有机溶剂:去离子水的摩尔比为1:15~18:40~400,将钛的化合物与有机溶剂以摩尔比1:5~9混合形成溶液A;
2)将剩余的有机溶剂与去离子水混合形成溶液B,并调节溶液B的pH值为1~6;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将有机成膜剂加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与有机成膜剂的质量比为1:0.03~0.3,在15~80℃下干燥,得到二氧化钛纳米薄膜。
本发明中,所说的钛的化合物是钛酸丁酯、氯化钛或钛酸异丙酯。
所说的有机溶剂是乙醇、丙醇、乙二醇、丙二醇、四氢呋喃、丙酮和丁醇中的一种或几种。pH值调节剂为硝酸或盐酸。
所述的有机成膜剂为聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)或聚乙烯醇(PVA)。
所述的聚乙二醇(PEG)的分子量范围为200~20000。所述的聚乙烯吡咯烷酮(PVP)为K12,K30,K60,K90或K120的聚乙烯吡咯烷酮。所述的聚乙烯醇(PVA)为1750、1788、1799、2088、2099或2488的聚乙烯醇。
本发明的有益效果在于:
1. 本发明无需特殊装置和高温条件,合成过程工艺简单、操作方便、成本低,易于实现工业化生产。
2. 本发明通过在含有TiO2纳米晶的水性溶胶中添加有机成膜剂来改善水性溶胶的成膜性能,同时有机成膜剂的加入也提高了薄膜的孔隙率和通量,最终导致二氧化钛纳米薄膜的亲水性能和光催化性能得到显著地改善。这种低温下制备的高效且低成本的二氧化钛纳米薄膜拥有很高的开发使用价值。
附图说明
图1是含TiO2纳米晶水性溶胶的TEM和HRTEM照片。图1(a) 右上角选区电子衍射图表明为锐钛矿,(hkl)表示晶面。图1 (b)是图1(a)样品中小方形范围的高分辨照片。
图2(a)为添加PEG(分子量为6000,质量分数为10%)的TiO2薄膜样品(称为PEG-6000-10% TiO2薄膜样品)的SEM照片,图2(b)为此薄膜样品横断面的扫描图。
图3为PEG-6000-10% TiO2薄膜样品的AFM二维及三维图像。
图4(a)是未添加成膜剂的TiO2薄膜的接触角测试结果,图4(b)是PEG-6000-10% TiO2薄膜样品的接触角测试结果。
图5是PEG-20000-30%和PEG-6000-10% TiO2薄膜样品在紫外光照射下对甲基橙的光降解曲线图。
具体实施方式
以下结合具体实例进一步说明本发明。
实施例1
1)按照钛酸丁酯:乙醇:去离子水的摩尔比为1:15: 400,将钛酸丁酯物与乙醇以摩尔比1:5混合形成溶液A;
2)将剩余的乙醇与去离子水混合形成溶液B,并用硝酸调节溶液B的pH值为1;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将分子量为6000的PEG加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与分子量为6000的PEG的质量比为1:0.1,在50℃下干燥,得到二氧化钛纳米薄膜(称为PEG-6000-10% TiO2薄膜样品)。
含TiO2纳米晶水性溶胶的TEM和HRTEM照片如图1(a)和(b)所示。图1(a) 右上角图为其选区电子衍射花样,由图可以看出,TiO2水性溶胶中的颗粒为锐钛矿纳米晶,晶粒任意取向生长,颗粒分散性较好,颗粒尺寸为5 nm左右。
PEG-6000-10% TiO2薄膜样品的SEM照片及断面图如图2(a)和(b)所示。由图可以看出,薄膜中出现了微孔结构,薄膜厚度约为300 nm。
PEG-6000-10% TiO2薄膜样品的AFM二维及三维图像如图3所示。由图中可以看出,薄膜中的TiO2颗粒分布的较为均匀,颗粒粒径在5 nm左右
