WO2017215388A1 - 电磁屏蔽膜及电磁屏蔽窗的制作方法 - Google Patents

电磁屏蔽膜及电磁屏蔽窗的制作方法 Download PDF

Info

Publication number
WO2017215388A1
WO2017215388A1 PCT/CN2017/084502 CN2017084502W WO2017215388A1 WO 2017215388 A1 WO2017215388 A1 WO 2017215388A1 CN 2017084502 W CN2017084502 W CN 2017084502W WO 2017215388 A1 WO2017215388 A1 WO 2017215388A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic shielding
conductive substrate
shielding film
pattern structure
metal
Prior art date
Application number
PCT/CN2017/084502
Other languages
English (en)
French (fr)
Inventor
刘艳花
陈林森
王波
沈悦
周云
周小红
叶燕
方宗豹
Original Assignee
苏州苏大维格光电科技股份有限公司
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州苏大维格光电科技股份有限公司, 苏州大学 filed Critical 苏州苏大维格光电科技股份有限公司
Priority to US16/096,781 priority Critical patent/US20210227729A1/en
Publication of WO2017215388A1 publication Critical patent/WO2017215388A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/061Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0086Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single discontinuous metallic layer on an electrically insulating supporting structure, e.g. metal grid, perforated metal foil, film, aggregated flakes, sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10889Making laminated safety glass or glazing; Apparatus therefor shaping the sheets, e.g. by using a mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10981Pre-treatment of the layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • G03F7/405Treatment with inorganic or organometallic reagents after imagewise removal
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/212Electromagnetic interference shielding
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Definitions

