CN102297854A - High-efficiency multi-mode laser-induced fluorescence optical path exciting system - Google Patents
High-efficiency multi-mode laser-induced fluorescence optical path exciting system Download PDFInfo
- Publication number
- CN102297854A CN102297854A CN2011101345354A CN201110134535A CN102297854A CN 102297854 A CN102297854 A CN 102297854A CN 2011101345354 A CN2011101345354 A CN 2011101345354A CN 201110134535 A CN201110134535 A CN 201110134535A CN 102297854 A CN102297854 A CN 102297854A
- Authority
- CN
- China
- Prior art keywords
- wave plate
- excited
- optical path
- light
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 44
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 title claims abstract description 11
- 230000010287 polarization Effects 0.000 claims abstract description 43
- 230000005284 excitation Effects 0.000 claims abstract description 36
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims description 25
- 238000009434 installation Methods 0.000 claims description 11
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical compound C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供一种高效多模态激光诱导荧光光路激发系统,包括激光发射装置、被激发装置、分光装置、光电转换装置以及信号处理装置,其特征在于,在所述激光发射装置的发出光束经准直后的光路上、所述发射光束经偏振分光后的光路上或所述发射光束经多个偏振光分为多束光后的分光光路上设置有1/2波片。本发明所提供的激发系统可以使得激发光的偏振态和被激发系统的偏振选择性方向一致,同等功率下能使得激发的拉曼荧光信号强度提高20%~50%,当原有偏振态匹配性较差的时候,能够提升50%~80%甚至更高。
The present invention provides a high-efficiency multi-mode laser-induced fluorescence optical path excitation system, which includes a laser emitting device, an excited device, a spectroscopic device, a photoelectric conversion device and a signal processing device, and is characterized in that the emitted light beam of the laser emitting device passes through A 1/2 wave plate is arranged on the optical path after collimation, the optical path after the emitted beam is polarized and split, or the splitted optical path after the emitted beam is divided into multiple beams by multiple polarized lights. The excitation system provided by the present invention can make the polarization state of the excitation light consistent with the polarization selectivity direction of the excited system, and can increase the intensity of the excited Raman fluorescence signal by 20% to 50% under the same power. When the original polarization state matches When the resistance is poor, it can be increased by 50% to 80% or even higher.
Description
技术领域 technical field
本发明涉及一种荧光诱导装置,具体涉及到一种高效多模态激光诱导荧光光路激发系统。 The invention relates to a fluorescence induction device, in particular to a high-efficiency multi-mode laser-induced fluorescence optical path excitation system. the
背景技术 Background technique
激光诱导荧光光路激发系统主要应用于蛋白质、DNA等生物分析和检测领域,以及大分子团有机化学的光谱分析仪器设备。 The laser-induced fluorescence optical path excitation system is mainly used in the fields of protein, DNA and other biological analysis and detection, as well as spectral analysis instruments and equipment for organic chemistry of macromolecular groups. the
如图1所示,其光路装置的基本原理和结构为:激光器1产生激光光束,经过滤光片2后,经过会聚透镜3会聚,进入由由入射窗口4、装载被激发物质的容器5、被激发物质6、出射窗口7组成的被激发系统,被激发物质6吸收激光能量后,能级跃迁发出荧光或拉曼光8,经过由准直透镜组9、分光元件10、成像透镜组11等部分组成的分光系统来分光,不同波长的光谱12按照空间位置分离,聚焦成像到光电传感器13上,经光电转化后,获得的一定信噪比的电信号,传输到后端系统进行分析处理。
As shown in Figure 1, the basic principle and structure of its optical path device are:
其中,激光器1指多模态激光器装载被激发物质的容器5通常是透明材质的石英、有机玻璃等等,材质要求对被激发出来的有效荧光信号或拉曼光信号的光谱较好地透过。光电传感器13是弱光信号传感器,通常有光电倍增管、CCD或者光电二极管。被激发物质6通常有DNA、蛋白质、大分子有机化学物质或者可均匀悬浮在液体中的待检测物质等等。
Among them, the
