CN102250856B - 一种耐热β-半乳糖苷酶突变体的构建 - Google Patents

一种耐热β-半乳糖苷酶突变体的构建 Download PDF

Info

Publication number
CN102250856B
CN102250856B CN 201110170088 CN201110170088A CN102250856B CN 102250856 B CN102250856 B CN 102250856B CN 201110170088 CN201110170088 CN 201110170088 CN 201110170088 A CN201110170088 A CN 201110170088A CN 102250856 B CN102250856 B CN 102250856B
Authority
CN
China
Prior art keywords
bgab
galactosidase
hydrolysis
mutant
lactose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201110170088
Other languages
English (en)
Other versions
CN102250856A (zh
Inventor
董艺凝
王领
陈卫
徐峻
张灏
陈海琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Sun Yat Sen University
Original Assignee
Jiangnan University
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University, Sun Yat Sen University filed Critical Jiangnan University
Priority to CN 201110170088 priority Critical patent/CN102250856B/zh
Publication of CN102250856A publication Critical patent/CN102250856A/zh
Application granted granted Critical
Publication of CN102250856B publication Critical patent/CN102250856B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及一种耐热β-半乳糖苷酶突变体的构建。本发明耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T用于乳糖水解工艺生产低乳糖制品,可以有效去除水解产物对酶水解活性的抑制作用,使水解反应进行彻底提高水解效率;使用耐热乳糖酶β-半乳糖苷酶BgaB的突变体BgaB-F341T替代中温乳糖酶,可以革新低乳糖奶的低温水解工艺。可以将水解温度设定在55-60℃范围,此温度下不仅水解反应速度快,而且牛奶中常见杂菌都已经停止生长,因此能有效控制杂菌污染导致的产品卫生和质量问题;此外,采用耐热乳糖酶的高温水解工艺还可将乳糖水解与巴氏消毒工序合二为一,不仅缩短生产周期,而且可以充分利用巴氏消毒的余热以降低能耗,从而显著节省生产成本。