  • the invention relates to a film manufacturing technology, in particular to an electromagnetic shielding film and a method for manufacturing the electromagnetic shielding window.
  • Electromagnetic radiation pollution has been paid more and more attention. Electromagnetic waves not only interfere with the normal operation of various electronic devices, but also threaten the information security of communication devices. In severe cases, it will also cause harm to human health. In order to prevent electromagnetic waves from leaking and causing electromagnetic hazards, electromagnetic shielding materials are mainly used to shield electromagnetic waves.
  • the shielding performance requirement is generally 30-60dB;
  • the square resistance is required to be less than 300 ohms/square, and the corresponding electromagnetic shielding effectiveness is greater than 30 dB;
  • the surface resistance is required to be less than 2.5 ohms/square, and the corresponding electromagnetic shielding effectiveness is greater than 70 dB.
  • the shielding effectiveness of electromagnetic shielding materials in the microwave frequency band should reach 60-90dB, which can be applied to the shielding of aerospace and military equipment, but at the same time requires optical transmittance of more than 95%. It is required to achieve high light transmittance, high shielding effectiveness, good temperature resistance and little influence on optical imaging quality.
  • Chinese invention patent 201410745168.5 "A method for preparing a transparent metal shielding layer of wire mesh” uses a metal mesh and a PET film to form an electromagnetic shielding layer.
  • the screen has an average diameter of 35 ⁇ m and a pitch of 300 ⁇ m, and can realize a transparent electromagnetic shielding film with a transmittance of 50% and an electromagnetic shielding performance of 25-46 dB.
  • Cikon patent 201010533228.9 "a transparent conductive film and a manufacturing method thereof" describes a transparent conductive film realized by a method of nanoimprinting and nano-coating, which forms a trench by nanoimprinting, and fills the trench with nano-conducting The material is then sintered to form a high-performance conductive film which can be used to fabricate an electromagnetic shielding film. During the sintering process of the nano-conductive material, the organic solvent volatilizes, and the metal particles in the conductive material aggregate to form a conductive mesh structure.
  • the conductive material is sintered at a low temperature, and the contact resistance between the metal particles is large, so that the conductivity of the grid structure is affected (the conductivity is lower than the grid formed by the deposition), thereby affecting the electromagnetic shielding performance of the film produced by the scheme.
  • Chinese invention patent 201410464874.2 "Micro-metal grid-based electromagnetic shielding cover and its preparation method" through conductive paste filling technology, forming a conductive grid structure, and then using electroforming to deposit a micro-metal grid, and finally stripping the metal mesh to form a hollow
  • the structure is stretched onto a concave mold to make an electromagnetic shield.
  • the grid trench line width is generally 5 ⁇ m or more depending on the particle size of the conductive paste.
  • the solution makes the micro metal mesh in the electromagnetic shielding cover as a convex structure.
  • Chinese invention patent 200810063988.0 proposes to use two-layer metal grid with the same structural parameters to be placed parallel on both sides of the transparent substrate to form an electromagnetic shielding optical window, which can guarantee Improve electromagnetic shielding efficiency without reducing transmittance.
  • Chinese Patent 201410051541.7 Electrical Shielding Light Window Based on Triangular Distribution Tangent Ring and Inscribed Ring Array
  • Chinese Patent 201410052260.3 Electrical Shielding Light Window Based on Multi-Cycle Metal Ring Two-Dimensional Orthogonal Nested Array”
  • Designed ring pattern to realize metal grid type optical shielding window the purpose is to eliminate metal grid The effect of high-order diffracted light on imaging quality and detection results.
  • the fabrication of the metal grid is accomplished by vacuum sputtering, mask exposure, and etching. However, the above techniques are all fabricated by vacuum coating and etching equipment, and the line width is hardly lower than 30 ⁇ m.
  • the metal wire diameter is generally higher than several tens of micrometers, it is difficult to realize a high transmittance electromagnetic shielding film, and the metal mesh shielding film is formed by photolithography and etching process, in order to achieve high Shielding efficiency, generally after the metal grid is obtained by the etching process, the metal grid layer is thickened by electroless plating or electroplating. At this time, the deposited metal layer belongs to "free growth", causing the grid wire diameter to be seriously widened, affecting the optical transmittance.
  • the vacuum coating process is required in the process, the etching process is complicated, the production cost is high, and it is not suitable for the low-cost requirement of scale production.
  • the electromagnetic shielding film based on the metal grid is composited with a flexible substrate by a metal grid, and the thickness of the shielding film generally obtained is greater than 50 um. This makes it difficult to attach the shielding film to a complicated structural surface, especially in the case where a plurality of micro-scale films need to be stacked, which causes many defects. At the same time, in many electromagnetic shielding applications, the temperature resistance of the film is also severe, such as reaching 200 degrees. In addition, when applied to wearable electronics, smart phones, ultra-thin notebook computers, etc., the bending radius of the shielding film is required to be less than 5 mm. In the past, the metal grid structure was attached to the surface of the flexible substrate. At this bending radius, the metal grid structure was easily separated from the flexible substrate, which was difficult to meet the application requirements in the field of flexible electronics.
  • the present invention provides an electromagnetic shielding film with high transparency and good temperature resistance and a manufacturing method of the electromagnetic shielding window, which can meet the electromagnetic shielding effect of high optical shielding performance, high imaging quality and high temperature resistance.
  • a method for manufacturing an electromagnetic shielding film comprising the steps of:
  • the metal pattern structure is inlaid into the flexible base material by an imprint process to form an electromagnetic shielding film.
  • the polyimide solution is applied onto a conductive substrate, thermally cured to form a film, and then peeled off to form an electromagnetic shielding film.
  • the ultraviolet curable adhesive is coated on the conductive substrate, and the PET film is coated thereon, and irradiated with an ultraviolet lamp, and the ultraviolet curable adhesive is cured by irradiation, and adhered.
  • an electromagnetic shielding film was obtained on the PET film, after peeling off the PET film and the conductive substrate.
  • the COC film is covered on the conductive substrate, and temperature and pressure are applied thereto, and the COC film and the conductive substrate are separated to obtain an electromagnetic shielding film.
  • a step 21) is further provided: placing the conductive substrate having the metal pattern structure in the degumming liquid, and removing the conductive substrate from other areas than the metal pattern structure. The photoresist is removed.
  • the above graphic structure is a grid structure.
  • the above-mentioned grid structure is a periodic arrangement or a non-period arrangement.
  • the conductive substrate is a flexible substrate or a rigid substrate.
  • the manufacturing method of the electromagnetic shielding window comprises the following steps:
  • the above-mentioned conductive substrate having a metal pattern structure also passes through a solvent-based glue
  • the layer compound is formed on the surface of the mold.
  • the invention proposes to realize a magnetic shielding film by photolithography technology (laser direct writing and ultraviolet exposure), selective electrodeposition process and nano imprinting technology (hot stamping, film inversion technology).
  • the electromagnetic shielding film comprises a metal grid structure layer having a line width of 300 nm to 10 ⁇ m and a grid pitch of 1 ⁇ m to 500 ⁇ m, the metal grid layer having a thickness of 300 nm to 10 ⁇ m, and a flexible substrate layer, wherein the metal grid structure layer Embedded in the flexible substrate, it can also be embedded in the UV-curable adhesive layer, and adhered to the flexible substrate layer by the UV-curable adhesive layer.
  • the transparent electromagnetic shielding film and the electromagnetic shielding window produced by the invention have the surface square resistance of only 0.05-0.4 ohm/square and the electromagnetic shielding effectiveness can reach more than 60 dB because the metal grid structure layer is formed by the deposition process.
  • the deposition of the metal layer of the present invention belongs to "constrained growth" (constrained in the trench formed by the photoresist), and while achieving high shielding effectiveness, high transmittance is ensured, and the optical transmittance can exceed 95%.
  • the invention adopts polyimide PI material to form a flexible substrate, and manufactures an embedded metal grid type electromagnetic shielding film.
  • micro-nano The graded metal grid is embedded in the PI flexible substrate or the cured adhesive instead of adhering to the surface, so it is not easily scratched and the attenuation of the shielding film is less than 5 when the bending radius is less than 3 mm. %, temperature resistance up to 200 degrees.
  • the invention has the following advantages:
  • the thickness of the PI film is only a few to several ten micrometers, and an ultra-thin electromagnetic shielding film can be realized;
  • the invention provides an electromagnetic shielding film by selective electrodeposition, and can form a metal grid structure with a line width of several hundred nanometers to micrometer. Since the metal grid is formed by deposition, the high transparency of the electromagnetic shielding film is ensured. (greater than 95%) at the same time, achieve high shielding effectiveness (greater than 60dB);
  • an electromagnetic shielding film having a bending radius of less than 3 mm can be realized, and The surface is not easily scratched by pollution;
  • the flexible high-transparency electromagnetic shielding film produced by the invention does not involve a vacuum evaporation process, and can make the manufacturing cost lower and the efficiency higher.
  • FIG. 1 is a schematic flow chart of an electromagnetic shielding film of the present invention.
  • FIG. 2a is a top plan view of an electromagnetic shielding film in accordance with an embodiment of the present invention.
  • FIG. 2b is a side view of an electromagnetic shielding film in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an electromagnetic shielding film according to another embodiment of the present invention.
  • FIG. 4a is a schematic structural view of an electromagnetic shielding window according to an embodiment of the present invention.
  • FIG. 4b is a schematic structural view of an electromagnetic shielding window according to another embodiment of the present invention.