本发明专利中提高的激光诱导荧光装置通常有以下2种型式:共聚焦光路结构型式和正交光路结构型式。共聚焦结构型式的技术特点是:激发光路和检测光路的光轴方向相同。正交结构型式技术特点是:激光入射方向与荧光检测方向垂直或者成0~90°之间的某个角度。 The laser-induced fluorescence device improved in the patent of the present invention usually has the following two types: confocal optical path structure type and orthogonal optical path structure type. The technical characteristics of the confocal structure type are: the direction of the optical axis of the excitation light path and the detection light path are the same. The technical characteristics of the orthogonal structure type are: the laser incident direction is perpendicular to the fluorescence detection direction or forms an angle between 0° and 90°. the
这两种型式的光路,都受光源偏振性和被激发系统偏振性对激发效率的影响:激光器发出的激光,通常具有一定的偏振状态(偏振方向),而被激发系统(尤其是大分子有机化合物质、晶体材料制作的承载容器)通常也有一定的偏 振方向选择性,如果两种偏振性不一致,被激发物质的吸收效率将不同程度的降低,由此激发出来的荧光或拉曼光信号强度将达不到最高激发效果。 These two types of optical paths are affected by the polarization of the light source and the polarization of the excited system on the excitation efficiency: the laser light emitted by the laser usually has a certain polarization state (polarization direction), while the excited system (especially the macromolecular organic Compound substances, holding containers made of crystal materials) usually have a certain polarization direction selectivity. If the two polarizations are inconsistent, the absorption efficiency of the excited substance will be reduced to varying degrees, and the fluorescence or Raman light signal excited by it will be reduced to a certain extent. The intensity will not reach the maximum stimulating effect. the
激发出来的荧光或拉曼信号的强度通常比激发光要弱得多,例如荧光强度通常只有激发光强度的百分之一到万分之一强度,而拉曼光通常只有激发光强度的万分之一到百万分之一。因此,有效提升激发效率、提升信噪比,是激光诱导荧光检测系统的关键性能指标。 The intensity of the excited fluorescence or Raman signal is usually much weaker than that of the excitation light. For example, the intensity of fluorescence is usually only one percent to one ten thousandth of the intensity of the excitation light, and the Raman light is usually only ten thousandth of the intensity of the excitation light. One part to one millionth. Therefore, effectively improving the excitation efficiency and improving the signal-to-noise ratio are the key performance indicators of the laser-induced fluorescence detection system. the
通常试图消除这种偏振选择性的优化方法有两种: There are usually two optimization methods that try to eliminate this polarization selectivity:
第一种是通过设置特定波长的1/4波片,将线偏振光或椭圆偏振光经过调整至圆偏振光,从而降低偏振光对被激发系统的影响。其缺点是不能影响被激发系统4的偏振方向选择性,被激发系统4对符合其偏振选择方向的激光能量有较好的吸收,对偏振方向不一致的部分能量的吸收效率仍旧低。
The first is to adjust the linearly polarized light or elliptically polarized light to circularly polarized light by setting a 1/4 wave plate of a specific wavelength, thereby reducing the influence of polarized light on the excited system. Its disadvantage is that it cannot affect the polarization direction selectivity of the
第二种是精确测量激光光束的偏振方向,通过精密的结构调整方法,将被激发系统的偏振选择方向与激光光束的偏振方向一致。该种优化方法的难点是,对于多模态的激光器产品,其出射光束的偏振方向,以及同一个激光器装置的多种波长的偏振方向,并不总是一致的;同时,对于需要对激光器进行分束的光路设计中,当前技术条件下设计制造的偏振分光片总是只能对多模态激光器出射的多种波长当中的某一个特定波长的S光分量和P光分量精确进行分束。这种困难尤其体现在产品的批量生产中,设计人员对每一种情况进行单独设计制作以达到最优的情况缺乏可操作性。 The second is to accurately measure the polarization direction of the laser beam, and make the polarization selection direction of the excited system consistent with the polarization direction of the laser beam through a precise structural adjustment method. The difficulty of this optimization method is that for multi-mode laser products, the polarization directions of the outgoing beams and the polarization directions of multiple wavelengths of the same laser device are not always consistent; at the same time, for lasers that require In the beam splitting optical path design, the polarizing beam splitter designed and manufactured under the current technical conditions can only accurately split the S light component and the P light component of a specific wavelength among the various wavelengths emitted by the multi-mode laser. This difficulty is especially reflected in the mass production of products. Designers design and manufacture each situation individually to achieve the best situation, which lacks operability. the