Description

一种耐热β-半乳糖苷酶突变体的构建
技术领域
本发明涉及一种耐热β-半乳糖苷酶突变体的构建。属于蛋白质工程领域。
背景技术
β-半乳糖苷酶(β-galactosidase)全称为β-D-半乳糖苷半乳糖水解酶(β-D-galactoside galacto hydrolase,EC3.2.1.23),商品化的β-半乳糖苷酶俗称乳糖酶(Lactase),能催化乳糖或乳糖类似物中β-1,4-半乳糖苷键的水解反应。乳糖酶广泛应用于食品工业、医学和生化分析等领域,其中最大的应用在乳品工业中,可将乳糖降解为葡萄糖和半乳糖以生产低乳糖奶,从而有效解决乳糖不耐症等问题。据流行病调查研究表明,乳糖不耐症主要是有色人种比例较高,以亚洲人和美国黑人发生率最高。我国居民中约有75%~95%的人患有不同程度的乳糖不耐受。而欧美的白色人种一般发生率较低,所以乳糖酶的研究在国外并不象蛋白酶、糖化酶等大酶种一样受到重视。但针对中国人的消费特点,乳糖酶就有着重要研究价值和意义。
β-半乳糖苷酶广泛存在于动植物和微生物中,其中微生物乳糖酶最具应用价值。但不同来源的乳糖酶酶学性质差异较大,如黑曲霉、米曲霉等来源的霉菌乳糖酶,催化温度较高(40~55℃)但最适反应pH值较低(pH 3.0~4.5),适合奶酪加工副产物酸性乳清的处理;乳酸克鲁维酵母和脆壁克鲁维酵母等酵母来源的乳糖酶最适反应温度在中温附近(35~40℃),而最适反应pH近中性(pH 6.5~7.0),适合牛奶加工中低乳糖奶(pH 6.5~6.8)的生产;细菌乳糖酶比较复杂,最适反应温度从低温、中温到高温及超高温都有,但一般而言最适反应pH都在中性附近。
目前牛奶工业中使用的乳糖酶都是酵母乳糖酶。酵母来源的中温乳糖酶由于最适水解温度在37℃左右,这类酶的反应温度区间恰处于牛奶中常见杂菌的最适生长温度范围,因此工业生产中一般采用低温水解工艺(4℃左右),但仍然存在卫生要求高、用酶量大、生产周期长(一般需20~24h)和能耗高的缺点。
来自嗜热细菌的β-半乳糖苷酶不仅最适反应pH近中性,而且最适反应温度和热稳定性均较高。如果使用这类耐热β-半乳糖苷酶替代中温β-半乳糖苷酶,就可以革新低乳糖奶的低温水解工艺。如使用嗜热脂肪芽孢杆菌来源的耐热β-半乳糖苷酶,就可以将水解温度设定在55~60℃范围,此温度下不仅水解反应速度快,而且牛奶中常见杂菌都已经停止生长,因此能有效控制杂菌污染导致的产品卫生和质量问题;此外,采用耐热β-半乳糖苷酶的高温水解工艺还可将乳糖水解与巴氏消毒工序合二为一,不仅缩短生产周期,而且可以充分利用巴氏消毒的余热以降低能耗,从而显著节省生产成本。
现已报道的耐热β-半乳糖苷酶大多来源于极端微生物,如嗜热硫矿硫化叶菌(Sulfolobussolfataricus)、激烈火球菌(Pyrococcus furiosus)、嗜热脂肪芽孢杆菌(Geobacillusstearothermophilus)、嗜热栖热菌(Thermus thermophilus)等(Maciunska,J Czyz,B Synowiecki,J.Isolation and some properties of beta-galactosidase from the thermophilic bacterium Thermus thermophilus.Food Chemistry.1998,63:441-447;Pisani,F.M.,Rella,R.,Raia,C.A.,Rozzo,et al..Thermostable beta-galactosidasefrom the archaeb acteriumSulfolobus solfataricus.Purification and properties.Eur J Biochem,1990,187,2,:321-328;Daabrowski,S.,Sobiewska,G.,Maciunska,J.et al.Cloning,expression,and purification of theHis(6)-tagged thermostable beta-galactosidase from Pyrococcus woesei in Escherichia coli and some propertiesof the isolated enzyme.Protein Expr Purif,2000,19(1):107-112)。其中以激烈火球菌耐热β-半乳糖苷酶作用温度最高,其最适作用温度为102~105℃,来源于嗜热栖热菌的β-半乳糖苷酶其最适反应温度在87℃左右(Luzhetskyy,A.Weiss,H.Charge,A.et al.A strategy for cloning glycosyltransferase genesinvolved in natural product biosynthesis.Appl Microbiol Biotechnol,2007,75(3):1367-1375)。然而在进行牛奶中乳糖的水解时,β-半乳糖苷酶的最适反应温度并非越高越好,一般认为55~65℃为比较适宜的工艺条件,过高的水解温度会导致牛奶风味和色泽的改变,并且不能配合巴氏杀菌(Chen,W.,Chen,H.,Xia,Y.,et al.(2008)Production,purification,and characterization of a potential thermostablegalactosidase for milk lactose hydrolysis from Bacillus stearothermophilus.J Dairy Sci,91,1751-1758)。