  • 4c is a schematic structural view of an electromagnetic shielding device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of an electromagnetic shielding film having a non-periodic metal mesh in an embodiment of the present invention.
  • the micro metal mesh is embedded in the PI material through the micro-nano processing technology, the flexibility is good, the scratch is not easy, the temperature resistance is high, the transparency is good, and the electromagnetic shielding effectiveness is strong.
  • Specific technical design using lithography technology (laser direct writing, ultraviolet exposure, electron beam exposure, etc.) to form a grid structure on a conductive substrate (metal, metallized flexible conductive film, ITO, FTO glass, etc.)
  • Metal layer metal such as nickel, copper, gold, etc.
  • nanoimprint hot stamping, film inversion technique
  • Preset grid fabrication on conductive substrate According to the performance requirements of electromagnetic shielding film (light transmittance, shielding effectiveness, high diffraction order extinction, etc.), the layout of the grid structure is designed (hexagonal honeycomb, square) , parallelograms such as periodicograms, non-periodic arrangement of arbitrary polygons, etc.), grid width (300nm-10 ⁇ m), grid spacing (10 ⁇ m-500 ⁇ m) and other parameters, and then through micro-nanostructure graphics (laser direct writing , UV exposure, electron beam exposure a technology such as light) forms a pattern structure on a conductive substrate coated with a photoresist;
  • the patterned conductive substrate is placed on the cathode of the electrodeposition bath, the anode is placed with a metal material to be deposited, and the deposition property is selected by electrodeposition, and the metal is formed in the grid groove portion of the conductive substrate.
  • the material is deposited without forming an electrodeposited layer in the area covered by the photoresist.
  • the deposition thickness (300nm-10 ⁇ m) of the metal material can be controlled by controlling the current intensity (500mA-50A) attached to the electrode, the deposition time (20s-6000s), the distance between the cathode and the anode (20mm-300mm), and the like;
  • Embedded metal grid electromagnetic shielding film fabrication the conductive substrate of the deposited metal grid layer is placed in the degumming solution, and the photoresist on the conductive substrate is removed, leaving only the metal grid deposited on the conductive substrate.
  • a nanoimprint technique hot stamping, film inversion technique, etc.
  • a metal grid on the conductive substrate is embedded in the transparent flexible substrate to form an electromagnetic shielding film;
  • the thickness of the deposited layer is affected by the energization time, current intensity, and electrode spacing, and the greater the thickness of the deposited layer, the higher the conductivity.
  • the thickness of the deposited layer (300 nm - 10 ⁇ m) can be controlled by adjusting the parameters of electrodeposition.
  • the transmittance of the electromagnetic shielding film is determined by the proportion of the metal grid portion ( ⁇ 5%), and the width of the wire grid is restricted by the trench (200 nm - 10 ⁇ m), and the transmittance can be >95%, shielding Fabrication of an electromagnetic shielding film with a performance greater than 60 dB;
  • the electromagnetic shielding film prepared by the film inversion technique is coated on the deposited and uncoated conductive substrate with a polyimide solution PI, and is thermally cured to form a film and then peeled off.
  • the thickness of the PI film is only a few micrometers. Tens of micrometers (5-15 ⁇ m).
  • the ultra-thin electromagnetic shielding film can be attached to a complicated structure surface of any shape to produce an electromagnetic shielding device having complicated shape requirements. At the same time, it has high temperature resistance;
  • the electromagnetic shielding film can be made by nano-imprinting technology, and the ultraviolet curing glue is applied on the deposited and uncoated conductive substrate, and the PET film is coated thereon and irradiated with an ultraviolet lamp. The UV adhesive is cured after irradiation and adhered to the PET substrate. After peeling off the PET and the conductive substrate, obtaining a metal mesh type electromagnetic shielding film embedded in the ultraviolet curing adhesive;
  • the electromagnetic shielding film can be made by hot stamping technology, covering the COC film on the deposited and de-bonded conductive substrate and applying a certain temperature (beyond the glass transition temperature of the COC film) And stress. After separating the COC film and the conductive substrate, an electromagnetic shielding film embedded in the interior of the COC is obtained;
  • the substrate may be, but not limited to, a flexible film such as PI, PET, PEN, COC or the like. Since the metal wire grid structure is embedded on the flexible substrate, the electromagnetic shielding effectiveness is less than 5% when the bending radius is less than 3 mm, and exhibits excellent scratch resistance.
  • Embodiment 1 Ultra-thin metal grid electromagnetic shielding film.
  • the production process is shown in Figure 1.
  • the layout of the metal grid structure can be designed, which can be a hexagonal, square, rectangular, parallelogram, triangle, etc., or any multi-deformation arrangement.
  • the grid width 300nm-10 ⁇ m
  • grid spacing (1-500 ⁇ m)
  • other parameters Etc., the pattern (laser direct writing, UV exposure, electron beam exposure, etc.) technology in the coating of photoresist
  • a patterned grid structure is formed on the conductive substrate.
  • the patterned conductive substrate is placed in the cathode of the electrodeposition bath, and the anode is placed with a metal material (nickel, copper, gold, aluminum, silver, etc.) to be deposited.
  • the deposition of the electrode is selected by electrodeposition, and the metal on the anode is gradually deposited on the cathode by cation. In the upper conductive grid trench, an electrodeposited layer is not formed in the region covered by the photoresist.
  • the sidewall of the photoresist trench on the conductive substrate has a certain depth (200 nm - 10 ⁇ m), then the deposition process of the cation is confined in the conductive trench of 300 nm - 10 ⁇ m, the shape and the line width and the gate trench The shape is the same as the line width.
  • the deposition thickness (300 nm - 3 ⁇ m) of the metal material can be controlled by controlling the current intensity (500 mA - 20 A) attached to the electrode, the deposition time (20 - 4000 s), the distance between the cathode and the anode (20 - 300 mm), and the like.
  • the conductive substrate on which the metal mesh layer is deposited is then placed in a degumming solution to remove the photoresist on the conductive substrate, leaving only the metal grid deposited on the conductive substrate.
  • the PI polyimide solution is coated on the conductive substrate, thermally cured to form a film, and then peeled off to obtain an ultra-thin metal grid electromagnetic shielding film.
  • the thickness of the PI film can be adjusted depending on the coating method (spin coating, casting, doctor coating, etc.), and the thickness of the PI film is only a few micrometers to several ten micrometers (5-15 ⁇ m).
  • 2a, 2b are top and side views of the shielding film produced in this manner. Since the metal grid structure 1 is embedded in the ultra-thin PI film 2, the shielding film can withstand a bend having a radius of less than 20 ⁇ m.
  • the metal material of the electromagnetic shielding film is excellent conductors such as nickel, copper, gold, aluminum, silver, etc.
  • the cloth may be square, and in other embodiments may be a periodic and aperiodic arrangement of hexagons, rectangles, and the like.
  • the ultra-thin electromagnetic shielding film can be attached to a complicated structure surface of any shape to produce an electromagnetic shielding device having complicated shape requirements.
  • Embodiment 2 A metal mesh type electromagnetic shielding film embedded in a UV curing adhesive.
  • a metal grid structure is formed by a selective electrodeposition process on a conductive substrate.
  • the line width (300nm-10 ⁇ m) of the metal grid, the grid spacing (10-500 ⁇ m), and the thickness of the metal deposition layer (300nm-10 ⁇ m) are formed.
  • the UV curable adhesive is then applied to the deposited and stripped conductive substrate, and the PET film is overlaid thereon and irradiated with an ultraviolet lamp.
  • the UV curable adhesive is cured by light irradiation and adhered to the PET substrate.
  • the metal grid 4 is embedded in the ultraviolet curable adhesive 5 to form an electromagnetic shielding film, as shown in FIG.
  • the transmittance of the electromagnetic shielding film is determined by the proportion of the metal grid portion ( ⁇ 5%), and the width of the wire grid is restricted by the groove (300 nm - 10 ⁇ m), and the transmittance of the electromagnetic shielding film can be achieved > 95%, shielding effectiveness is greater than 60dB.
  • the conductive substrate used may be a flexible or rigid substrate, and when a flexible conductive substrate (flexible metal plate, metalized flexible film, etc.) is used, the metal mesh structure is transferred to the PET substrate,
  • a flexible conductive substrate flexible metal plate, metalized flexible film, etc.
  • the roll-to-roll nano-imprint method is more suitable for the production of electromagnetic shielding films with large-format, high transmittance and high shielding effectiveness.
  • Embodiment 3 Embedded electromagnetic shielding film.
  • a metal grid structure is formed by a selective electrodeposition process on a conductive substrate.
  • the line width (300nm-10 ⁇ m) of the metal grid, the grid spacing (10-500 ⁇ m), and the thickness of the metal deposition layer (300nm-10 ⁇ m) are formed.
  • the COC film is then overlaid onto the deposited and stripped conductive substrate and a temperature (more than the glass transition temperature of the COC film) and pressure is applied.
  • the metal grid is embedded inside the COC film by hot stamping technology. After separating the COC film and the conductive substrate, an electromagnetic shielding film embedded inside the COC is obtained.
  • Embodiment 4 Hollow metal grid electromagnetic shielding film.
  • a metal grid structure is formed by a selective electrodeposition process on a conductive substrate.
  • the line width (1-10 ⁇ m) of the metal grid and the grid spacing (1-500 ⁇ m) can be formed.
  • the thickness of the metal grid is more than 1 ⁇ m. ⁇
  • the empty metal grid 6 can be embedded in the middle of the two glass or attached to the glass 7 to form an electromagnetic shielding window, as shown in Figures 4a, b.
  • the hollow metal grid 6 can be composited on the mold surface 8 (concave, convex and irregular shapes, etc.) of any other shape by a solvent-based adhesive layer to form a special-shaped electromagnetic shielding device.
  • the layout of the metal wire grid can be designed, for example, a polygonal arrangement of a non-periodic structure, a random arrangement of uniform directions in each direction, and the like.
  • FIG. 5 is a schematic structural diagram of a non-periodic polygon sequence. At this time, the high-order diffracted light is eliminated, and only the zero-order transmitted light can reduce the influence on the image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种电磁屏蔽膜的制作方法,其包括以下步骤:1)在导电基板上涂布光刻胶,然后通过光刻工艺在导电基板上形成图形结构;2)通过选择性电沉积工艺在图形结构中生长金属层,形成金属图形结构;3)通过压印工艺将金属图形结构镶嵌至柔性基底材料内,形成电磁屏蔽膜。本发明还包括一种电磁屏蔽窗的制作方法。本发明具有高透明度、耐温性好的优点,可以满足光学窗对高屏蔽性能、高成像质量、耐温性高的电磁屏蔽膜的要求、柔性电子对电磁屏蔽薄膜弯折性能的需求以及复杂结构表面贴合对屏蔽膜超薄性的要求。