发明内容 Contents of the invention
针对上述缺陷,本发明的目的是提供一种高效多模态激光诱导荧光光路激发系统,以解决现有技术的激光诱导荧光光路装置激发效率低的技术问题。 In view of the above defects, the purpose of the present invention is to provide a high-efficiency multi-mode laser-induced fluorescence optical path excitation system to solve the technical problem of low excitation efficiency of laser-induced fluorescence optical path devices in the prior art. the
为实现上述目的,本发明采用了以下的技术方案: To achieve the above object, the present invention adopts the following technical solutions:
一种高效多模态激光诱导荧光光路激发系统,包括激光发射装置、被激发装置、分光装置、光电转换装置以及信号处理装置,在所述激光发射装置的发出光束经准直后的光路上、所述发射光束经偏振分光后的光路上或所述发射光束经多个偏振光分为多束光后的分光光路上设置有1/2波片。 A high-efficiency multi-mode laser-induced fluorescence optical path excitation system includes a laser emitting device, an excited device, a spectroscopic device, a photoelectric conversion device, and a signal processing device. On the optical path after the beam emitted by the laser emitting device is collimated, A 1/2 wave plate is arranged on the optical path of the emitted beam after polarized splitting or the splitted optical path after the emitted beam is divided into multiple beams by multiple polarized lights. the
依照本发明较佳实施例所述的激发系统,所述激光发射装置为多模态激光器,其发射光线经一滤光片滤光后,经过第一反射镜改变光路方向再经一偏振 分光片分光,分光后的部分光线经过第二反射镜反射后射入所述被激发装置一侧,另一部分光线经两个对应的第三、第四反射镜后从所述被激发装置另一侧射入,两股光路激发所述被激发装置中的被激发物质发出荧光或拉曼光,经分光装置聚焦到所述光电转换装置,获得电信号传输到所述信号处理装置,在所述偏振分光片和所述第二反射镜之间,以及所述第三、第四反射镜之间都设置有1/2波片。 According to the excitation system described in the preferred embodiment of the present invention, the laser emitting device is a multi-mode laser, and the emitted light is filtered by a filter, then passes through a first reflector to change the direction of the optical path, and then passes through a polarizing beam splitter Light splitting, part of the light after splitting is reflected by the second reflector and then enters one side of the excited device, and the other part of the light is emitted from the other side of the excited device after passing through two corresponding third and fourth reflectors In, the two optical paths excite the excited substance in the excited device to emit fluorescence or Raman light, which is focused to the photoelectric conversion device by the spectroscopic device, and the obtained electrical signal is transmitted to the signal processing device. A 1/2 wave plate is arranged between the plate and the second reflection mirror, and between the third and fourth reflection mirrors. the
依照本发明较佳实施例所述的激发系统,所述1/2波片用于调整所述激光发射装置的激发光束特定波长的偏振模式,使得光束的偏振方向与所述被激发装置的偏振选择性方向一致。 According to the excitation system described in a preferred embodiment of the present invention, the 1/2 wave plate is used to adjust the polarization mode of the specific wavelength of the excitation beam of the laser emitting device, so that the polarization direction of the beam is consistent with the polarization of the excited device selectivity in the same direction. the
依照本发明较佳实施例所述的激发系统,所述被激发装置进一步包括一设置有透明窗口的容器,该容器内容置有被激发物质。 According to the excitation system described in the preferred embodiment of the present invention, the excited device further includes a container provided with a transparent window, and the excited substance is contained in the container. the
依照本发明较佳实施例所述的激发系统,所述第四反射镜与所述被激发装置之间,以及所述第二反射镜和所述被激发装置之间各设置有一会聚透镜。 According to the excitation system described in the preferred embodiment of the present invention, a converging lens is respectively arranged between the fourth reflecting mirror and the excited device, and between the second reflecting mirror and the excited device. the