发明内容
围绕嗜热脂肪芽孢杆菌来源的耐热β-半乳糖苷酶(BgaB),本课题组进行了源酶和重组酶酶学性质的分析比较、乳糖水解动力学参数、基因工程菌构建、重组表达策略和发酵优化、重组酶固定化方法及固定化酶水解工艺研究,以及BgaB分泌表达策略和分子改良的初步研究。在前期研究中我们发现,BgaB具有良好的热稳定性和高温水解活力,但相比商业化β-半乳糖苷酶其乳糖水解活力比较低。这主要是因为进化过程中乳糖并非原核生物的主要碳源,因而乳糖不是这类β-半乳糖苷酶的最适作用底物。同时,乳糖的水解产物半乳糖和葡萄糖是β-半乳糖苷酶的抑制剂,这就导致乳糖水解过程中,随着水解产物浓度的增大,β-半乳糖苷酶的活性受到抑制并阻碍了乳糖的完全水解。
本发明目的在于针对现有耐热β-半乳糖苷酶BgaB乳糖水解活力不高,且酶活力受到水解产物的抑制而导致实际生产过程中乳糖不能完全水解、生产效率低的问题,通过现代生物技术手段对嗜热脂肪芽孢杆菌的耐热β-半乳糖苷酶BgaB进行分子改良,消除其水解产物抑制作用进而提高水解效率。所谓分子改良是通过改造基因,优化生物性能的方法。本项发明的分子改良方法是一种针对蛋白质活性区域采用理性设计与非理性设计相结合的一种创新的分子改良方法,其特点是提高分子改造的成功率及效率,也可为其它耐热酶的分子改造提供借鉴。
本发明另一个目的在于提供上述耐热β-半乳糖苷酶突变酶(即为β-半乳糖苷酶BgaB突变体)的应用。
本发明上述目的通过以下技术方案予以实现:
一、本发明耐热β-半乳糖苷酶BgaB突变体的构建方法为:采用定点突变的方法以野生型BgaB为模板,将该野生型酶的第341位氨基酸由Phe被定点突变为Thr,经重组菌发酵表达、镍亲和柱(Ni-Chelating Column)得到纯化的耐热β-半乳糖苷酶BgaB突变体酶。
上述制备方法步骤如下:
(1)对耐热β-半乳糖苷酶bgab基因活性位点进行定点改造
以含有嗜热脂肪芽孢杆菌来源的耐热β-半乳糖苷酶基因bgab的质粒pKK223-3-bgab为(请提供质粒的来源或已发表的文章?)模板,用一对引物序列1(5′-CCGTGGTGCAGATGGTATTATGTTTACACAGTGGCGTCAAAGTAGAGCAGGAG-3′)和序列2(5′-CTCCTGCTCTACTTTGACGCCACTGTGTAAACATAATACCATCTGCACCACGG-3′),通过全质粒扩增的方法对耐热β-半乳糖苷酶bgab基因进行定点改造。PCR程序为:95℃30s,55℃30s,68℃6.6min,16个循环。PCR反应体系:5μl dNTPs(2mM),5μl 10×Buf.,1μlKOD plus,2μl MgSO4(25mM),上游及下游引物各1.5μl,模板1μl;
(2)克隆的筛选
扩增得到的PCR产物经内切酶Dpn I 37℃消化1.5h后转化E.Coli JM109感受态细胞并均匀涂布于LBA平板(含有100μg/m L氨苄青霉素的LB琼脂平板),37℃过夜培养后,挑选单克隆,即得到含突变酶(BgaB-F341T)的重组菌,命名为大肠埃希氏菌(Escherichiacoli)(简写为:E.Coli)K6株,该重组菌株已于2011年06月22日送交北京市朝阳区京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.4981;
(3)表达和纯化
将突变酶的转化子接种于250mL LBA液体培养基中,37℃200r/min培养至OD600达到0.6~0.8,加入IPTG(异丙基-β-D-硫代半乳糖苷,终浓度1mM),诱导20h,离心收集菌体,用50m M磷酸缓冲液(pH 6.5)重悬,冰浴下超声破壁,10000r/min离心30min,60℃水浴30min去除部分不耐热杂蛋白,取上清过Ni-NTA agarose柱纯化;
(4)透析、冷冻干燥
收集洗脱液,经透析、冷冻干燥处理后得到纯酶。
本发明涉及的耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T与野生型酶BgaB相比,其分子量,最适作用温度及最适pH均没有发生改变,保持了野生型酶的耐热及pH范围适合牛乳水解的特点。
二、耐热β-半乳糖苷酶BgaB的突变体的应用
1.本发明耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T可用于乳糖水解生产工艺,以生产低乳糖奶制品。该突变酶的乳糖水解活性不受水解产物半乳糖的抑制作用,可以使乳糖水解率达到100%。