Description

电磁屏蔽膜及电磁屏蔽窗的制作方法
本申请要求于2016年06月14日提交中国专利局、申请号为201610412201.1、发明名称为“电磁屏蔽膜及电磁屏蔽窗的制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种薄膜制作技术,具体涉及一种电磁屏蔽膜及电磁屏蔽窗的制作方法。
背景技术
随着现代电子工业日新月异的发展,电子类产品及无线通讯设备得以大众化应用,使电子波的应用波段不断扩展,同时强度进一步增加,使空间电磁环境日益复杂。电磁辐射污染已经被越来越多的关注,电磁波不仅干扰各种电子设备的正常运行,同时会威胁通讯设备的信息安全,严重时还会对人类的身体健康产生危害。为防止电磁波泄露,造成电磁危害,目前主要采用电磁屏蔽材料对电磁波进行屏蔽。
在不同的应用领域,对电磁屏蔽的效能提出了不同的要求。工业或商用电子设备,对屏蔽效能的要求一般在30-60dB;用于阴极管射线显示器CRT的透明电磁屏蔽材料中,要求其方阻小于300欧/方,对应电磁屏蔽效能大于30dB;而在等离子显示器PDP光学透明屏蔽材料中,就要求其表面方阻不超过2.5欧/方,对应电磁屏蔽效能大于70dB。目前,基于金属网栅的电磁屏蔽方案,可以实现较好的电磁屏蔽效果和一定的光学透过率。
随着科学技术的发展,尤其是航天航空装备等领域对光学窗等透明光学器件提出了更高的电磁屏蔽的要求。电磁屏蔽材料在微波频段的屏蔽效能要达到60-90dB,才能适用于航空航天及军用仪器设备的屏蔽,但同时要求光学透光率超过95%。要求兼顾高透光率、高屏蔽效能、耐温性好以及对光学成像质量的影响小。
中国专发明利200610084149.8“电磁波屏蔽薄膜及其制造方法”采用真空溅射镀金属层,然后利用电解电镀工艺实现金属层的加厚,通过光刻工艺形成金属网状图案的电磁屏蔽薄膜。其中金属网的金属线径在30um,金属层厚度在3.5um。
中国发明专利201410745168.5“一种金属丝网透明电磁屏蔽层材料制备方法”采用金属丝网与PET膜复合制作电磁屏蔽层。丝网的平均直径在35μm,间距在300μm,可实现透过率50%,电磁屏蔽效能25-46dB的透明电磁屏蔽膜。
中国发明专利201010533228.9“一种透明导电膜及其制作方法”描述了一种基于纳米压印和纳米涂布的方法实现的透明导电膜,通过纳米压印形成沟槽,在沟槽中填充纳米导电材料,再烧结形成高性能导电膜,可用于制作电磁屏蔽薄膜。在纳米导电材料烧结过程中,有机溶剂挥发,使导电材料中的金属颗粒聚集形成导电网栅结构。该方案中导电材料为低温烧结,金属颗粒间接触电阻较大,使网栅结构导电性受到影响(导电性能低于沉积形成的网栅),从而影响该方案制作薄膜的电磁屏蔽性能。
中国发明专利201410464874.2“基于微金属网格的电磁屏蔽罩及其制备方法”通过导电浆料填充技术,形成导电网栅结构,然后采用电铸沉积微金属网格,最后把金属网格剥离形成镂空结构,并延压至凹形模具上制作电磁屏蔽罩。利用刮涂技术形成导电网络图案时,受制于导电浆料的粒径影响,网栅沟槽线宽一般在5μm以上。并且该方案制作电磁屏蔽罩中微金属网格为凸起结构。
中国发明专利200810063988.0“一种具有双层方格金属网栅结构的电磁屏蔽光学窗”,提出采用结构参数相同的双层金属网栅平行放置于透明衬底两侧构成电磁屏蔽光学窗,可保证不降低透射率的同时,提高电磁屏蔽效率。中国专利201410051541.7“基于三角分布相切圆环及内切子圆环阵列的电磁屏蔽光窗”,中国专利201410052260.3“基于多周期金属圆环二维正交嵌套阵列的电磁屏蔽光窗”等采用特殊设计的圆环图案实现金属网栅型光学屏蔽窗,目的是消除金属网栅 的高级次衍射光对成像质量及探测结果的影响。金属网栅的制作采用真空溅射、掩膜曝光及刻蚀等工艺完成。但以上技术的制作均用真空镀膜和刻蚀设备等,线宽很难低于30μm。
对于金属丝网与PET复合的工艺而言,金属线径一般高于几十微米,难以实现高透光率电磁屏蔽膜,而以光刻和刻蚀工艺制作金属网栅屏蔽膜,为了实现高屏蔽效能,一般在刻蚀工艺获得金属网栅后,还需通过化学镀或电镀工艺增厚金属网栅层。此时,沉积的金属层属于“自由生长”,造成网栅线径严重展宽,影响光学透光率。该工艺过程中需要真空镀膜工艺,蚀刻工艺复杂,生产成本较高,不适合规模生产对低成本的要求。且基于金属网栅制作的电磁屏蔽薄膜,采用金属网栅与柔性基材复合,通常获得的屏蔽薄膜厚度大于50um。这使得难以把该屏蔽薄膜贴合到复杂结构表面,尤其是对需要堆叠多层微尺度薄膜的情形,会产生诸多缺陷。同时,在诸多电磁屏蔽的应用环境中,对薄膜的耐温性也有苛刻要求,比如达到200度。另外,在应用于可穿戴电子、智能手机、超薄笔记本电脑等设备时,要求屏蔽膜的弯折半径小于5mm。以往金属网栅结构是贴附在柔性基底的表面,在此弯折半径下,金属网栅结构易与柔性基底分离,难以满足在柔性电子领域的应用需求。
发明内容
为了解决上述技术问题,本发明提供了一种高透明度、耐温性好的电磁屏蔽膜及电磁屏蔽窗的制作方法,可以满足光学窗对高屏蔽性能、高成像质量、耐温性高的电磁屏蔽膜的要求、柔性电子对电磁屏蔽薄膜弯折性能的需求(弯折半径小于5mm)以及复杂结构表面贴合对屏蔽膜超薄性的要求(屏蔽膜厚度仅为几个微米)。
为了达到上述目的,本发明的技术方案如下:
电磁屏蔽膜的制作方法,其包括以下步骤:
1)在导电基板上涂布光刻胶,然后通过光刻工艺在导电基板上 形成图形结构;
2)通过选择性电沉积工艺在图形结构中生长金属层,形成金属图形结构;
3)通过压印工艺将金属图形结构镶嵌至柔性基底材料内,形成电磁屏蔽膜。
进一步地,上述的步骤3)中,具体为:将聚酰亚胺溶液涂布于导电基板上,经热固化成膜后剥离,形成电磁屏蔽膜。