依照本发明较佳实施例所述的激发系统,所述分光装置包括准直透镜组、光栅以及成像透镜组,所述准直透镜组设置在所述被激发装置的出光方向经过光栅调整后光线射入所述成像透镜组聚焦后成像到所述光电转换装置。 According to the excitation system described in the preferred embodiment of the present invention, the spectroscopic device includes a collimating lens group, a grating, and an imaging lens group, and the collimating lens group is arranged in the light emitting direction of the excited device after the light is adjusted by the grating After entering the imaging lens group and focusing, the image is imaged to the photoelectric conversion device. the
依照本发明较佳实施例所述的激发系统,所述1/2波片安装在一波片安装调整装置上,所述波片安装调整装置包括安装座、安装在所述安装座上设置有转轮的安装架、用来锁紧所述安装架的波片架紧锁圈以及波片压环,所述1/2波片通过所述波片压环和若干个垫圈设置在所述安装架上。 According to the excitation system described in a preferred embodiment of the present invention, the 1/2 wave plate is installed on a wave plate installation and adjustment device, and the wave plate installation and adjustment device includes a mounting base, and is installed on the mounting base to be provided with The mounting frame of the runner, the wave plate frame locking ring used to lock the mounting frame and the wave plate pressure ring, the 1/2 wave plate is arranged on the mounting plate through the wave plate pressure ring and several washers on the shelf. the
由于采用了以上的技术特征,使得本发明相比于现有技术,具有如下的优点和积极效果: Owing to adopting above technical characterictic, make the present invention compare with prior art, have following advantage and positive effect:
本发明通过在多模态激光的光路中,在对单光束激发的情形下准直之后的光路上任何位置、对激光束经过偏振分光片分光之后的情形下分光后的光路上的任何位置或对激光束经过多个偏振分光片分为多束光的情形下分光后的光路上的任何位置,设置若干片1/2波片来调整激发光束特定波长的偏振模式(见附图五),从而使得激发光的偏振态和被激发系统的偏振选择性方向一致,同等功率下能使得激发的拉曼荧光信号强度提高20%~50%,当原有偏振态匹配性较差的时候,能够提升50%~80%甚至更高。 In the optical path of the multi-mode laser, any position on the optical path after collimation in the case of excitation of a single beam, any position on the optical path after splitting of the laser beam through a polarization beam splitter, or For any position on the optical path after the laser beam is divided into multiple beams through multiple polarization beam splitters, several 1/2 wave plates are set to adjust the polarization mode of the specific wavelength of the excitation beam (see Figure 5), Therefore, the polarization state of the excitation light is consistent with the polarization selectivity direction of the excited system, and the intensity of the excited Raman fluorescence signal can be increased by 20% to 50% under the same power. When the original polarization state matching is poor, it can Increase by 50% to 80% or even higher. the
附图说明 Description of drawings
图1是激光诱导荧光装置基本原理结构图; Figure 1 is a schematic diagram of the basic principle of the laser-induced fluorescence device;
图2是1/2波片偏振原理图; Figure 2 is a schematic diagram of 1/2 wave plate polarization;
图3是本发明提供的波片安装调整装置分解图; Figure 3 is an exploded view of the wave plate installation and adjustment device provided by the present invention;
图4是本发明一种实施例的架构图。 Fig. 4 is a structure diagram of an embodiment of the present invention. the
具体实施方式 Detailed ways
以下结合附图对本发明的几个优选实施例进行详细描述,但本发明并不仅仅限于这些实施例。本发明涵盖任何在本发明的精髓和范围上做的替代、修改、等效方法以及方案。为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。 Several preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention is not limited to these embodiments. The present invention covers any alternatives, modifications, equivalent methods and schemes made on the spirit and scope of the present invention. In order to provide the public with a thorough understanding of the present invention, specific details are set forth in the following preferred embodiments of the present invention, but those skilled in the art can fully understand the present invention without the description of these details. the