2.本发明耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T不仅可以满足乳糖不适症患者的需要,而且乳糖的甜度低,可以通过水解后一分子乳糖生成一分子葡萄糖和一分子半乳糖,明显提高乳制品的甜度,减少甜味剂的用量,而不增加食品的热量;通过半乳糖苷酶水解乳糖可以解决乳糖溶解度低容易结晶析出的问题。用β-半乳糖酶水解乳制作酸奶可以比使用普通脱脂乳省时且节省蔗糖用量,而且能改善酸乳风味和口感,延长酸乳货架期。用β-半乳糖苷酶将乳清中的乳糖水解,可以提高含乳清饲料的营养价值,同时去除乳清浓缩时乳糖结晶析出给饲料加工带来的不便。在面包制作中,添加β-半乳糖苷酶水解乳,可以增加面包甜度,提高酵母菌产气量,使面包更加膨胀,而且乳糖水解产物半乳糖有利于褐变,改善面包色泽。
3.本发明乳糖酶突变体可以通过游离酶的方式生产低乳糖乳制品,也可以固定化后反复使用以降低使用成本。可采用的固定化酶的方法有很多。例如,多孔玻璃共价结合法、GCP-醛交联法、GCP-芳香胺交联法、凝胶包埋法和物理吸附法等。
本发明积极意义
本发明涉及一种耐热β-半乳糖苷酶突变体的构建。本发明耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T用于乳糖水解工艺生产低乳糖制品,可以有效去除水解产物对酶水解活性的抑制作用,使水解反应进行彻底提高水解效率;使用耐热乳糖酶β-半乳糖苷酶BgaB的突变体BgaB-F341T替代中温乳糖酶,可以革新低乳糖奶的低温水解工艺。可以将水解温度设定在55-60℃范围,此温度下不仅水解反应速度快,而且牛奶中常见杂菌都已经停止生长,因此能有效控制杂菌污染导致的产品卫生和质量问题;此外,采用耐热乳糖酶的高温水解工艺还可将乳糖水解与巴氏消毒工序合二为一,不仅缩短生产周期,而且可以充分利用巴氏消毒的余热以降低能耗,从而显著节省生产成本。
附图说明
图1为耐热β-半乳糖苷酶BgaB的分子结构图;
图2为参与半乳糖结合的氨基酸位点示意图;
图3为F341位点突变酶SDS-PAGE图,1:F341T;
图4为F341位点突变酶乳糖水解率示意图,其中,F341T的乳糖水解率可达100%。
具体实施方式
以下结合实施例来进一步解释本发明,但实施例并不对本发明做任何形式的限定。
实施例1
耐热β-半乳糖苷酶BgaB改造位点的确定。
(1)试验方法:
BgaB分子模型及底物复合物模型构建
所有计算由Accelerys DiscoveryStudio 2.1软件提供的CDOCKER计算程序完成(Accelerys  Software  Inc.,Accelrys  Discovery  Studio  2.1,San Diego,2008;G.Wu,D.H.Robertson,C.L.Brooks,M.Vieth,Detailed analysis of grid-based moleculardocking:a case study of CDOCKER-A CHARMm-based MD docking algorithm,J.Comp.Chem,24(2003)1549-1562)。
米氏常数Km和抑制常数Ki的测定方法
配制ONPG浓度从0.8-10mmol/L,底物类似物抑制实验时分别加入不同浓度的乳糖、半乳糖和葡萄糖,反应体系同酶活测定,加入镍柱纯化后的酶液,在55℃测定不同反应的初速度V,按Lineweaver-Burk作图法(Lineweaver H,Burk D.Determination of enzymedissociation constants.J Am Chem Soc,137(1934)143-144)求取米氏常数Km和Vmax以及抑制常数Ki。
按中性乳糖酶酶活检测方法(Gist-Bracades法)。以ONPG为底物,一个中性乳糖酶单位定义为:在pH6.5条件下,每分钟水解产生1umol的ONP所需的酶量为一个中性乳糖酶活单位(NLU或U)。对嗜热脂肪芽孢杆菌源酶及其重组酶,反应温度定为55℃。
蛋白质含量的测定
BCA法,以牛血清白蛋白BSA为标准蛋白。
(2)结果:计算模拟得到耐热β-半乳糖苷酶BgaB的分子结构(如图1),通过乳糖水解底物半乳糖分子与酶分子活性区域进行对接预测得到参与底物结合的位点有Arg109,Asn147,Glu148,Glu303,Tyr272,Trp311,Phe 341,Glu351,His354作为突变位点(如图2)。经亲和力分析及“甘氨酸扫描”确定Phe341位点对半乳糖的结合贡献力最大(如表1),对底物抑制的活性影响也最大(如表2),因此确定该位点为活性改造的位点。对Phe341位点进行点饱和突变,对19个Phe341位点定点突变体对底物半乳糖的抑制常数进行测定(如表3),半乳糖对F341T突变体酶的抑制作用最小。
表1半乳糖与酶结合能分析
Figure GDA0000076384650000061
表2甘氨酸替换突变的酶活及抑制常数分析
Figure GDA0000076384650000062
表3F341位点饱和突变各突变体酶学性质比较
Figure GDA0000076384650000071