可选地,上述的步骤3)中,具体为:把紫外固化胶涂布于导电基板上,并把PET薄膜覆于其上,并用紫外灯照射,紫外固化胶经照射后固化,并粘附在PET薄膜上,把PET薄膜与导电基板剥离后,获得电磁屏蔽膜。
可选地,上述的步骤3)中,具体为:把COC薄膜覆盖于导电基板上,并对其施加温度和压力,把COC薄膜和导电基板分离后,获得电磁屏蔽膜。
进一步地,在上述的步骤2)和3)之间还设有步骤21):将具有金属图形结构的导电基板置于去胶液中,将导电基板上除开金属图形结构之外的其他区域上的光刻胶去除。
进一步地,上述的图形结构为网栅结构。
进一步地,上述的网栅结构为周期排布或非周期排布。
进一步地,上述的导电基板为柔性基板或刚性基板。
电磁屏蔽窗的制作方法,其包括以下步骤:
1)在导电基板上涂布光刻胶,然后通过光刻工艺在导电基板上形成图形结构;
2)通过选择性电沉积工艺在图形结构中生长金属层,形成金属图形结构;
3)将具有金属图形结构的导电基板嵌入两片玻璃中间形成电磁屏蔽窗,或者将具有金属图形结构的导电基板附着在一片玻璃上形成电磁屏蔽窗。
进一步地,上述的具有金属图形结构的导电基板还通过溶剂型胶 层复合在模具的表面进行成型。
本发明提出通过光刻技术(激光直写及紫外曝光)、选择性电沉积工艺以及纳米压印技术(热压印、膜反转技术)实现磁屏蔽薄膜。该电磁屏蔽薄膜包括线宽在300nm-10μm、网栅间距在1μm-500μm的金属网栅结构层,该金属网栅层的厚度在300nm-10μm,以及柔性衬底层,其中金属网栅结构层内嵌于柔性衬底中,也可内嵌于紫外固化胶层中,由紫外固化胶层粘附于柔性衬底层上。
采用本发明制作的透明电磁屏蔽膜及电磁屏蔽窗,由于金属网栅结构层由沉积过程生长形成,因此,其表面方阻仅为0.05-0.4欧/方,电磁屏蔽效能可达60dB以上。本发明金属层的沉积属于“约束生长”(约束在光刻胶形成的沟槽中),在获得较强屏蔽效能的同时,保证了高透光率,光学透过率可超过95%。本发明采用聚酰亚胺PI材料,形成柔性衬底,制作嵌入式金属网栅型电磁屏蔽膜,除了具备优异的光学透射特性、较低的表面方阻外,突出特点是:由于微米-纳米级的金属网栅内嵌于PI柔性基底或者固化胶内部,而不是粘附在表面,因此,不容易被污染刮伤,且在弯折半径小于3mm的情形下,屏蔽膜性能的衰减小于5%,耐温可达200度。
本发明与现有技术相比还具有以下优点:
1)本发明提出的利用膜反转工艺制作的电磁屏蔽薄膜,PI薄膜厚度仅为几至十几微米,可实现超薄型电磁屏蔽薄膜;
2)本发明提出的利用选择性电沉积制作电磁屏蔽膜,可制作线宽在几百纳米到微米的金属网栅结构,由于该金属网栅为沉积形成,保证电磁屏蔽膜的高透光性(大于95%)同时,实现高屏蔽效能(大于60dB);
3)采用纳米压印技术或者热压印技术把金属网栅内嵌于固化胶或基底材料的沟槽之中,而不是粘附在表面,可实现弯折半径小于3mm的电磁屏蔽薄膜,并且表面不容易被污染刮伤;
4)与已有技术相比,本发明制作的柔性高透明度电磁屏蔽膜,不涉及真空蒸镀工艺,可使制作成本更低、效率更高。
附图说明
图1为本发明的电磁屏蔽膜的流程示意图。
图2a为本发明一具体实施方式中电磁屏蔽膜的俯视图。
图2b为本发明一具体实施方式中电磁屏蔽膜的侧视图。
图3为本发明另一具体实施例中电磁屏蔽薄膜的结构示意图。
图4a为本发明一具体实施例中电磁屏蔽窗的结构示意图。
图4b为本发明另一具体实施例中电磁屏蔽窗的结构示意图。
图4c为本发明一实施例中电磁屏蔽器件的结构示意图。
图5为本发明一具体实施例中具有非周期金属网栅的电磁屏蔽膜的结构示意图。
具体实施方式
下面结合附图详细说明本发明的优选实施方式。
本实施例的技术方案综合来说是:通过微纳加工技术将微金属网格嵌入在PI材料内部,柔性好、不易刮伤,耐温高、透明度好、电磁屏蔽效能强。具体技术设计:利用光刻技术(激光直写、紫外曝光、电子束曝光等技术),在导电基板上(金属、金属化柔性导电薄膜、ITO、FTO玻璃等导电性基材)形成网栅结构;用选择性电沉积工艺,在网栅结构中生长金属层(镍、铜、金等金属);利用纳米压印(热压印、膜反转技术)技术把金属网栅结构镶嵌至柔性基底材料内部,制得电磁屏蔽薄膜。
本实施例的技术方案具体来说如下:
1)导电基板上预设网栅制作:根据电磁屏蔽膜的性能要求(透光率、屏蔽效能、高衍射级次消光等),设计网栅结构的排布方式(六边形蜂窝状、正方形、平行四边形等周期排布、任意多边形非周期排布等),网栅的线宽(300nm-10μm),网栅间距(10μm-500μm)等参数,然后通过微纳米结构图形化(激光直写、紫外曝光、电子束曝 光等技术)技术在涂布光刻胶的导电基板上形成图形结构;
2)选择性沉积生长金属网栅层:图形化导电基板置于电沉积槽阴极,阳极放置需要沉积的金属材料,利用电沉积的选择沉积性,在显露导电基底的网栅沟槽部分有金属材料沉积,在光刻胶覆盖的区域不会形成电沉积层。通过控制附加在电极上的电流强度(500mA-50A)、沉积时间(20s-6000s)、阴极与阳极的距离(20mm-300mm)等等,可以控制金属材料的沉积厚度(300nm-10μm);
3)嵌入式金属网栅电磁屏蔽膜制作:把沉积金属网栅层的导电基底置于去胶液中,将导电基板上的光刻胶去除,只保留沉积在导电基底上的金属网栅。利用纳米压印技术(热压印、膜反转技术等),把导电基底上的金属网栅镶嵌于透明柔性基底内部,形成电磁屏蔽薄膜;
4)沉积层的厚度受通电时间、电流强度、电极间距的影响,且沉积层厚度越大,电导率越高。可通过调控电沉积的参数,控制沉积层的厚度(300nm-10μm)。电磁屏蔽薄膜的透过率由金属网栅部分占整部分的比例(<5%)决定,而线栅的宽度受沟槽的制约(200nm-10μm),可实现透过率>95%、屏蔽效能大于60dB的电磁屏蔽薄膜的制作;