未添加成膜剂(分子量为6000的PEG)的TiO2薄膜和PEG-6000-10% TiO2薄膜样品的接触角测试结果分别如图4(a)和(b)所示。由图中可以看出,未添加成膜剂的TiO2薄膜样品接触角测试结果为47.1°,而PEG-6000-10% TiO2薄膜样品的接触角测试结果为12.9°,由此可见,加入有机成膜剂PEG的TiO2薄膜样品的亲水性能明显优于未添加成膜剂的TiO2薄膜样品。
PEG-6000-10% TiO2薄膜样品在紫外光照射下对甲基橙的光降解曲线图如图5所示,经过5 h的光照后,其光催化降解率达到了54%,由此可见,加入有机成膜剂PEG的TiO2薄膜样品具有优异的光催化性能。
实施例2
1)按照钛酸丁酯:丙醇:去离子水的摩尔比为1:18:400,将钛酸丁酯与丙醇以摩尔比1: 9混合形成溶液A;
2)将剩余的丙醇与去离子水混合形成溶液B,并用盐酸调节溶液B的pH值为1;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将分子量为10000的PEG加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与分子量为10000的PEG的质量比为1:0.3,在40℃下干燥,得到二氧化钛纳米薄膜(称为PEG-10000-30% TiO2薄膜样品)。
本例得到的TiO2纳米薄膜样品的接触角测试结果为12.7°,具有优异的亲水性能,在紫外光照射下对甲基橙的光降解曲线图如图5所示,由图可以看出,经5 h光照后,降解率达到66%,样品具有高光催化活性。
实施例3
1)按照氯化钛:乙醇:去离子水的摩尔比为1:18:200,将氯化钛与乙醇以摩尔比1:6混合形成溶液A;
2)将剩余的乙醇与去离子水混合形成溶液B,并用盐酸调节溶液B的pH值为2;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将分子量为1000的PEG加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与分子量为1000的PEG的质量比为1:0.3,在60℃下干燥,得到二氧化钛纳米薄膜(称为PEG-1000-30% TiO2薄膜样品)。
本例得到的TiO2纳米薄膜样品的接触角测试结果为14.9°,具有优异的亲水性能,在紫外光下进行甲基橙的催化降解评价发现样品具有高光催化活性,经5 h光照后,降解率达到60%。
实施例4
1)按照钛酸丁酯:乙醇:去离子水的摩尔比为1:18: 400,将钛酸丁酯与乙醇以摩尔比1: 9混合形成溶液A;
2)将剩余的乙醇与去离子水混合形成溶液B,并用硝酸调节溶液B的pH值为2;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将聚乙烯吡咯烷酮(PVP)K30加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与聚乙烯吡咯烷酮(PVP)K30的质量比为1:0.15,在50℃下干燥,得到二氧化钛纳米薄膜(称为PVP-15% TiO2薄膜样品)。
本例得到的TiO2纳米薄膜样品的接触角测试结果为19.7°,具有优异的亲水性能,在紫外光下进行甲基橙的催化降解评价发现样品具有高光催化活性,经5 h光照后,降解率达到50%。
实施例5
1)按照钛酸异丙酯:乙醇:去离子水的摩尔比为1:15: 120,将钛酸异丙酯与乙醇以摩尔比1:5混合形成溶液A;
2)将剩余的乙醇与去离子水混合形成溶液B,并用盐酸调节溶液B的pH值为3;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将PVA1750加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与PVA1750的质量比为1:0.1,在45℃下干燥,得到二氧化钛纳米薄膜(称为PVA-10% TiO2薄膜样品)。
本例得到的TiO2纳米薄膜样品的接触角测试结果为16.8°,具有优异的亲水性能,在紫外光下进行甲基橙的催化降解评价发现样品具有高光催化活性,经5 h光照后,降解率达到63%。