注:动力学参数的测定以2-硝基苯-beta-D-半乳糖苷ONPG为底物;抑制常数的测定以半乳糖(Galactose)为底物。
实施例2
耐热β-半乳糖苷酶BgaB突变体的构建
1.对耐热β-半乳糖苷酶基因bgab基因活性位点进行定点改造以含有嗜热脂肪芽孢杆菌来源的耐热β-半乳糖苷酶基因bgab的质粒pKK223-3-bgab(DongY.N.,Liu X.M.,Chen H.Q.,et al..Enhancement of the hydrolysis activity of beta-galactosidasefrom Geobacillus stearothermophilus by saturation mutagenesis.Journal of Dairy Science,2011,94(3):1176-1184)为模板,以一对引物(序列1和序列2),通过全质粒扩增的方法对bgab基因进行定点改造,PCR程序为:95℃30s,55℃30s,68℃6.6min,16个循环。PCR反应体系:5μl dNTPs(2mM),5μl 10×Buf.,1μl KOD plus(高保真聚合酶,Toyobo公司),2μl MgSO4(25mM),上游及下游引物各1.5μl,模板1μl。
2.克隆的筛选
扩增得到的PCR产物经内切酶Dpn I(Fermentas公司)37℃消化1.5h后转化E.ColiJM109感受态细胞(萨姆布鲁克J,费里奇EF,曼尼阿蒂斯T.分子克隆实验指南(第二版),金冬雁,梨孟枫等译,侯云德等校。北京:科学出版社,1996)并均匀涂布于LBA平板(含有100μg/m L氨苄青霉素的LB琼脂平板),37℃过夜培养后,挑选单个阳性克隆,即得到含突变酶(BgaB-F341T)的重组菌,命名为E.Coli JM109-K6株;
3.表达和纯化
将突变酶的转化子接种于250mL LBA液体培养基中,37℃200r/min培养至OD600达到0.6~0.8,加入IPTG(异丙基-β-D-硫代半乳糖苷,终浓度1mM),诱导20h,离心收集菌体,用50m M磷酸缓冲液(pH 6.5)重悬,冰浴下超声破壁,10000r/min离心30min,60℃水浴30min去除部分不耐热杂蛋白,取上清过Ni-NTA agarose柱纯化(详见实施例3);
4.透析、冷冻干燥
收集洗脱液,经透析、冷冻干燥处理后得到纯酶。
实施例3
耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T的表达及纯化
1.实验方法:重组突变酶含有6个组氨酸标签在C-端,经原核表达后,通过镍柱纯化的方法得到纯化酶。
(1)溶液配制
1)LB培养基:10g胰蛋白胨,5g酵母提取物,5g NaCl溶解于1000mL去离子水;
2)纯化蛋白所需溶液:
Binding buffer成分为0.1M磷酸缓冲液含有0.5M NaCl、20mM咪唑,
Washing buffer成分0.1M磷酸缓冲液含有0.5M NaCl、80mM咪唑;
Elution buffer成分为0.1M磷酸缓冲液含有0.5M NaCl、250mM咪唑;
透析缓冲液为50mM磷酸缓冲液(pH 7.0)。
(2)表达和纯化
将发酵物100mL,3300×g离心15min后收集菌体沉淀,用10mL的磷酸盐缓冲液(PBS,pH 7.4)重悬菌体。重悬的菌体用超声破碎仪(Sonics,Vibracell)在200W(1s工作,9s间歇)超声60个循环,将超声破碎液11600×g离心15min。离心上清加入螯合有Ni 2+的Sepharose Fast Flow凝胶(Qiagen公司)上,用Washing buffer洗去杂蛋白后,用10mL,Elution buffer洗脱目标蛋白。取50μL洗脱液与50μL 2×上样缓冲液混合,以分析蛋白纯度。
(3)十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)
将5μL样品在12%的聚丙烯酰胺凝胶上电泳,80V浓缩25min,再150V分离60~80min。用考马斯亮蓝染色和醋酸-乙醇溶液脱色,在凝胶呈像系统上分析蛋白分布与浓度。
2.实验结果:
经镍柱纯化,SDS-PAGE分析显示突变酶得到单一条带,纯度可达95%,分子量为70kDa(如图3),与野生型相比没有差别。
实施例4
突变体酶酶动力学分析及乳糖水解活性测定。
1试验方法:
(1)最适pH测定:按常规方法要求配制不同pH的磷酸钠buffer,并用相应的buffer溶解底物(ONPG),最适反应温度下测定酶活。
(2)pH稳定性的测定:将不同pH环境下的酶液置37℃水浴保温1h,室温下平衡,按常规方法测定相对酶活性。pH 5.0~7.5buffer用磷酸氢二钠-柠檬酸缓冲液,pH 7.5~9.0用磷酸氢二钠-磷酸二氢钾缓冲液。
(3)牛奶中乳糖水解率的计算:
乳糖水解率(%)=葡萄糖含量×(1.9/起始乳糖含量)×100
2试验结果:突变酶的最适作用pH相对野生型酶没有改变,乳糖水解率可以达到100%,底物对酶的抑制常数为,目前普遍抑制率为,所以明显降低了底物的抑制率(见图3)。
Figure IDA0000070462780000011

Claims (1)

1.一种耐热β-半乳糖苷酶突变体的应用,其特征在于将该耐热β-半乳糖苷酶BgaB的突变体BgaB-F341T用于乳糖水解工艺,该突变体BgaB-F341T的构建方法主要包括: 
(1)对耐热β-半乳糖苷酶bgab基因活性位点进行定点改造 以含有嗜热脂肪芽孢杆菌来源的耐热β-半乳糖苷酶基因bgab的质粒pKK223-3-bgab为模板,用序列1和序列2的一对合成引物,通过全质粒扩增的方法对耐热β-半乳糖苷酶bgab基因进行定点改造; 
(2)克隆的筛选 扩增得到的PCR产物经内切酶DpnI37℃消化1.5h后转化E.Coli JM109感受态细胞并均匀涂布于含有100μg/mL氨苄青霉素的LB琼脂平板,37℃过夜培养后,挑选单克隆,即得到含突变酶BgaB-F341T的重组菌,命名为E.Coli K6株,该重组菌株已送交中国科学院微生物研究所中国微生物菌种保藏管理委员会普通微生物中心保藏,保藏编号为CGMCC No.4981; 
(3)表达和纯化 将突变酶的转化子接种于250mL LBA液体培养基中,37℃200r/min培养至OD600达到0.6~0.8,加入终浓度为1mMIPTG,诱导20h,离心收集菌体,用50mMpH6.5磷酸缓冲液重悬,冰浴下超声破壁,10000r/min离心30min,60℃水浴30min去除部分不耐热杂蛋白,取上清过Ni-NTAagarose柱纯化; 
(4)透析、冷冻干燥 收集洗脱液,经透析、冷冻干燥处理后得到纯酶。 
CN 201110170088 2011-06-23 2011-06-23 一种耐热β-半乳糖苷酶突变体的构建 Expired - Fee Related CN102250856B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110170088 CN102250856B (zh) 2011-06-23 2011-06-23 一种耐热β-半乳糖苷酶突变体的构建

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110170088 CN102250856B (zh) 2011-06-23 2011-06-23 一种耐热β-半乳糖苷酶突变体的构建

Publications (2)

Publication Number Publication Date
CN102250856A CN102250856A (zh) 2011-11-23
CN102250856B true CN102250856B (zh) 2013-09-18

Family

ID=44978427

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110170088 Expired - Fee Related CN102250856B (zh) 2011-06-23 2011-06-23 一种耐热β-半乳糖苷酶突变体的构建

Country Status (1)

Country Link
CN (1) CN102250856B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559571B (zh) * 2012-01-18 2013-04-17 福建农林大学 可表达耐热β-半乳糖苷酶的重组菌及构建方法和应用
EP4279604A3 (en) * 2013-09-30 2024-03-06 Amano Enzyme Inc. Modified beta-galactosidase
US9994837B2 (en) * 2014-01-14 2018-06-12 Dsm Ip Assets B.V. Enzyme variants
CN103937767B (zh) * 2014-04-08 2016-03-30 昆明理工大学 一种半乳糖苷酶和编码这种酶的多核苷酸
CN107267486B (zh) * 2014-09-29 2020-05-12 中国农业科学院生物技术研究所 一种具有高转糖苷活性的β-半乳糖苷酶组合突变体及其制备方法和应用
CN105400728A (zh) * 2015-12-15 2016-03-16 重庆大学 一种产耐高温β-半乳糖苷酶的菌株及其筛选方法
CN105950589B (zh) * 2016-07-21 2019-11-29 江南大学 一种具有转糖苷活性耐热β-半乳糖苷酶突变体及其制备方法
CN105950588B (zh) * 2016-07-21 2019-04-05 滁州学院 一种高转糖苷活性低水解活性的β-半乳糖苷酶双点突变体及其制备方法
BR112021016954A2 (pt) * 2019-02-28 2021-11-23 Dupont Nutrition Biosci Aps Método para reduzir lactose em temperaturas altas
CN111440782B (zh) * 2020-04-22 2021-09-17 青岛大学 一种β-半乳糖苷酶GalA及其应用
CN115927257A (zh) 2020-09-29 2023-04-07 天津科技大学 一种乳糖酶及其应用
CN112646796A (zh) * 2021-01-13 2021-04-13 马金佑 耐热β-半乳糖苷酶的制备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Dong YN 等.Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis..《J Dairy Sci.》.2011,第94卷(第3期),1176-1184.
Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis.;Dong YN 等;《J Dairy Sci.》;20110331;第94卷(第3期);1176-1184 *
傅晓燕 等.耐热β-半乳糖苷酶基因在枯草芽孢杆菌中的克隆和表达.《中国酿造》.2004,(第8期),16-18. *
杨静 等.耐热重组β-半乳糖苷酶的制备及酶稳定性研究.《工业微生物》.2004,第34卷(第1期),35-38. *

Also Published As

Publication number Publication date
CN102250856A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
CN102250856B (zh) 一种耐热β-半乳糖苷酶突变体的构建
Chen et al. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus
Turkiewicz et al. Antarctic marine bacterium Pseudoalteromonas sp. 22b as a source of cold-adapted β-galactosidase
EP3106515B1 (en) Method for preparing fermentation broth extracts having chymosin activity
Mozumder et al. Study on Isolation and Partial Purification of Lactase (β-Galactosidase) Enzyme from Lactobacillus Bacteria Isolated from Yogurt.
Xia et al. Purification, characterization, and gene cloning of a new cold-adapted β-galactosidase from Erwinia sp. E602 isolated in northeast China
Gul-Guven et al. Purification and some properties of a β-galactosidase from the thermoacidophilic Alicyclobacillus acidocaldarius subsp. rittmannii isolated from Antarctica
CN109852597B (zh) 一种β-半乳糖苷酶galRBM20_1及其制备方法和应用
Huang et al. A novel β-galactosidase from Klebsiella oxytoca ZJUH1705 for efficient production of galacto-oligosaccharides from lactose
Gote et al. Purification, characterization and substrate specificity of thermostable α-galactosidase from Bacillus stearothermophilus (NCIM-5146)
Kamran et al. Lactose hydrolysis approach: isolation and production of β-galactosidase from newly isolated Bacillus strain B-2
CN103614313B (zh) 一种发酵产耐高温β-半乳糖苷酶的菌株及其筛选方法
WO2021027390A1 (zh) 一种肝素裂解酶突变体及其重组表达的方法
Ramapriya et al. Partial purification and characterization of exoinulinase produced from Bacillus sp.
Abd El-Salam et al. Efficient enzymatic conversion of lactose in milk using fungal β-galactosidase
CN105400728A (zh) 一种产耐高温β-半乳糖苷酶的菌株及其筛选方法
TWI784019B (zh) 半乳糖寡糖的製造方法
Nam et al. Antarctic marine bacterium Pseudoalteromonas sp. KNOUC808 as a source of cold-adapted lactose hydrolyzing enzyme
Ali et al. Optimization of β-galactosidase production from yogurt and dairy soil associated bacteria using different fermentation media
Kulinich et al. Identification and characterization of two novel alpha-D-galactosidases from Pedobacter heparinus
CN113817656B (zh) 一种枯草芽孢杆菌及其在乳糖酶生产中的应用
DK143714B (da) Fremgangsmaade til hydrolyse af lactose under dannelse af glucose og galactose
Jaturapiree et al. Isolation and Production of Novel [beta]-galactosidase from a Newly Isolated, Moderate Thermophile, Bacillus sp. Strain B1. 1
CN117737039B (zh) 一种N-乙酰氨基葡萄糖苷酶突变体De259AΔ7及其制备与应用
US20220304323A1 (en) Production of lactase enzymes using altered regulation strains

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130918

Termination date: 20180623

CF01 Termination of patent right due to non-payment of annual fee