5)采用膜反转技术制作的电磁屏蔽薄膜,用聚酰亚胺溶液PI涂布于沉积并去胶后的导电基底上,经热固化成膜后剥离,PI薄膜的厚度仅为几微米至十几微米(5-15μm)。该超薄型电磁屏蔽薄膜可贴合在任何形状的复杂结构表面,制作有复杂形貌要求的电磁屏蔽器件。同时具有耐高温特性;
6)电磁屏蔽薄膜可由纳米压印技术制作,把紫外固化胶涂布于沉积并去胶后的导电基底上,并把PET薄膜覆于其上,并用紫外灯照射。紫外胶经照射后固化,并粘附在PET衬底上。把PET与导电基底剥离后,获得镶嵌于紫外固化胶中的金属网栅型电磁屏蔽薄膜;
7)电磁屏蔽膜可由热压印技术制作,把COC薄膜覆盖于沉积并去胶后的导电基底上,并施加一定的温度(超过COC薄膜的玻璃化温度) 和压力。把COC薄膜和导电基底分离后,获得嵌入COC内部的电磁屏蔽薄膜;
8)衬底可以但不限于PI,PET,PEN,COC等柔性薄膜。由于金属线栅结构镶嵌于柔性基底上,在弯折半径小于3mm的情况下,电磁屏蔽效能衰减小于5%,并且表现出优异的抗刮擦性能。
具体到各个实施例如下:
实施例一:超薄金属网栅电磁屏蔽薄膜。制作流程如图1所示,首先根据屏蔽效能需要,设计金属网栅结构的排布方式,可以是六边形、正方形、长方形、平行四边形、三角形等周期排布,或者是任意多变形排布等,网栅的线宽(300nm-10μm),网栅间距(1-500μm)等参数,然后通过图形化(激光直写、紫外曝光、电子束曝光等技术)技术在涂布光刻胶的导电基板上形成图形化网栅结构。图形化导电基板置于电沉积槽阴极,阳极放置需要沉积的金属材料(镍、铜、金、铝、银等),利用电沉积的选择沉积性,阳极上的金属通过阳离子方式逐步沉积在阴极上的导电网栅沟槽中,在光刻胶覆盖的区域不会形成电沉积层。此时,导电基底上的光刻胶沟槽侧壁有一定深度(200nm-10μm),那么阳离子的沉积过程被约束在300nm-10μm的导电沟槽中,其形状与线宽与网栅沟槽的形状与线宽相同。通过控制附加在电极上的电流强度(500mA-20A)、沉积时间(20-4000s)、阴极与阳极的距离(20-300mm)等等,可以控制金属材料的沉积厚度(300nm-3μm)。随后把沉积金属网栅层的导电基底置于去胶液中,将导电基板上的光刻胶去除,只保留沉积在导电基底上的金属网栅。接着把PI聚酰亚胺溶液涂布于该导电基底上,经热固化成膜后剥离,获得超薄金属网栅电磁屏蔽薄膜。
根据涂布方式的不同(旋涂、流延、刮涂等),可调控PI薄膜的厚度,PI薄膜的厚度仅为几微米至十几微米(5-15μm)。图2a,2b为该方式制作屏蔽膜的俯视图和侧视图。由于金属网栅结构1内嵌于超薄的PI薄膜2之中,使该屏蔽膜可承受半径小于20μm的弯折。该电磁屏蔽薄膜的金属材料为镍、铜、金、铝、银等优良导体,网栅排 布可以为正方形,在其它实施方式中也可以是六边形、长方形等周期和非周期排布。该超薄型电磁屏蔽薄膜可贴合在任何形状的复杂结构表面,制作有复杂形貌要求的电磁屏蔽器件。
实施例二、镶嵌于紫外固化胶中的金属网栅型电磁屏蔽薄膜。按照实施例一种的制作流程,在导电基底上通过选择性电沉积工艺制作金属网栅结构。根据设计要求,形成金属网栅的线宽(300nm-10μm),网栅间距(10-500μm),金属沉积层厚度(300nm-10μm)。随后把紫外固化胶涂布于沉积并去胶后的导电基底上,并把PET薄膜覆于其上,并用紫外灯照射。紫外固化胶经光照射后固化,并粘附在PET衬底上3。把PET与导电基底剥离后,金属网栅4镶嵌于紫外固化胶中5形成电磁屏蔽薄膜,如图3所示。电磁屏蔽薄膜的透过率由金属网栅部分占整部分的比例(<5%)决定,而线栅的宽度受沟槽的制约(300nm-10μm),可实现电磁屏蔽薄膜的透过率>95%、屏蔽效能大于60dB。
在该实施方式中,使用的导电基底可以是柔性或者刚性基底,当使用柔性导电基底(柔性金属板、金属化的柔性薄膜等)时,金属网栅结构转移至PET衬底的过程中,可采用卷对卷的纳米压印方式,更适用于大幅面、高透光率、高屏蔽效能电磁屏蔽膜的制作。
实施例三、嵌入式电磁屏蔽薄膜。按照实施例一种的制作流程,在导电基底上通过选择性电沉积工艺制作金属网栅结构。根据设计要求,形成金属网栅的线宽(300nm-10μm),网栅间距(10-500μm),金属沉积层厚度(300nm-10μm)。随后把COC薄膜覆盖于沉积并去胶后的导电基底上,并施加一定的温度(超过COC薄膜的玻璃化温度)和压力。通过热压印技术,把金属网栅嵌入COC薄膜内部。把COC薄膜和导电基底分离后,获得嵌入COC内部的电磁屏蔽薄膜。
实施例四、镂空金属网栅电磁屏蔽薄膜。按照实施例一种的制作流程,在导电基底上通过选择性电沉积工艺制作金属网栅结构。根据设计要求,可形成金属网栅的线宽(1-10μm),网栅间距(1-500μm)。为使镂空金属网栅与导电基底分离,金属网栅的厚度要超过1μm。镂 空金属网栅6可嵌入两玻璃中间或附着在玻璃7上形成电磁屏蔽窗,如图4a、b所示。另外如图4c所示,该镂空金属网栅6可通过溶剂型胶层复合在其它任何形状的模具表面8(凹形,凸形及不规则形状等),形成特殊形状的电磁屏蔽器件。
基于实施方式一、实施方式二、实施方式三、实施方式四制作的金属网栅电磁屏蔽薄膜实现光学屏蔽窗时,由于金属线栅的线宽一般在微米甚至亚微米量级,该结构对可见光具有较强的衍射效应。透射光中零级衍射光与高级次衍射光并存。为消除高级次衍射光对成像和探测结果产生的干扰,可通过设计金属线栅的排布方式,例如采用非周期结构的多边形排列、各方向均匀的随机排列方式等。图5为非周期多边形序列的结构示意图。此时,高级次衍射光被消除,只有零级透射光,可降低对成像质量的影响。
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