Claims (8)

1.一种低温制备二氧化钛纳米薄膜的方法,其特征在于包括以下步骤:
1)按照钛的化合物:有机溶剂:去离子水的摩尔比为1:15~18:40~400,将钛的化合物与有机溶剂以摩尔比1:5~9混合形成溶液A;
2)将剩余的有机溶剂与去离子水混合形成溶液B,并调节溶液B的pH值为1~6;
3)搅拌状态下,将溶液A逐滴滴入溶液B中,得到含有TiO2纳米晶的水性溶胶;
4)搅拌状态下,将有机成膜剂加入到含TiO2纳米晶的水性溶胶中,含TiO2纳米晶的水性溶胶与有机成膜剂的质量比为1:0.03~0.3,在15~80℃下干燥,得到二氧化钛纳米薄膜。
2.根据权利要求1所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的钛的化合物是钛酸丁酯、氯化钛或钛酸异丙酯。
3.根据权利要求1所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的有机溶剂是乙醇、丙醇、乙二醇、丙二醇、四氢呋喃、丙酮和丁醇中的一种或几种。
4.根据权利要求1所述的低温制备二氧化钛纳米薄膜的方法,其特征在于pH值调节剂为硝酸或盐酸。
5.根据权利要求1所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的有机成膜剂为聚乙二醇、聚乙烯吡咯烷酮或聚乙烯醇。
6.根据权利要求5所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的聚乙二醇的分子量范围为200~20000。
7.根据权利要求5所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的聚乙烯吡咯烷酮为K12,K30,K60,K90或K120的聚乙烯吡咯烷酮。
8.根据权利要求5所述的低温制备二氧化钛纳米薄膜的方法,其特征在于所说的聚乙烯醇为1750、1788、1799、2088、2099或2488的聚乙烯醇。
CN2011100920490A 2011-04-13 2011-04-13 一种低温制备二氧化钛纳米薄膜的方法 Pending CN102343259A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100920490A CN102343259A (zh) 2011-04-13 2011-04-13 一种低温制备二氧化钛纳米薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100920490A CN102343259A (zh) 2011-04-13 2011-04-13 一种低温制备二氧化钛纳米薄膜的方法

Publications (1)

Publication Number Publication Date
CN102343259A true CN102343259A (zh) 2012-02-08

Family

ID=45542551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100920490A Pending CN102343259A (zh) 2011-04-13 2011-04-13 一种低温制备二氧化钛纳米薄膜的方法

Country Status (1)

Country Link
CN (1) CN102343259A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628213A (zh) * 2012-04-09 2012-08-08 徐雨来 一种锐钛型纳米二氧化钛在纺织物表面的分散方法
CN103641512A (zh) * 2013-12-17 2014-03-19 瑞阜景丰(北京)科技有限公司 在建筑材料表面分散锐钛型纳米二氧化钛的方法
CN103816882A (zh) * 2014-02-19 2014-05-28 福州大学 一种微米球状锐钛矿二氧化钛光催化剂及其制备方法
CN105709843A (zh) * 2016-03-09 2016-06-29 中国科学院地球环境研究所 一种具有高效光催化活性的TiO2薄膜低温制备方法
CN107519854A (zh) * 2017-09-20 2017-12-29 宝鸡市永盛泰钛业有限公司 一种二氧化钛薄膜的制备方法
CN110054219A (zh) * 2019-04-26 2019-07-26 华南师范大学 一种交联丝状结构的纳米TiO2溶胶的合成方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322676A (zh) * 2001-04-12 2001-11-21 上海交通大学 中孔纳米二氧化钛的溶胶凝胶低温制备工艺
CN100998935A (zh) * 2006-12-20 2007-07-18 浙江大学 一种室温制备结晶TiO2多孔薄膜的方法
CN101890343A (zh) * 2010-06-29 2010-11-24 浙江大学 一种二氧化钛纳米晶的低温表面修饰方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322676A (zh) * 2001-04-12 2001-11-21 上海交通大学 中孔纳米二氧化钛的溶胶凝胶低温制备工艺
CN100998935A (zh) * 2006-12-20 2007-07-18 浙江大学 一种室温制备结晶TiO2多孔薄膜的方法
CN101890343A (zh) * 2010-06-29 2010-11-24 浙江大学 一种二氧化钛纳米晶的低温表面修饰方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库工程科技I辑》 20110315 黄伟欣 "超亲水多孔TiO2薄膜的制备及超亲水机理研究" 第32-40页 1-8 , 第3期 *
《无机化学学报》 20100531 陈志君等 "低温下溶胶凝胶法制备TiO2纳米晶" 第1-3节以及图1(a) 1-8 第26卷, 第5期 *
陈志君等: ""低温下溶胶凝胶法制备TiO2纳米晶"", 《无机化学学报》, vol. 26, no. 5, 31 May 2010 (2010-05-31) *
黄伟欣: ""超亲水多孔TiO2薄膜的制备及超亲水机理研究"", 《中国优秀硕士学位论文全文数据库工程科技I辑》, no. 3, 15 March 2011 (2011-03-15), pages 32 - 40 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628213A (zh) * 2012-04-09 2012-08-08 徐雨来 一种锐钛型纳米二氧化钛在纺织物表面的分散方法
CN102628213B (zh) * 2012-04-09 2013-12-25 瑞阜景丰(北京)科技有限公司 一种锐钛型纳米二氧化钛在纺织物表面的分散方法
CN103641512A (zh) * 2013-12-17 2014-03-19 瑞阜景丰(北京)科技有限公司 在建筑材料表面分散锐钛型纳米二氧化钛的方法
CN103641512B (zh) * 2013-12-17 2016-02-03 瑞阜景丰(北京)科技有限公司 在建筑材料表面分散锐钛型纳米二氧化钛的方法
CN103816882A (zh) * 2014-02-19 2014-05-28 福州大学 一种微米球状锐钛矿二氧化钛光催化剂及其制备方法
CN105709843A (zh) * 2016-03-09 2016-06-29 中国科学院地球环境研究所 一种具有高效光催化活性的TiO2薄膜低温制备方法
CN105709843B (zh) * 2016-03-09 2018-10-26 中国科学院地球环境研究所 一种具有高效光催化活性的TiO2薄膜低温制备方法
CN107519854A (zh) * 2017-09-20 2017-12-29 宝鸡市永盛泰钛业有限公司 一种二氧化钛薄膜的制备方法
CN110054219A (zh) * 2019-04-26 2019-07-26 华南师范大学 一种交联丝状结构的纳米TiO2溶胶的合成方法和应用
CN110054219B (zh) * 2019-04-26 2021-10-19 华南师范大学 一种交联丝状结构的纳米TiO2溶胶的合成方法和应用