本发明的核心思想在于:通过在多模态激光的光路中,在合适的位置,设置合适的波片装置(一片或者多片)来调整激发光束特定波长的偏振模式,从而使得激发光的偏振态和被激发系统的偏振选择性方向一致,同等功率下能使得激发的拉曼荧光信号强度提高20%~50%,当原有偏振态匹配性较差的时候,能够提升50%~80%甚至更高。 The core idea of the present invention is: by setting a suitable wave plate device (one or more plates) at a suitable position in the optical path of the multi-mode laser to adjust the polarization mode of the specific wavelength of the excitation beam, so that the polarization of the excitation light The polarization selectivity direction of the state and the excited system is consistent, and the intensity of the excited Raman fluorescence signal can be increased by 20% to 50% at the same power. When the original polarization state matching is poor, it can be increased by 50% to 80%. or even higher. the
对单光束激发的情形,设置在准直之后的光路上任何位置;对激光束经过偏振分光片分光之后的情形,偏振分光片设置在分光后的光路上的任何位置;对激光束经过多个偏振分光片分为多束光的情形,偏振分光片设置在分光后的光路上的任何位置。 For the case of single-beam excitation, set it at any position on the optical path after collimation; for the case where the laser beam passes through the polarization beam splitter, set the polarization beam splitter at any position on the optical path after the split; When the polarizing beam splitter is divided into multiple beams of light, the polarizing beam splitter is arranged at any position on the optical path after the splitting. the
如图2所示,1/2波片37偏转振动方向的基本原理是光学专业的基本原理,本文中不作累述。基本概念简述如下:入射光为单色光,其偏振分量为S分量(振动方向如图四)和P分量(振动方向如图四)决定,只有S分量或者只有P分量时,称为线偏振光。包含有S分量和P分量的光束为椭圆偏振光。二分至一波片的作用是,改变偏振方向90度,即如图出射光的振动方向与入射光的振动方向,相差90度。
As shown in FIG. 2 , the basic principle of deflecting the vibration direction by the 1/2
如图3所示,本发明中的1/2波片通常通过以下波片安装调整装置来固定位置。本发明所提及的波片安装调整装置包括波片压环38、橡胶垫圈39、二1、2波片40、垫圈41、波片安装架42、波片安装座43、波片架紧锁圈44、紧锁螺 钉46、紧锁螺钉50等部分组成。
As shown in Figure 3, the 1/2 wave plate in the present invention is usually fixed in position by the following wave plate installation and adjustment device. The wave plate installation and adjustment device mentioned in the present invention includes a wave
其中,波片压环38的作用是将波片受力均匀的紧固在波片安装架上,波片压环与波片安装架之间的连接关系细牙螺纹紧固,永久性安装时可涂上螺纹胶。波片安装架42安装在波片安装座如图所示的圆孔内,配合公差在+0.01~+0.05mm,能自由旋转,但晃动量又小。波片安装座43的安装高度由实际系统光轴距离安装面的高度决定。波片安装架42的转轮48的作用是手动或者借助其他工装准确旋转波片角度,从而获得上文提及的要达到的最佳效果。紧锁螺钉46的作用是,调试完成后,使得波片安装架紧锁圈44和波片安装架42通过螺孔49紧固在一起,减少由于震动引起的波片位置、角度变化。紧锁螺钉50的作用是使得波片安装架43与波片安装架42紧锁,安装在螺孔位置45。
Among them, the function of the wave
通常而言,光路对波片的角度灵敏度一般为1~3°左右,本结构采用带大滚轮的波片安装架42(转轮直径大于波片直径2倍)。例如波片直径12mm,那么滚轮直径在24mm以上,调整量在0.5mm~1.5mm。徒手旋转该转轮,凭借手的感知,即能够达到该精度。也可设计这样的调节小棍47,在滚轮上每隔30度加工一个圆孔(见48上排列的孔,孔的直径2mm,深度5mm,共12个),调节时,小棍工装47的一段插入一个孔中,手握住另外一端,通过手柄调节波片角度。小棍工装47可以设计在50mm~100mm左右,此时调整的角度定位范围可达1.7mm~5.1mm,能达到的角度定位精度比上述方法高2~4倍以上。
Generally speaking, the angle sensitivity of the optical path to the wave plate is generally about 1-3°. This structure adopts the wave
请参考图4,论述本发明一具体实施例的示意图,其包括激光器51,经过滤光片52后,经由反射镜53改变光路方向,经过偏振分光片54,经由反射镜55、56、57改变光路方向,经过焦距和相对口径相同的会聚透镜58、59,进入由装载被激发物质的容器60和被激发物质61两部分组成的被激发装置,被激发物质61吸收部分激光能量后发出荧光或拉曼光62,在装载被激发物质的容器60上通常设计透明窗口63,经过包含准直透镜组64、分光元件如光栅65成像透镜组66的分光装置,聚焦成像到光电传感器67上,从而获得一定信噪比的电信号传输到信号处理装置66中进行分析处理。
Please refer to FIG. 4 , which discusses a schematic diagram of a specific embodiment of the present invention, which includes a
本例中提到的激光器51,指多模态激光器。装载被激发物质61的容器60通常是透明材质的石英、有机玻璃等等,材质要求对被激发出来的有效荧光信号或拉曼光信号的光谱较好地透过。光电传感器67是弱光信号传感器,通常有光电倍增管、CCD或者光电二极管。被激发物质61通常有DNA、蛋白质、大 分子有机化学物质或者可均匀悬浮在液体中的待检测物质等等。本例中,采用相向入射双光路的目的,是使得两端的激发效果均匀一致。由于容器60在光轴69方向的长度较大,单光路的光能量在穿透物质时,能量逐渐降低,对另外一段的激发效果会显著下降,因此,采用相向双光路同时激发,以获得充分的激发效果。同时,已知被检测系统具有偏振选择性(即装在被检测物质的容器或被检测物质具有一定的偏振选择性)。被检测物质有2种拉曼光标记染料,分别为日本TaKaRa公司的6-FAM(最大吸收波长494nm,最大发射波长518nm),HEX(最大吸收波长533nm,最大发射波长559nm)。
The
激光器为氩离子气体激光器。激光器功率50mW,光束直径1mm,包含有458nm,476nm,488nm,497nm,502nm,514.5nm等6条主要谱线,其中488nm和514.5nm谱线的能量占据总能量的80%以上,其中488nm能量和514.5nm能量比约为2∶1。 The laser is an argon ion gas laser. The laser power is 50mW, and the beam diameter is 1mm. It contains 6 main spectral lines of 458nm, 476nm, 488nm, 497nm, 502nm, and 514.5nm. The energy of the 488nm and 514.5nm spectral lines accounts for more than 80% of the total energy. The 514.5nm energy ratio is about 2:1. the
本发明专利所涉及的方法,在光路装置中通过图3所示的调整安装装置放置2个相同的1/2波片70、71。