  1. 电磁屏蔽膜的制作方法,其特征在于,包括以下步骤:
    1)在导电基板上涂布光刻胶,然后通过光刻工艺在所述导电基板上形成图形结构;
    2)通过选择性电沉积工艺在所述图形结构中生长金属层,形成金属图形结构;
    3)通过压印工艺将金属图形结构镶嵌至柔性基底材料内,形成电磁屏蔽膜。
  2. 根据权利要求1所述的电磁屏蔽膜的制作方法,其特征在于,所述步骤3)中,具体为:将聚酰亚胺溶液涂布于所述导电基板上,经热固化成膜后剥离,形成所述电磁屏蔽膜。
  3. 根据权利要求1所述的电磁屏蔽膜的制作方法,其特征在于,所述步骤3)中,具体为:把紫外固化胶涂布于所述导电基板上,并把PET薄膜覆于其上,并用紫外灯照射,所述紫外固化胶经照射后固化,并粘附在所述PET薄膜上,把所述PET薄膜与所述导电基板剥离后,获得所述电磁屏蔽膜。
  4. 根据权利要求1所述的电磁屏蔽膜的制作方法,其特征在于,所述步骤3)中,具体为:把COC薄膜覆盖于所述导电基板上,并对其施加温度和压力,把所述COC薄膜和所述导电基板分离后,获得所述电磁屏蔽膜。
  5. 根据权利要求1-4任一所述的电磁屏蔽膜的制作方法,其特征在于,在所述步骤2)和3)之间还设有步骤21):将具有所述金属图形结构的所述导电基板置于去胶液中,将所述导电基板上除开所述金属图形结构之外的其他区域上的光刻胶去除。
  6. 根据权利要求1所述的电磁屏蔽膜的制作方法,其特征在于,所述图形结构为网栅结构。
  7. 根据权利要求6所述的电磁屏蔽膜的制作方法,其特征在于,所述网栅结构为周期排布或非周期排布。
  8. 根据权利要求1所述的电磁屏蔽膜的制作方法,其特征在于,所述导电基板为柔性基板或刚性基板。
  9. 电磁屏蔽窗的制作方法,其特征在于,包括以下步骤:
    1)在导电基板上涂布光刻胶,然后通过光刻工艺在所述导电基板上形成图形结构;
    2)通过选择性电沉积工艺在所述图形结构中生长金属层,形成金属图形结构;
    3)将具有所述金属图形结构的所述导电基板嵌入两片玻璃中间形成电磁屏蔽窗,或者将具有所述金属图形结构的所述导电基板附着在一片玻璃上形成电磁屏蔽窗。
  10. 根据权利要求1所述的电磁屏蔽窗的制作方法,其特征在于,具有所述金属图形结构的所述导电基板还通过溶剂型胶层复合在模具的表面进行成型。
PCT/CN2017/084502 2016-06-14 2017-05-16 电磁屏蔽膜及电磁屏蔽窗的制作方法 WO2017215388A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/096,781 US20210227729A1 (en) 2016-06-14 2017-05-16 Manufacturing method for electromagnetic shielding film and electromagnetic shielding window

