CN102300802A - 柔性基底上导电纳米结构的制造 - Google Patents
柔性基底上导电纳米结构的制造 Download PDFInfo
- Publication number
- CN102300802A CN102300802A CN200980155613XA CN200980155613A CN102300802A CN 102300802 A CN102300802 A CN 102300802A CN 200980155613X A CN200980155613X A CN 200980155613XA CN 200980155613 A CN200980155613 A CN 200980155613A CN 102300802 A CN102300802 A CN 102300802A
- Authority
- CN
- China
- Prior art keywords
- mother matrix
- texture
- embossing pattern
- conductive
- supporting material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/006—Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/003—3D structures, e.g. superposed patterned layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
- C25D5/028—Electroplating of selected surface areas one side electroplating, e.g. substrate conveyed in a bath with inhibited background plating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B2207/00—Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
- G02B2207/101—Nanooptics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
本发明提供了一种制造连续纳米结构化材料的方法,所述连续纳米结构化材料具有电沉积表面层。导电母版筒被浸入到镀槽中,所述导电母版筒在其表面具有浮雕图案,所述浮雕图案使导电母版筒表面仅有一部分露出。可电沉积材料涂覆在所述母版筒的露出表面上。支承材料涂覆在所述沉积层和所述浮雕结构上。从所述母版筒上移除而得到所述纳米结构化材料。
Description
发明内容
技术领域
本申请涉及一种使用基于幅材的连续工艺制造纳米结构化和/或微结构化的制品的方法。
背景技术
例如,微结构化装置和纳米结构化装置可用于诸如平板显示器、化学传感器和生物吸收基底的制品中。制造微结构化装置和纳米结构化装置的常规方法包括:用压制或印刷工艺来模制柔顺性材料以复制图案、光刻工艺以及纳米压印光刻。
就纳米结构化表面特征来说,具有微结构化和纳米结构化表面特征的制品在其表面包括若干结构(突起、凹陷、沟槽等等),这些结构至少在二维上是微观的,或者具有至少一个小于微米的尺度。这些表面特征可通过任何接触技术(例如浇铸、涂布或压制)在制品之内或之上形成。通常,这些表面特征可以由以下的至少一种方法进行制造:(1)在具有微结构化或纳米结构化图案的工具上铸造,(2)在具有微结构化或纳米结构化图案的结构化薄膜上涂覆,或者(3)使制品通过夹辊以将制品压向具有微结构化或纳米结构化图案的结构化工具或有纹理母版工具。
虽然模制技术可以与母版复制工具联合使用以制造连续的产品卷,但是该工序所能获得的分辨率通常限制在几个微米,并且不能生产一些应用所需要的纳米级特征。
美国专利No.6,375,870公开了在圆柱滚轴的外表面上复制纳米级图案。纳米级图案从圆柱滚轴上被转移至基底表面上。将金属涂覆进基底表面上形成的凹陷图案中。使用蚀刻法或剥离法将沉积金属间的所有材料移除,以实现最终的金属结构。
发明内容
对连续的柔性纳米结构化或微结构化片材具有需求,所述连续的柔性纳米结构化或微结构化片材具有复制的基础结构,所述基础结构具有至少部分导电的表面层。卷对卷制造结构化材料节省了制造成本,并且提高了生产速度。
在制造纳米结构化制品的示例性方法中,将有纹理母版工具的一部分浸入到含有可电沉积材料的镀槽中,所述母版工具在其表面上具有浮雕图案。通过电解工艺或者电泳沉积工艺,将可电沉积材料沉积在母版工具上。可以在沉积层上方,对母版工具表面涂敷支承材料。将得到的结构从工具上移除,即可得到柔性纳米结构化材料。
浮雕图案可以是微米级浮雕图案或纳米级浮雕图案中的一种。母版工具上的浮雕图案可包括导电区域和非导电区域,并且所述可电沉积材料被沉积在纳米级浮雕图案的导电区域上。
母版工具可以是柱形母版筒、母版带、母版片或母版块。
在本发明方法的可选的实施例中,可对支承材料的表面施加底膜。
附图说明
图1是根据本发明一个方面的示例性的连续纳米结构化材料的示意图。
图2是根据本发明一个方面的制造系统的示意图。
图3是根据本发明一个方面的生成连续纳米结构化材料的示例性工艺的流程图。
图4是根据实例1制造的纳米结构化材料的扫描电子显微图。