In the method involved in the patent of the present invention, two identical 1/2
放置该位置的原因有:(1)相对于被激发物质两端的光路元器件数量及光学性能参数完全一致,波片放置该位置状态完全一样,位置具有空间可交换性;(2)该位置的光程较长,适宜于结构上设置波片结构件,给波片的调试可以留下空间。 The reasons for placing this position are: (1) The number of optical components and optical performance parameters at both ends of the excited substance are exactly the same, and the state of the wave plate is exactly the same at this position, and the position is spatially interchangeable; (2) The position of the The optical path is long, which is suitable for setting the wave plate structure on the structure, leaving room for the debugging of the wave plate. the
激光功率为50mW,经过分光后,每个波片表面的最大能量密度为50000w/m2,宜采用耐受辐射能量高的镀膜材料二氧化钛(TiO2)作为增透膜材料(该材料耐受能量密度高达2x106w/m2以上,该数据为可公开查阅资料),且适宜于长期工作。 The laser power is 50mW. After splitting, the maximum energy density on the surface of each wave plate is 50000w/m 2 . It is advisable to use titanium dioxide (TiO 2 ), a coating material that can withstand high radiation energy, as the anti-reflection coating material (the material can withstand energy The density is as high as 2x10 6 w/m 2 or more, the data is available for public consultation), and it is suitable for long-term work.
本发明专利所涉及的方法所提的1/2波片,如果系统优先考虑6-FAM染料所发出的拉曼光,则可设计488nm波长位置的1/2波片;如果系统优先考虑HEX染料所发出的拉曼光,则可设计514.5nm波长位置的1/2波片。如果要平衡兼顾二种染料,1/2波片的波长应当在488nm和514.5nm之间。 For the 1/2 wave plate mentioned in the method involved in the patent of the present invention, if the system gives priority to the Raman light emitted by the 6-FAM dye, the 1/2 wave plate at the wavelength position of 488nm can be designed; if the system gives priority to the HEX dye For the emitted Raman light, a 1/2 wave plate at the wavelength position of 514.5nm can be designed. If two dyes are to be balanced, the wavelength of the 1/2 wave plate should be between 488nm and 514.5nm. the
如表1可计算其效率。 Its efficiency can be calculated as shown in Table 1. the
表1 Table 1
上表中X11,X12,X21,X22数据为实验测量数据。仅为举例说明方法的使用,仅供参考。代入发明内容第2条的公式(2)、(3)、(4)中,可以计算的特征波长λ的数值为501.25nm,即1/2波片的波长设计值。
The X11, X12, X21, and X22 data in the above table are experimental measurement data. It is only used as an example to illustrate the method and is for reference only. Substituting into the formulas (2), (3) and (4) in
本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。 The preferred embodiments of the invention are provided only to help illustrate the invention. The preferred embodiments are not exhaustive in all detail, nor are the inventions limited to specific embodiments described. Obviously, many modifications and variations can be made based on the contents of this specification. This description selects and specifically describes these embodiments in order to better explain the principle and practical application of the present invention, so that those skilled in the art can make good use of the present invention. The invention is to be limited only by the claims, along with their full scope and equivalents. the
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110134535 CN102297854B (en) | 2011-05-23 | 2011-05-23 | High-efficiency multi-mode laser-induced fluorescence optical path exciting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110134535 CN102297854B (en) | 2011-05-23 | 2011-05-23 | High-efficiency multi-mode laser-induced fluorescence optical path exciting system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102297854A true CN102297854A (en) | 2011-12-28 |
CN102297854B CN102297854B (en) | 2013-10-02 |
Family
ID=45358418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110134535 Active CN102297854B (en) | 2011-05-23 | 2011-05-23 | High-efficiency multi-mode laser-induced fluorescence optical path exciting system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102297854B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063640A (en) * | 2012-12-28 | 2013-04-24 | 西北核技术研究所 | Laser-induced fluorescence combustion field parameter measuring device |