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610412201.1A CN106061218A (zh) 2016-06-14 2016-06-14 电磁屏蔽膜及电磁屏蔽窗的制作方法
CN201610412201.1 2016-06-14

Publications (1)

Publication Number Publication Date
WO2017215388A1 true WO2017215388A1 (zh) 2017-12-21

Family

ID=57170759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/084502 WO2017215388A1 (zh) 2016-06-14 2017-05-16 电磁屏蔽膜及电磁屏蔽窗的制作方法

Country Status (3)

Country Link
US (1) US20210227729A1 (zh)
CN (1) CN106061218A (zh)
WO (1) WO2017215388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000942A1 (zh) * 2018-06-25 2020-01-02 中国科学院深圳先进技术研究院 一种透明柔性可拉伸的电磁屏蔽薄膜及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622881A (zh) * 2016-11-08 2017-05-10 惠州智科实业有限公司 一种石墨烯散热屏蔽罩的制造方法
CN106659107B (zh) * 2017-03-01 2021-12-03 索曼电子(深圳)有限公司 一种纳米压印屏蔽玻璃及其制作方法
CN110158025B (zh) * 2018-05-31 2021-01-26 京东方科技集团股份有限公司 掩膜板的制作方法及掩膜板
CN108983471A (zh) * 2018-08-01 2018-12-11 广东创捷智能科技有限公司 一种防护电磁信息泄露的显示设备
CN109089406A (zh) * 2018-10-18 2018-12-25 吴江友鑫新材料科技有限公司 一种内陷式透明金属网格电磁屏蔽膜及其制备方法
CN111148418A (zh) * 2018-11-05 2020-05-12 苏州大学 一种屏蔽膜及其制造方法
CN109652774B (zh) * 2018-12-06 2020-07-28 天津津航技术物理研究所 内嵌式金属网栅的电磁屏蔽光学窗制备方法
CN109996431B (zh) * 2019-05-05 2023-11-10 江苏铁锚玻璃股份有限公司 高性能屏蔽玻璃及其制备方法
CN109996432A (zh) * 2019-05-07 2019-07-09 苏州麦田光电技术有限公司 一种全嵌入式金属网栅电磁屏蔽薄膜与制作方法
CN110565123B (zh) * 2019-08-28 2021-06-08 清华大学 可转移的透明柔性透气天线的制作方法及装置
CN110708650A (zh) * 2019-08-29 2020-01-17 北京邮电大学 助听器电磁干扰屏蔽膜
CN111565554B (zh) * 2020-06-10 2022-05-24 北京环境特性研究所 一种多光谱透明微波吸收材料及其制备方法
FR3113217B1 (fr) * 2020-07-30 2022-10-28 Oledcomm Dispositif d’isolation intégré dans un équipement de communication optique sans fil
CN112590224A (zh) * 2020-11-25 2021-04-02 浙江水晶光电科技股份有限公司 一种电磁屏蔽盖板的制备方法
CN117479521B (zh) * 2023-12-27 2024-05-28 江苏赛博空间科学技术有限公司 一种透波材料电磁屏蔽结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193239A (ja) * 2002-12-10 2004-07-08 Micro Gijutsu Kenkyusho:Kk 電磁波シールドパネルの製造方法及び電磁はシールドパネル
CN101222840A (zh) * 2008-02-04 2008-07-16 哈尔滨工业大学 一种具有双层方格金属网栅结构的电磁屏蔽光学窗
CN105335034A (zh) * 2015-12-08 2016-02-17 深圳市博世知识产权运营有限公司 金属网格单膜双面电容屏功能片及其制作方法
CN105489784A (zh) * 2015-12-09 2016-04-13 苏州大学 柔性导电电极的制备方法及该方法制备的电极及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281290A (ja) * 2006-04-10 2007-10-25 Sumitomo Osaka Cement Co Ltd 電磁波遮蔽膜付き透明基材とその製造方法及び製造装置
CN103120042B (zh) * 2010-06-23 2016-03-23 印可得株式会社 电磁波屏蔽膜的制备方法及由其制备的电磁波屏蔽膜
CN102280163B (zh) * 2011-05-20 2013-01-16 西北工业大学 一种红外透明导电薄膜及其制备方法
CN104600207B (zh) * 2015-01-27 2017-02-01 中国科学院长春应用化学研究所 透明电极及其制备方法与应用
CN104883866A (zh) * 2015-05-12 2015-09-02 苏州城邦达力材料科技有限公司 一种具有良好导热性的电磁屏蔽膜及其制造工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193239A (ja) * 2002-12-10 2004-07-08 Micro Gijutsu Kenkyusho:Kk 電磁波シールドパネルの製造方法及び電磁はシールドパネル
CN101222840A (zh) * 2008-02-04 2008-07-16 哈尔滨工业大学 一种具有双层方格金属网栅结构的电磁屏蔽光学窗
CN105335034A (zh) * 2015-12-08 2016-02-17 深圳市博世知识产权运营有限公司 金属网格单膜双面电容屏功能片及其制作方法
CN105489784A (zh) * 2015-12-09 2016-04-13 苏州大学 柔性导电电极的制备方法及该方法制备的电极及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020000942A1 (zh) * 2018-06-25 2020-01-02 中国科学院深圳先进技术研究院 一种透明柔性可拉伸的电磁屏蔽薄膜及其制备方法

Also Published As

Publication number Publication date
US20210227729A1 (en) 2021-07-22
CN106061218A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2017215388A1 (zh) 电磁屏蔽膜及电磁屏蔽窗的制作方法
JP5283926B2 (ja) 光透過型金属電極およびその製造方法
JP5714731B2 (ja) パターン付けされた柔軟性の透明な導電性シート及びその製造方法
JP5308782B2 (ja) 周波数選択型の電磁波シールド材の製造方法、及びそれを用いた電磁波吸収体
CN103155725B (zh) 图案基板、图案基板的制造方法、信息输入装置和显示装置
CN106782741A (zh) 一种基于纳米压印的柔性透明导电膜及其制备方法
TWI506497B (zh) 單層觸控屏及其製造方法
CN108848660B (zh) 一种电磁屏蔽膜及其制作方法
CN106159040A (zh) 一种全湿法制备柔性金属网络透明电极的方法
CN105489784B (zh) 柔性导电电极的制备方法及该方法制备的电极及其应用
Chung et al. High-performance flexible transparent nanomesh electrodes
CN104966588B (zh) 一种制备纳米级金属网格透明导电薄膜的方法
CN113470890B (zh) 一种透明导电薄膜结构及其制作方法
Wang et al. Transparent conductor based on metal ring clusters interface with uniform light transmission for excellent microwave shielding
WO2020149113A1 (ja) 透明導電性フィルム
CN107610814A (zh) 一种基于超薄金属网格的透明电极及其制备方法
Fan et al. Direct metallic nanostructures transfer by flexible contact UV-curable nano-imprint lithography
KR20160145501A (ko) 나노 구조물을 이용한 전자파 차폐 소재
EP3683809B1 (en) Embedded-type transparent electrode substrate and method for manufacturing same
Chung et al. Ag paste-based nanomesh electrodes for large-area touch screen panels
CN109922645B (zh) 透明电磁屏蔽薄膜结构及其制备方法
WO2020063272A1 (zh) 一种超薄复合透明导电膜及其制备方法
CN101825842A (zh) 一种制作纳米压印印章的方法
WO2021017202A1 (zh) 电子设备及其盖板
KR20150035346A (ko) 투명전극 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17812499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17812499

Country of ref document: EP

Kind code of ref document: A1