图5示出了实例2描述的耐用母版的横截面示意图。
图6A是根据实例2制造的纳米结构化材料的原子力显微图。
图6B是根据实例1制造的纳米结构化材料的扫描电子显微图。
图7是根据本发明一个方面的可选的制造系统的示意图。
尽管上述各图提出了本发明的数个实施例,但是如讨论所述,还可以想到其它的实施例。在任何情况下,本发明均仅示例性而非限制性地介绍本发明。应当理解,本领域内的技术人员可设计出许多其它属于本发明原理范围的修改形式和实施例。未按比例绘制附图。在所有附图中,均利用类似的参考标号表示类似的部件。
具体实施方式
本申请提供了一种制造连续柔性纳米结构化或微结构化片材的方法,所述片材具有由第一材料制成的复制的基础结构和由第二不同材料制成的局部的或全部的表面。第二材料可以是导电的或不导电的。在本发明的一个示例性方面,第二材料可以是电解沉积的或电泳沉积的。导电材料可包括金属、金属氧化物、有机半导体或导电聚合物。非导电材料包括非导电聚合物和金属氧化物。金属氧化物可以是任何被氧化的过渡金属,例如铁、铝、锰、镍、铂、铬、银、金、铜、锌等等。
应当理解本文中术语“微结构”包括可以为微米级(约1μm至约1000μm或甚至更大)的特征物以及可以为纳米级(约1nm至约1000nm)的特征物。该尺寸是阵列中特征物的平均最小尺寸,并且(例如)如果特征物是圆形柱体,则所述尺寸可以为直径。
微结构或纳米结构可以在基底上呈阵列状。所述的阵列可以是规则的阵列结构、随机布置的结构、或是不同规则或随机布置相组合的结构。该结构化阵列可以直接形成在基底中,或者作为附加层形成。虽然术语“纳米结构”和“纳米特征”在本申请中大量使用,但是应当理解本文所公开的方法可扩展到微结构或微观特征的制造。
典型的纳米结构可包括柱结构和脊结构。示例性的柱结构可具有在本文中被称作高度h的基本垂直于基底的一个尺寸和两个小得多的尺寸(x和y方向的尺寸)。x方向的尺寸和y方向的尺寸中较小的一个在本文中被称作纳米结构的宽度。例如,柱的横截面(或基部)可以是圆形的,其中x方向的尺寸和y方向的尺寸相等。当横截面是圆形并且沿着z方向没有变化时,该柱体即为柱形。x方向的尺寸和y方向的尺寸相等,但沿着z方向变化也是可能的。在这种情况下,该柱体为锥形。所述锥形可以平行于底或相对底成斜角地截短。实际上,所述底的截面可以是任何封闭的平面图形,包括(但不限于)圆形、椭圆形、多边形或者任何封闭的曲线形。这样,截锥、棱锥和截棱锥都被认为在可能的柱结构范围内。还可以认为,例如,所述柱可具有多边形截面,例如三角形、正方形、五边形等等。如果所述柱结构的截面为多边形并且截面不沿其高度变化,则所述柱可以具有棱柱的形状。实际上,本申请考虑到了柱的任何形状,只要所述柱具有一个长的尺寸并且所述柱的顶部截面积约等于或小于柱底的截面积。
可通过将具有导电区域和非导电区域的有纹理母版工具浸入到可电沉积材料浴中,来制备在其表面上具有导电微结构或在其表面上具有导电纳米结构的制品。一旦沉积了足够厚度的可电沉积材料,就将母版工具从可电沉积材料浴中移除并干燥。对母版工具涂敷支承材料。当从母版工具上移除所述支承材料时,所述电镀沉积材料也被移除,从而得到需要的制品。有纹理母版工具可以为柱形母版筒、母版带、母版片或母版块的形式。
现在详细参照一些示例性实施例,其实例在附图中说明。
参见图1,其描述了示例性的连续纳米结构化材料100的一部分。“连续材料”意指其长度(L)比其宽度(w)大数倍的材料。例如,连续的纳米结构化材料100的长度可为数米(即,包括数百米或数千米的长度),而宽度可为约2.5厘米至约2米。
连续纳米结构化材料100由纳米结构105的阵列组成。纳米结构105包括电沉积表面层120,电沉积表面层120位于在底膜或基底层110上形成的部分130上。电沉积材料可以是导电的(例如金属、有机半导体或导电聚合物)或非导电的。或者,金属电沉积部分可以在后续的过程中被氧化,形成非导电的金属氧化物部分。例如,非导电的金属氧化物部分可由CuO、Ag2O、CrO2等制成。
纳米结构化材料100通过分别由图2和图3表示的示例性的制造系统和方法制备,并在下文中进行详细描述。
图2示出了用于示例性纳米结构化制品100的连续制造的示例性制造系统200,示例性纳米结构化制品100具有微米和亚微米特征。制造系统200包括母版筒210,母版筒210具有在其上形成的浮雕图案212。在示例性实施例中,浮雕图案212是非导电的,并且具有低表面能表面214、215。母版筒通常为柱形,并且可由导电材料(即金属)制成。母版筒表面上的浮雕图案可以由诸如非导电聚合物、二氧化硅或非导电碳层之类的非导电的或介电材料形成,并且为所制造的纳米结构化材料的负像。例如,如果在最终纳米结构化材料100上所需要的图案是周期性圆点,则在母版筒表面上的浮雕结构为周期性孔洞。在示例性实施例中,母版筒由具有良好导电性的材料制成,例如铝或其它金属。作为另一种选择,母版筒可具有安装在非导电筒芯(未示出)上的导电套管。例如,可在母版筒210外表面涂覆ITO(铟锡氧化物)层216。除了提供导电表面以便促进涂覆材料电沉积之外,ITO层还可以作为母版筒和沉积材料之间的隔离层。
母版筒可被部分地浸入到镀槽230中。母版筒的表面211被连接至直流电源246的一个电极,例如阴极242。在镀槽内部,另一个电极,例如阳极244,被连接至同一直流电源而形成完整电路。
在示例性实施例中,母版筒按逆时针方向219旋转。镀槽在载体溶液中包含可电沉积涂覆材料,载体溶液例如为水。可电沉积涂覆材料可以是金属电镀液或导电低聚物或聚合物的分散体。
电沉积金属可包括金、银、锡、铜、镍、钨、钒和各种金属涂料。例如电镀化学品,如可得自Technic,Inc.,(Cranston,RI)的High SpeedNickel FFP Solution和ACR 150 Gold Plating Solution,以及可得自Rohm& Haas,Inc.,(Philadelphia,PA)的Copper Gleam ST-901。
当母版筒扫过镀槽时,可电沉积涂覆材料沉积到母版筒表面211上的浮雕图案中的开口中。涂覆材料不沉积在母版筒210表面上的电介质浮雕图案212的表面214或侧面215上。涂层的厚度随母版筒的在镀槽230中的部分的停留时间而增加。
随着母版筒转动,沉积部分213将退出镀槽。喷嘴250可从母版筒上冲洗掉任何残留的涂覆材料。涂覆母版筒的冲洗干净的部分可通过加热和/或吹风来干燥。
在涂覆工位265对母版筒表面涂敷支承材料260。可通过例如涂覆、层合、沉积、印刷或本领域技术人员公知的任何其他技术来添加该层。添加该层的示例性涂覆技术可以包括,例如溶液涂覆、分散体涂覆、热熔涂覆、刮涂和浸涂。层合可包括例如热层合、光化学层合,还可以包括对基底或层或二者进行制品改性。为了提高粘合力,如果需要的话可进行层合后退火。气相沉积技术比如,例如蒸发汽相沉积、溅射、化学气相沉积、或者等离子体增强化学气相沉积为可用来给基底加层的方法,并且这些方法在本申请的范围内。
支承材料可以是热塑性聚合物,热塑性聚合物可以在高温下流动,但不能在例如室温的较低温度下流动。可被使用的热塑性聚合物的实例包括丙烯酸类树脂;聚烯烃;例如聚乙烯丙烯酸的乙烯共聚物;例如聚四氟乙烯和聚偏二氟乙烯的含氟聚合物;聚氯乙烯离聚物;诸如聚醚醚酮的酮;聚酰胺;聚碳酸酯;聚酯;例如苯乙烯-异戊二烯-苯乙烯的苯乙烯嵌段共聚物;苯乙烯-丁二烯-苯乙烯苯乙烯丙烯腈;和本领域技术人员公知的其它物质。
其它可用的用于形成柔性纳米结构化材料的支承材料包括热固性树脂,热固性树脂可根据其化学性质利用催化剂、加热或曝光进行固化,热固性树脂例如为丙烯酸酯、聚二甲基硅氧烷、尿烷和环氧树脂。热固性树脂的例子可以是基于固化形成具有微观特征的聚合物型基底的可光交联系统,例如光致固化型聚氨酯丙烯酸酯。
通过定制纳米结构的形状和所使用材料,纳米结构化材料可用作线栅偏振片、微透镜、生物检测芯片、微镜阵列、异向介质(负折射率材料)、电磁屏蔽材料或触摸屏组件。例如,基于增强受激拉曼效应的用于药物筛选和生物检测的生物芯片由制于硅片上的亚微米金孔的阵列构成。由于用于制备的工艺和低产量的原因,制造生物芯片的常规方法很昂贵。通过本文公开的本发明的方法制造生物芯片能够显著地降低制造成本并提高产量。
对于一些这样的应用,可根据其光学透明度要求来选择支承材料。光学透明的支承材料可包括可视透射的热固性聚合物,例如丙烯酸类聚合物、聚碳酸酯、聚酯(PET)、聚酯共聚物、聚萘二甲酸乙二醇酯聚合物(PEN)、聚氨酯丙烯酸酯、环氧树脂等等。光学透射的热塑性材料还可用于形成微透镜或者微镜阵列。这些材料可包括(例如)聚碳酸酯、聚甲基丙烯酸甲酯、聚烯烃、聚乙烯丙烯酸、聚氯乙烯、聚氟乙烯、离聚物、诸如聚醚醚酮之类的酮、聚酰胺、聚酯、聚酯共聚物、二甲酸乙二醇酯聚合物(PEN)、苯乙烯嵌段共聚物以及本领域技术人员公知的其它材料。
支承材料涂覆母版筒表面并且填满浮雕结构的未被电沉积材料涂覆的任何区域,以制造纳米结构化材料100的成形部分130。支承材料可涂覆得足够厚,以使浮雕结构本身被外涂以支承材料。如果支承材料足够厚,其可以形成除纳米结构化材料100的成形部分130之外的基底层。作为另一种选择,可在支承材料施加至母版筒上后引入单独的基底层。如果使用了单独的基底层,其可以是任何薄层柔性材料,例如聚对苯二甲酸乙二醇酯(PET)薄膜、聚萘二甲酸乙二醇酯(PEN)薄膜、聚酯薄膜、聚酰亚胺薄膜,或薄金属箔,例如铝箔或铜箔。
图2示出了通过夹辊280将底膜110层合至母版筒上的支承材料层261,以形成纳米结构化材料100的基底层。
在支承材料为热固性材料的情况下,将固化工位270设置于临近夹辊280,以固化支承材料。如果支承材料260为紫外线可固化材料,固化工位270可包括紫外线辐射源,例如紫外线灯泡(例如可得自Electro-Lite Corporation,Danbury,CT的ELC-500 UV/Visible CuringChamber)、紫外激光器(例如可得自Coherent,Inc.,Santa Clara,CA的Innova Sabre FReD Laser)或紫外光二极管。如果支承材料260为热可固化材料,固化工位270可包括炉子、红外线灯或其它热源。如果支承材料260为热塑性聚合物,则不需要固化工位。
支承材料的一个功能是将电沉积部分粘合至基底层。支承材料260对沉积部分的粘合力应比沉积部分213对母版筒210表面211的粘合力大得多。这样可以在母版筒转动时将纳米结构化材料100从母版筒210上移除。
图7示出了可选的用于执行示例性纳米结构化制品100的连续制造的制造系统500,可选的纳米结构化制品100具有微米和亚微米特征。制造系统500包括结构化母版带510,结构化母版带510具有在其上形成的浮雕图案512。母版带通常为材料带,材料带由导电材料(即金属)制成,或在浮雕图案和支承基底之间具有导电层。母版带表面的浮雕图案可以由例如非导电聚合物、二氧化硅或非导电碳层的非导电的或介电材料形成,并且为所制造的纳米结构化材料的负像。例如,如果在最终纳米结构化材料100上所需要的图案是周期性圆点,则在母版带表面上的浮雕结构为周期性孔洞。在示例性实施例中,母版筒由具有良好导电性的材料制成,例如铝箔或其它金属箔。或者,母版带可具有涂覆在介电基底(未示出)上的导电材料。例如,可在PEN带或PET薄膜的外表面涂覆ITO(铟锡氧化物)层,或者母版带可由一片金属化的聚酰亚胺薄膜(例如,包铜的聚酰亚胺薄膜)制成,金属化的聚酰亚胺薄膜在形成浮雕图案后被制成带状。
可将母版带安装在一系列滚轴580、581上,使得母版带的一部分通过镀槽530。在母版带形成于金属箔上并且滚轴581为导电的情况下,可通过将滚轴581连接至直流电源546的阴极542,使母版带的表面511带电。在镀槽内部,阳极544被连接至相同的直流电源,以形成完整的电路。如果将包金属的介电薄膜作为母版带的基底使用,则将阴极设计成接触母版带的金属化表面。
镀槽530在载体溶液中包含可电沉积涂覆材料535,载体溶液例如为水。可电沉积涂覆材料可以是金属电镀液或导电低聚物或聚合物的分散体。被电沉积的金属可包括金、银、锡、铜、镍、钨、钒和各种金属涂层。
当母版带扫过镀槽时,可电沉积涂覆材料被电解沉积到母版带表面511上的浮雕图案中的开口中。优选地,涂覆材料不沉积在母版带510表面上的电介质浮雕图案512的表面514或侧面515上。涂层的厚度随母版带在镀槽530中的停留时间而增加。
随着母版筒转动,沉积部分513将退出镀槽。喷嘴或喷头(未示出)可从母版筒上冲洗掉任何残留的涂覆材料。可以通过加热和/或吹风的方式对涂覆母版筒被冲洗干净的部分进行干燥。
可通过另一套滚轴585提供底膜110。将一层支承材料561施加在底膜110上。可通过例如涂覆、层合、沉积、印刷或者任何本领域技术人员公知的其他技术来添加该层支承材料。添加该层的示例性涂覆技术包括,例如溶液涂覆、分散体涂覆、热熔涂覆、刮涂和浸涂。层合可包括例如热层合、光化学层合,还可以包括对基底或层或二者进行制品改性。为了提高粘合力,如果需要的话可进行层合后退火。
支承材料可以是热塑性聚合物,热塑性聚合物可以在高温下流动,但不能在例如室温的较低温度下流动,或者支承材料可以是热固性树脂,热固性树脂可根据其化学性质利用催化剂、加热或曝光进行固化。图7说明了使用光固化热固性树脂化学品的制造系统。
在滚轴580和585间的辊隙中将金属涂覆的母版带和支承材料压合在一起。一旦支承材料填满母版带表面上的浮雕图案,使紫外线570穿过底膜的背面,以固化支承材料。在底膜和支承材料与母版带分开时,电沉积部分513从母版带上移除而形成纳米结构化材料100。
尽管上文所述工艺描述了用于在柔性片材上制造导电纳米结构的连续工艺,本领域技术人员应认识到,如果使用了有纹理块(tile)形式的母版工具,这些结构也可以通过间歇工艺进行制备。
实例
实例1
使用前文所述制造方法,制备具有亚微米孔阵列结构的纳米结构化材料100’。图3A-3G示出了形成纳米结构化材料100’的制造方法的流程图。
制备母版
如图3A所示,将正UV5光刻胶306(可得自Rohm and HaasElectronic Materials,Marlborough,MA)薄层施加至玻璃母版300,玻璃母版300具有导电ITO表面层304,在玻璃层302和ITO层304之间具有薄的铬结合层(未示出)。浮雕图案310采用干涉光刻术进行制造,干涉光刻术使用具有270mW输出的Innova Sabre FReD紫外激光器(可得自位于Santa Clara,CA的Company Coherent)以形成具有柱314的阵列的光刻胶层306(图3B)。随后使用显影液溶解掉不需要的光刻胶,以移除曝光区域。
如图3B所示,柱纳米结构的直径D约为0.85μm。纳米结构的节距P为1.7μm。该基于光刻胶的结构被用作基于介电材料的亚微米结构模具。
制造复制品
在围绕浮雕图案310的柱314周围的区域316中,将金薄层320电沉积至覆有ITO玻璃的母版300的表面311上。在1安培每平方英尺的电流密度和48℃的温度下,使用可得自Technic,Inc.,Cranston,RI的ACR 150 Gold Plating Solution电沉积出金,产生0.2μm的金层。
将紫外线可固化支承材料层330涂覆在浮雕图案310上。将样品放置在真空室中,以防止在区域316中形成滞留空气,区域316围绕介于金沉积层320和支承材料330之间的浮雕图案310的柱314。紫外线可固化支承材料的制备方法类似于美国专利No.7,074,463(实例1A和1B,以引用的方式并入本文)所描述的方法,区别在于混合物,所述混合物包括48份的Sartomer 295(四丙烯酸季戊四醇酯单体,可得自Sartomer Co.,Exton,PA),35份的RDX-51027(2,2′,6,6′-四溴双酚A二丙烯酸酯,可得自Cytec Surface Specialties,Smyrna,GA),以及17份的Sartomer 339(四丙烯酸季戊四醇酯单体,可得自Sartomer Co.,Exton,PA)。最终的SiO2填充量为40%重量而不是37.33%。施加的支承材料厚度为200μm。
在固化支承材料前,在支承材料330的背面施加PEN底膜340。
在氮气氛中,使涂覆的玻璃母版经受10分钟的350nm的紫外辐射355,使支承材料固化。
将纳米结构化材料100’从玻璃母版300上移除,并且用甲醇洗净。如图4所示,结果得到的纳米结构化材料具有金表面以及在整个金表面上延伸并进入支承材料层内部的亚微米孔的阵列。
实例2
第二个复制母版被制成在ITO玻璃涂覆的硅母版表面上具有耐用的类金刚石碳(DLC)浮雕结构。在ITO玻璃的表面上真空涂覆200nm的DLC薄膜,随后施加如美国专利No.5,888,594、No.6,015,597和No.6,696,157所述的类金刚石玻璃(DLG)薄层(约50nm),所述美国专利以引用的方式并入本文。对DLG表面施加光刻胶层(UV5 photoresist306,可得自Rohm and Haas Electronic Materials,Marlborough,MA)。按照如美国专利No.7,085,450所描述的干涉光刻术形成光刻胶图案,所述美国专利No.7,085,450以引用的方式并入本文。使用利用了全氟丙烷(C3F8)、氧气和氩气的三步反应离子蚀刻工艺将图案从光刻胶转移至DLC层上,使ITO玻璃表面在所选区域中露出。图5示出了硅母版400的横截面示意图,硅母版400具有涂覆铝的硅基基底410,硅基基底410具有设置在铝层412上的导电ITO玻璃层420和设置在导电ITO玻璃层420上的DLC浮雕图案430。有利地,ITO玻璃用作隔离涂层,以便电沉积材料能够容易地从母版筒上移除。此外,DLC和DLG的低表面能还提供了改进的隔离特性,用于从复制母版上移除固化的复制材料和沉积材料。
在浮雕图案430的孔434中,将金薄层电沉积在硅母版400的表面411上。在1安培每平方英尺的电流密度和48℃的温度下,使用可得自Technic,Inc.,Cranston,RI的ACR 150 Gold Plating Solution电沉积出金,产生0.2微米的金层。
如上文所述的紫外线可固化支承材料层涂覆在浮雕图案430上。样品放置在真空室中,以确保在浮雕图案430的孔434中没有滞留空气。施加的支承材料厚度为200μm。
在固化支承材料前,在支承材料的背面施加PEN底膜。
在氮气氛中,使涂覆的玻璃母版经受350nm的紫外辐射10分钟,使支承材料固化。
纳米结构化材料从硅母版上移除,并用甲醇洗净。
图6A示出了所得的纳米结构化材料的原子力显微图,所得到的纳米结构化材料具有金表面以及在整个金表面上延伸并进入介电层内部的亚微米孔阵列。图6B示出了所得的纳米结构化材料的扫描电子显微图。俄歇电子能谱证实金仅存在于纳米结构化材料的表面上,并且在材料的孔区域中没有金。微结构的周期为1.7μm。孔的深度约为0.6μm。
所公开方法的优点包括减少边角料,并且在大的柔性基底表面上产生了纳米级图案,所述方法可用于例如液晶显示器的偏振膜或者PDP显示器的电磁屏蔽。该复制方法不需要对多余的材料进行剥离或反应离子蚀刻,因此简化了制造并且减少了所得到薄膜的成本。可电沉积材料被沉积到需要的位置,因此将材料的浪费降至最低。
基于对本说明书或本文所公开的本发明的实施方式的思考,本发明的其他实施例对本领域内的技术人员来说将显而易见。本说明书和实例仅意在作为示例,本发明的真实范围和精神由后面的权利要求书指明。
Claims (15)
1.一种制备表面结构化制品的方法,所述方法包括:
提供有纹理母版,所述有纹理母版包括在导电基底的表面上形成的浮雕图案,其中所述浮雕图案为微米级浮雕图案和纳米级浮雕图案中的至少一种;
将所述有纹理母版的一部分浸入到镀槽中,所述镀槽包括可电沉积材料;
将所述可电沉积材料沉积在所述有纹理母版上;
使支承材料与所述有纹理母版接触;以及
当所述支承材料与所述有纹理母版分离时,从所述有纹理母版移除所述可电沉积材料。
2.根据权利要求1所述的方法,其中所述浮雕图案包括导电区域和非导电区域。
3.根据权利要求2所述的方法,其中所述可电沉积材料沉积在所述浮雕图案的所述导电区域上。
4.根据权利要求1所述的方法,其中所述有纹理母版为柱形母版筒。
5.根据权利要求1所述的方法,其中所述有纹理母版为母版带。
6.根据权利要求1所述的方法,其中所述有纹理母版为母版块。
7.根据权利要求3所述的方法,还包括对具有涂覆在所述导电区域上的可电沉积材料的所述有纹理母版的一部分进行冲洗和干燥。
8.根据权利要求1-7中任一项所述的方法,还包括在所述镀槽和所述有纹理母版之间施加电流。
9.根据权利要求1-7中任一项所述的方法,还包括向所述支承材料的表面施加底膜。
10.根据权利要求1-7中任一项所述的方法,其中所述支承材料为热塑性聚合物。
11.根据权利要求8所述的方法,其中热塑性聚合物为聚烯烃聚合物、乙烯共聚物、含氟聚合物、聚酮、聚酰胺、聚碳酸酯、聚酯、苯乙烯嵌段共聚物和苯乙烯丙烯腈聚合物中的一种。
12.根据权利要求1-7中任一项所述的方法,其中所述支承材料为热固性树脂。
13.根据权利要求12所述的方法,其中可固化树脂为丙烯酸酯、聚二甲硅氧烷、聚氨酯丙烯酸酯和环氧树脂中的一种。
14.根据权利要求12所述的方法,还包括固化所述可固化树脂的步骤。
15.根据权利要求1-7中任一项所述的方法,其中所述可电沉积材料为导电材料。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13827208P | 2008-12-17 | 2008-12-17 | |
US61/138,272 | 2008-12-17 | ||
PCT/US2009/066302 WO2010077529A2 (en) | 2008-12-17 | 2009-12-02 | Fabrication of conductive nanostructures on a flexible substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102300802A true CN102300802A (zh) | 2011-12-28 |