CN105388140A (en) * | 2015-12-01 | 2016-03-09 | 杭州南车城市轨道交通车辆有限公司 | Measuring instrument for site invisible fingerprint display and contained substance thereof |
CN106290299A (en) * | 2016-08-04 | 2017-01-04 | 北京华泰诺安探测技术有限公司 | A kind of polarization diversity polarization Raman probe and optical spectrum detecting method |
CN107449762A (en) * | 2017-08-15 | 2017-12-08 | 重庆三峡学院 | A kind of coil type monitoring method and equipment for spilled oil on water surface pollution prewarning |
CN109374511A (en) * | 2015-10-14 | 2019-02-22 | 北京信息科技大学 | An optical path adjustment device for flow cytometer without liquid path |
CN111060484A (en) * | 2019-12-29 | 2020-04-24 | 中国科学院西安光学精密机械研究所 | Non-scanning three-dimensional plane laser-induced fluorescence imaging detection method and system |
CN116602628A (en) * | 2023-07-17 | 2023-08-18 | 江苏京泰全医疗科技有限公司 | Detection device for self-fluorescence tissue |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10281876A (en) * | 1997-04-09 | 1998-10-23 | Bunshi Bio Photonics Kenkyusho:Kk | Polarizing imaging system |
US20020139936A1 (en) * | 2000-10-27 | 2002-10-03 | Dumas David P. | Apparatus for fluorescence detection on arrays |
CN1201145C (en) * | 2000-06-08 | 2005-05-11 | 浜松光子学株式会社 | Method for measuring fluorescence, appts. for measuring fluorescence and appts. for evaluating sample using it |
JP2005345561A (en) * | 2004-05-31 | 2005-12-15 | Olympus Corp | Scanning type laser microscope device |
CN101105455A (en) * | 2007-07-04 | 2008-01-16 | 四川大学 | Laser Induced Fluorescence Detector |
CN201295224Y (en) * | 2008-11-07 | 2009-08-26 | 上海奥通激光技术有限公司 | Multi-mode confocal imaging device |
CN201302549Y (en) * | 2009-02-12 | 2009-09-02 | 福建师范大学 | Non-destructive detecting device for cell components and intercellular components |
CN101947097A (en) * | 2010-08-20 | 2011-01-19 | 华中科技大学 | High-resolution optical endoscopic system for pancreatography |
CN202057600U (en) * | 2011-05-23 | 2011-11-30 | 公安部第一研究所 | High-efficiency multimode laser-induced fluorescent light path exciting system |
-
2011
- 2011-05-23 CN CN 201110134535 patent/CN102297854B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10281876A (en) * | 1997-04-09 | 1998-10-23 | Bunshi Bio Photonics Kenkyusho:Kk | Polarizing imaging system |
CN1201145C (en) * | 2000-06-08 | 2005-05-11 | 浜松光子学株式会社 | Method for measuring fluorescence, appts. for measuring fluorescence and appts. for evaluating sample using it |
US20020139936A1 (en) * | 2000-10-27 | 2002-10-03 | Dumas David P. | Apparatus for fluorescence detection on arrays |
JP2005345561A (en) * | 2004-05-31 | 2005-12-15 | Olympus Corp | Scanning type laser microscope device |
CN101105455A (en) * | 2007-07-04 | 2008-01-16 | 四川大学 | Laser Induced Fluorescence Detector |
CN201295224Y (en) * | 2008-11-07 | 2009-08-26 | 上海奥通激光技术有限公司 | Multi-mode confocal imaging device |
CN201302549Y (en) * | 2009-02-12 | 2009-09-02 | 福建师范大学 | Non-destructive detecting device for cell components and intercellular components |
CN101947097A (en) * | 2010-08-20 | 2011-01-19 | 华中科技大学 | High-resolution optical endoscopic system for pancreatography |
CN202057600U (en) * | 2011-05-23 | 2011-11-30 | 公安部第一研究所 | High-efficiency multimode laser-induced fluorescent light path exciting system |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063640A (en) * | 2012-12-28 | 2013-04-24 | 西北核技术研究所 | Laser-induced fluorescence combustion field parameter measuring device |
CN103063640B (en) * | 2012-12-28 | 2015-09-09 | 西北核技术研究所 | A kind of laser-induced fluorescence (LIF) combustion field parameter measuring apparatus |