Similar Documents

Publication Publication Date Title
Fang et al. Hollow semiconductor photocatalysts for solar energy conversion
Zhou et al. The preparation, and applications of gC 3 N 4/TiO 2 heterojunction catalysts—a review
Ismael et al. A mini-review on the synthesis and structural modification of gC 3 N 4-based materials, and their applications in solar energy conversion and environmental remediation
Prasad et al. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review
Zou et al. Controllable interface‐induced co‐assembly toward highly ordered mesoporous Pt@ TiO2/g‐C3N4 heterojunctions with enhanced photocatalytic performance
Zhang et al. Electrospun nanofibers of ZnO− SnO2 heterojunction with high photocatalytic activity
Zhao et al. Facile preparation of a self-assembled artemia cyst shell–TiO2–MoS2 porous composite structure with highly efficient catalytic reduction of nitro compounds for wastewater treatment
Xu et al. Insights into promoted adsorption capability of layered BiOCl nanostructures decorated with TiO2 nanoparticles
Yu et al. Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania
Wang et al. Enhanced photocatalytic activity and mechanism of CeO 2 hollow spheres for tetracycline degradation
Yu et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres
Jiao et al. Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation
CN106944116A (zh) 氮化碳/二氧化钛纳米片阵列异质结光催化剂及制备方法
CN103691433B (zh) 一种Ag掺杂TiO2材料、及其制备方法和应用
CN102343259A (zh) 一种低温制备二氧化钛纳米薄膜的方法
CN102600907A (zh) 一种聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
CN102614933B (zh) 一种贵金属银沉积-聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
CN103157477B (zh) 氧化镍掺杂钛酸钠-二氧化钛复合光催化剂及其制备方法
Lim et al. Walnut-like ZnO@ Zn2TiO4 multicore-shell submicron spheres with a thin carbon layer: Fine synthesis, facile structural control and solar light photocatalytic application
CN105905940B (zh) 一种钛酸镍/二氧化钛复合纳米材料的制备方法
He et al. Preparation and improved photocatalytic activity of WO 3· 0.33 H 2 O nanonetworks
CN104383947A (zh) 一种磷酸银/二氧化钛纳米复合材料及其制备方法
CN102633303A (zh) 一种三维分等级二氧化钛空心纳米盒子及其制备方法
CN102600880A (zh) 一种可见光响应二氧化钛光催化液的制备方法
CN109012731A (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120208