Family
ID=42310474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980155613XA Pending CN102300802A (zh) | 2008-12-17 | 2009-12-02 | 柔性基底上导电纳米结构的制造 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20110240476A1 (zh) |
EP (1) | EP2370348A4 (zh) |
KR (1) | KR20110099039A (zh) |
CN (1) | CN102300802A (zh) |
WO (1) | WO2010077529A2 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790639A (zh) * | 2016-09-16 | 2019-05-21 | 3M创新有限公司 | 制造纳米结构化柱形轧辊的方法 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2446259B1 (en) * | 2009-06-25 | 2020-08-05 | The University of North Carolina At Chapel Hill | Method and system for using actuated surface-attached posts for assessing biofluid rheology |
JP5735785B2 (ja) * | 2010-11-30 | 2015-06-17 | 豊田鉄工株式会社 | 電子部品用冷却装置及びその製造方法 |
US9227383B2 (en) * | 2011-12-23 | 2016-01-05 | Hong Kong Baptist University | Highly flexible near-infrared metamaterials |
JP5850574B2 (ja) * | 2012-09-20 | 2016-02-03 | 株式会社シンク・ラボラトリー | 連続パターンメッキ転写システム及び連続パターンメッキ転写物製造方法 |
EP2926115B1 (en) | 2012-11-30 | 2021-05-26 | The University of North Carolina At Chapel Hill | Methods and systems for determining physical properties of a specimen in a portable point of care diagnostic device |
US10040018B2 (en) | 2013-01-09 | 2018-08-07 | Imagine Tf, Llc | Fluid filters and methods of use |
EP2754524B1 (de) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Verfahren und Vorrichtung zum laserbasierten Bearbeiten von flächigen Substraten, d.h. Wafer oder Glaselement, unter Verwendung einer Laserstrahlbrennlinie |
EP2781296B1 (de) | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Vorrichtung und verfahren zum ausschneiden von konturen aus flächigen substraten mittels laser |
US10442719B2 (en) * | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US9861920B1 (en) | 2015-05-01 | 2018-01-09 | Imagine Tf, Llc | Three dimensional nanometer filters and methods of use |
US10730047B2 (en) | 2014-06-24 | 2020-08-04 | Imagine Tf, Llc | Micro-channel fluid filters and methods of use |
TWI730945B (zh) | 2014-07-08 | 2021-06-21 | 美商康寧公司 | 用於雷射處理材料的方法與設備 |
CN107073642B (zh) | 2014-07-14 | 2020-07-28 | 康宁股份有限公司 | 使用长度和直径可调的激光束焦线来加工透明材料的系统和方法 |
US10124275B2 (en) | 2014-09-05 | 2018-11-13 | Imagine Tf, Llc | Microstructure separation filters |
TWI561462B (en) * | 2014-10-07 | 2016-12-11 | Iner Aec Executive Yuan | A method for forming dendritic silver with periodic structure as light-trapping layer |
US10758849B2 (en) | 2015-02-18 | 2020-09-01 | Imagine Tf, Llc | Three dimensional filter devices and apparatuses |
US11773004B2 (en) | 2015-03-24 | 2023-10-03 | Corning Incorporated | Laser cutting and processing of display glass compositions |
US10118842B2 (en) | 2015-07-09 | 2018-11-06 | Imagine Tf, Llc | Deionizing fluid filter devices and methods of use |
EP3319911B1 (en) | 2015-07-10 | 2023-04-19 | Corning Incorporated | Methods of continuous fabrication of holes in flexible substrate sheets and products relating to the same |
US10479046B2 (en) | 2015-08-19 | 2019-11-19 | Imagine Tf, Llc | Absorbent microstructure arrays and methods of use |
US10900135B2 (en) * | 2016-02-09 | 2021-01-26 | Weinberg Medical Physics, Inc. | Method and apparatus for manufacturing particles |
KR102078294B1 (ko) | 2016-09-30 | 2020-02-17 | 코닝 인코포레이티드 | 비-축대칭 빔 스폿을 이용하여 투명 워크피스를 레이저 가공하기 위한 기기 및 방법 |
JP7066701B2 (ja) | 2016-10-24 | 2022-05-13 | コーニング インコーポレイテッド | シート状ガラス基体のレーザに基づく加工のための基体処理ステーション |
WO2019202472A2 (en) | 2018-04-17 | 2019-10-24 | 3M Innovative Properties Company | Conductive films |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1003078A3 (en) * | 1998-11-17 | 2001-11-07 | Corning Incorporated | Replicating a nanoscale pattern |
US6422528B1 (en) * | 2001-01-17 | 2002-07-23 | Sandia National Laboratories | Sacrificial plastic mold with electroplatable base |
DE10229166B4 (de) * | 2002-06-28 | 2006-03-09 | Infineon Technologies Ag | Verfahren zur Herstellung einer strukturierten Metallschicht |
JP2004193497A (ja) * | 2002-12-13 | 2004-07-08 | Nec Electronics Corp | チップサイズパッケージおよびその製造方法 |
US9040090B2 (en) * | 2003-12-19 | 2015-05-26 | The University Of North Carolina At Chapel Hill | Isolated and fixed micro and nano structures and methods thereof |
KR100606441B1 (ko) * | 2004-04-30 | 2006-08-01 | 엘지.필립스 엘시디 주식회사 | 클리체 제조방법 및 이를 이용한 패턴 형성방법 |
KR100631017B1 (ko) * | 2004-04-30 | 2006-10-04 | 엘지.필립스 엘시디 주식회사 | 인쇄방식을 이용한 패턴 형성방법 |
TWI466779B (zh) * | 2006-12-27 | 2015-01-01 | Hitachi Chemical Co Ltd | Gravure and use of its substrate with a conductive layer pattern |
-
2009
- 2009-12-02 CN CN200980155613XA patent/CN102300802A/zh active Pending
- 2009-12-02 KR KR1020117016221A patent/KR20110099039A/ko not_active Application Discontinuation
- 2009-12-02 US US13/130,064 patent/US20110240476A1/en not_active Abandoned
- 2009-12-02 WO PCT/US2009/066302 patent/WO2010077529A2/en active Application Filing
- 2009-12-02 EP EP09836644.6A patent/EP2370348A4/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109790639A (zh) * | 2016-09-16 | 2019-05-21 | 3M创新有限公司 | 制造纳米结构化柱形轧辊的方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2010077529A2 (en) | 2010-07-08 |
WO2010077529A3 (en) | 2010-08-26 |
EP2370348A2 (en) | 2011-10-05 |
US20110240476A1 (en) | 2011-10-06 |
EP2370348A4 (en) | 2016-12-21 |
KR20110099039A (ko) | 2011-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102300802A (zh) | 柔性基底上导电纳米结构的制造 | |
US10546722B2 (en) | Roll-to-roll patterning of transparent and metallic layers | |
EP2298046B1 (en) | Providing a plastic substrate with a metallic pattern | |
CN102063951B (zh) | 一种透明导电膜及其制作方法 | |
WO2017215388A1 (zh) | 电磁屏蔽膜及电磁屏蔽窗的制作方法 | |
US20080095985A1 (en) | Methods of patterning a material on polymeric substrates | |
CN1292977C (zh) | 深亚微米三维滚压模具及其制作方法 | |
Zhong et al. | Microstructure formation via roll-to-roll UV embossing using a flexible mould made from a laminated polymer–copper film | |
US20160059617A1 (en) | Embossing tool and methods of preparation | |
CN106538072B (zh) | 具有降低的可见度的金属微结构及其制备方法 | |
CN109722666A (zh) | 具有表面微纳结构的金属薄膜模具的制备方法和金属薄膜模具中间体 | |
CN113470890B (zh) | 一种透明导电薄膜结构及其制作方法 | |
Wang et al. | Continuous fabrication of highly conductive and transparent ag mesh electrodes for flexible electronics | |
CN109643192A (zh) | 导电性薄膜、触摸面板传感器及触摸面板 | |
KR20060030518A (ko) | 고해상도 표면 패턴 형성공정 | |
KR100957487B1 (ko) | 플라스틱 전극필름 제조방법 | |
KR101165396B1 (ko) | 금속 나노 링 패턴을 이용한 나노 구조물의 제조 방법 | |
CN105858591B (zh) | 一种金属微结构及其制作方法 | |
KR101049220B1 (ko) | 임프린트 리소그래피용 스탬프의 제조 방법 | |
WO2009094572A1 (en) | Roll-to-roll patterning of transparent and metallic layers | |
CN110891895A (zh) | 通过选择性模板移除来进行微米和纳米制造的方法 | |
KR101543538B1 (ko) | 표면증강라만산란 활성기판의 제조 방법 | |
KR101940238B1 (ko) | 금속 스탬프 제조 방법 | |
Kim et al. | Effects of preheating and cooling durations on roll-to-roll hot embossing | |
JP4850236B2 (ja) | 透明導電性シートとその製造方法、加飾成形品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20111228 |