CN109374511A (en) * | 2015-10-14 | 2019-02-22 | 北京信息科技大学 | An optical path adjustment device for flow cytometer without liquid path |
CN109374511B (en) * | 2015-10-14 | 2021-07-23 | 北京信息科技大学 | An optical path adjustment device for flow cytometer without liquid path |
CN105388140A (en) * | 2015-12-01 | 2016-03-09 | 杭州南车城市轨道交通车辆有限公司 | Measuring instrument for site invisible fingerprint display and contained substance thereof |
CN106290299A (en) * | 2016-08-04 | 2017-01-04 | 北京华泰诺安探测技术有限公司 | A kind of polarization diversity polarization Raman probe and optical spectrum detecting method |
CN107449762A (en) * | 2017-08-15 | 2017-12-08 | 重庆三峡学院 | A kind of coil type monitoring method and equipment for spilled oil on water surface pollution prewarning |
CN111060484A (en) * | 2019-12-29 | 2020-04-24 | 中国科学院西安光学精密机械研究所 | Non-scanning three-dimensional plane laser-induced fluorescence imaging detection method and system |
CN111060484B (en) * | 2019-12-29 | 2020-11-03 | 中国科学院西安光学精密机械研究所 | Non-scanning three-dimensional plane laser-induced fluorescence imaging detection method and system |
CN116602628A (en) * | 2023-07-17 | 2023-08-18 | 江苏京泰全医疗科技有限公司 | Detection device for self-fluorescence tissue |
CN116602628B (en) * | 2023-07-17 | 2023-11-28 | 江苏京泰全医疗科技有限公司 | Detection device for self-fluorescence tissue |
Also Published As
Publication number | Publication date |
---|---|
CN102297854B (en) | 2013-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102297854B (en) | High-efficiency multi-mode laser-induced fluorescence optical path exciting system | |
CN105527263B (en) | Method and device for laser-induced fluorescence optical path using optical fiber beam splitting | |
CN100567916C (en) | Measuring System of Spectral Angular Reflectance Characteristics of Diffuse Reflector for Onboard Calibration | |
US11199495B2 (en) | Terahertz full polarization state detection spectrometer | |
JP2006510899A (en) | Optical analysis system | |
US8130378B2 (en) | Phase retardance inspection instrument | |
CN202057600U (en) | High-efficiency multimode laser-induced fluorescent light path exciting system | |
CN105699317A (en) | Terahertz time-domain spectrograph capable of entering at fixed angle and simultaneously detecting transmission and reflection | |
CN111323380B (en) | Spectrophotometer detection system and detection method thereof | |
Kapitán et al. | A novel Raman optical activity instrument operating in the deep ultraviolet spectral region | |
CN205301175U (en) | Device with laser induced flourescense light path of optic fibre beam splitting | |
CN102042961B (en) | Fiber reflecting type micro-nano system spectrophotometer and application thereof | |
CN107167456A (en) | Transmission-type differential confocal CARS micro-spectrometer method and devices | |
CN115015221A (en) | Fast Spectral Scanning Stimulated Raman Scattering Microscopic Imaging System and Imaging Method | |
CN110312925A (en) | The inspection and metering radiated using broadband infrared | |
CN107167457A (en) | The confocal CARS micro-spectrometers method and device of transmission-type | |
CN218212623U (en) | Chiral molecule detection device based on super surface | |
CN106404744B (en) | Portable directional Raman spectrum acquisition system and acquisition method | |
CN203164121U (en) | Laser-induced fluorescence spectrum detection device | |
JP5370409B2 (en) | Absolute reflection measuring device | |
JPS6483135A (en) | Measuring apparatus of polarized infrared ray for thin film | |
CN106404695B (en) | Spectrophotometer | |
US20210181100A1 (en) | Multi-function spectrometer | |
CN201166604Y (en) | A measurement system for the spectral angular reflectance characteristics of a fiber-optic transmission diffuse reflector | |
CN104459581A (en) | Laser helium optical pump magnetic measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |