CN102239045B - 用于提供可识别的粉末组合的方法及用于制造物体的方法 - Google Patents

用于提供可识别的粉末组合的方法及用于制造物体的方法 Download PDF

Info

Publication number
CN102239045B
CN102239045B CN200980148257.9A CN200980148257A CN102239045B CN 102239045 B CN102239045 B CN 102239045B CN 200980148257 A CN200980148257 A CN 200980148257A CN 102239045 B CN102239045 B CN 102239045B
Authority
CN
China
Prior art keywords
powder
combinations
characteristic
old
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980148257.9A
Other languages
English (en)
Other versions
CN102239045A (zh
Inventor
T·马特斯
L·胡梅勒
M·弗隆麦耶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EOS GmbH
Original Assignee
EOS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EOS GmbH filed Critical EOS GmbH
Publication of CN102239045A publication Critical patent/CN102239045A/zh
Application granted granted Critical
Publication of CN102239045B publication Critical patent/CN102239045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Powder Metallurgy (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

一种用于为生产制造方法提供材料组合的方法中,通过选择性地在与三维物体(2)在相应层的截面相对应的位置硬化材料的层而构造所述三维物体(2)。本发明的任务是提供一种方法,用其能追溯地记录所制造的物体的质量并因此进一步改进质量。为此,该方法的特征在于包括以下步骤:提供以至少一个特性来识别的至少一个第一材料组合,采集与所述第一材料组合的所述至少一个特性相关的数据,以及存储与所述第一材料组合的所述至少一个特性相关的数据。

Description

用于提供可识别的粉末组合的方法及用于制造物体的方法
技术领域
本发明涉及一种用于尤其为激光烧结提供粉末组合的方法,并且涉及一种用于尤其借助于激光烧结制造三维物体的方法。
背景技术
在分层构造(schichtaufbauend)方法领域中,尤其是在激光烧结中,所产生的物体的质量取决于所使用的粉末的质量和特性。所使用的粉末的特性经常了解并不充分,因为粉末的组成成分由于混入在先前制造过程中所使用的粉末(所谓的旧粉末)而大多是未知的。
为了确定粉末特性,例如使用所谓的熔体体积率方法(Melt VolumeRate:MVR),其中生成粉末熔体(Pulverschmelze)并且确定粉末熔体的粘度,粉末熔体的粘度可以推断粉末的时龄(Alter)。此外还确定熔化温度。但是,该方法很耗费时间并且不适于所有情形。
DE102006023484公开了一些设备和方法,借助于它们可以改善其中使用了新旧粉末混合物的通过激光烧结所制造的物体的质量。
发明内容
本发明的任务在于提供一种用于为分层构造方法提供能明确识别的粉末组合的方法以及一种用于制造三维物体的方法,借助于其以可追溯的方式记录所制造的物体的质量并因此可以进一步对其进行改进。
该任务通过用于制造三维物体的选择性激光烧结方法来实现,其中通过选择性地在与物体在相应层中的截面相对应的位置处硬化粉末材料的层而构造所述物体,所述方法包括以下步骤:提供以至少一个特性来识别的至少一个第一材料组合,其中所述特性是所述材料的组成成分、所述材料的时龄或所述材料的量;采集与所述第一材料组合的所述至少一个特性相关的数椐,以及存储与所述第一材料组合的所述至少一个特性相关的数椐;为所述材料组合分配一个标识号,通过该标识号能追溯所述材料组合的加工过程。
根据本发明的方法的一个优点在于任何时候都知道什么粉末成分被用于所制造的物体。例如,新旧粉末的百分比份额以及整个粉末的耗费量是已知的(所有数据可以通过IQMS(集成质量管理系统:IntegratedQuality Management System)被中央地管理)。所使用的粉末和由其构造的物体可以以直到制造为止的谱系的形式被回溯。
可以确定每个单个层的组成成分。所制造的物体的质量因此是经得起检验的。通过能这样执行的对所制造的物体的质量控制,可以授予相应的认证(QMS)。还可能将激光烧结机器的构造参数与所使用的粉末的特性联系起来。此外还可以根据所使用的粉末调校激光烧结机器。
另一优点在于确保了所制造的物体的可复制性,因为为此的所有必需的参数是已知的。这是很多生产制造企业、例如飞机工业中的生产制造企业所要求的,因为出于安全原因必须遵守特别严格的规定。
另一优点在于:维护人员和客户通过所记录的数据获得了对于机器的可靠性和负荷程度的了解。机器的状态、其参数以及在分层构造方法中可能出现的不均匀性或缺陷是能追溯的。出现的问题可以以该方式快速且经济地被解决。
附图说明
通过借助于附图对实施例的描述可以了解本发明的其他特征和优点。在附图中:
图1示出了激光烧结设备的示意图,
图2示出了根据本发明的一种用于提供粉末组合的系统的示意图,
图3示出了根据本发明的一种具有方法步骤“冷却”、“落砂(Auspacken)”、“收集”、“混合”、“制造”的方法的示意图,
图4示出了材料流视图的一个例子。
具体实施方式
以下参考附图首先以激光烧结为例描述第一实施方式。
图1中示例性地示出的激光烧结设备1包括向上开口的构造室100,在该构造室中具有能在垂直方向上移动的托架200,托架承载要构造的物体2并且限定构造区(Baufeld)。托架200在垂直方向上被设置为使得物体2的相应要硬化的层位于工作面400中。此外,设置涂敷装置(Beschichter)500,用于涂敷能通过电磁辐射硬化的粉末3。粉末3从储备容器24中经由计量装置(Dosiervorrichtung)600以一定量被供给涂敷装置500。此外还设置激光器700,激光器生成激光束700a,激光束被偏转装置800偏转到输入窗900上并且由该输入窗900进入处理室1000中并且聚焦到工作面400中的预定点上。此外还设置控制单元110,由该控制单元以与构造过程的执行协调的方式控制该设备的部件。
为了制造物体2,粉末3被涂敷装置500一层一层地涂敷到工作面400上。激光束700a选择性地在与各层中物体2的截面相对应的位置处硬化粉末3。然后,能移动的托架200降低,并且下一层粉末3被涂敷装置500涂敷到工作面400上。这些步骤被多次重复直到物体2被制造完成。粉末3可以是塑料粉末、金属粉末、涂层的沙、陶瓷粉末、以上物质的混合物、或者甚至每种粉末的糊状粉末配置物。
已经经过一个或多个构造过程但没有被硬化的粉末3被成为旧粉末4,并且所具有的材料特性被该过程及所伴随的热作用改变。
根据本发明的方法在制造物体2的每个构造过程中都采集粉末成分并且因此也采集能由该信息推导出的特性。关于粉末混合物的粉末成分及特性的这些信息在下一个构造过程中被考虑用于调校构造参数以及用于可能进行的零件认证(质量管理系统:QMS)。
图2示出了用于提供材料组合或粉末组合以执行根据本发明的方法的系统的一个示意图。所有过程数据在中央粉末数据库6中被管理。中央粉末数据库6不仅与激光烧结装置1交换信息,而且与监控器或时间服务器(Zeitserver)7交换信息。时间服务器7管理制造过程的时序。这例如在使用不止一个激光烧结装置1的情况下是重要的。时间服务器7还与粉末追踪数据库8交换信息。
粉末追踪数据库8记录并监测所使用的粉末3,即所使用的旧粉末4以及输送给系统的还没有经过制造过程的新粉末5。以该方式确保了可以准确地确定所生成的物体2具有什么粉末成分。粉末追踪数据库8不仅与中央粉末数据库6相连,而且还与由操作者12操作的或者经由软件控制的终端11相连。终端11监测旧粉末4以及新粉末5的使用。在终端11上可以由操作者12输入未自动地由粉末数据库6提供的数据,例如从系统中取出或向系统添加的粉末量及其属性。在第一天平秤14上称重的取出的粉末3获得一标记,例如RFID芯片、具有条形码的标签或者其他形式的标志。以类似的方式,粉末3可以经由一天平秤引入到系统中。
旧粉末加料(Altpulverchargen)的各个量被激光烧结设备1使用(verbauen)。但是,旧粉末4首先在混合器中与新粉末5混合。通过选择混合比例,在这个早期阶段中已经可以限定之后制造完成的零件的材料特性,如抗拉强度、弹性模量、导热性等。因此,在该过程步骤中,花费大的用于确定特性的单独分析是多余的。通过已知的混合比例还可以例如相对于所使用的粉末3的熔化温度最佳地设置激光烧结设备1的参数。
如果新粉末5注入到混合器17中,则操作者12或RFID13负责将关于量、加料(Charge)等的信息传输到终端11上,终端11将这些信息传输到粉末追踪数据库8,粉末追踪数据库又将这些信息转发到粉末数据库6。
新粉末5在与旧粉末4混合之前借助于第二天平秤15被称重。所使用的旧粉末量和新粉末量中央地存储在粉末数据库6中。同样,新旧粉末的混合比例也在那里被保存。以该方式,系统在任何时间点都知道什么粉末3在哪里、在何时以什么组成成分被使用。所生成的每个物体2因此对于其组成成分而言能够准确地确定。为此可以给予制造者的质量印记(QMS)。例如通过对所制造的物体2的分析、所使用的用于输送粉末3的计量装置的参数、各个构造过程的面积因数、构造高度、粉末的混合比例以及新粉末5的称重量进行对粉末循环回收量(Pulver-Umlaufmengen)的确定。
通过接口9或IQMS(集成质量管理系统)信息中心10可以内部或外部地检查或维护该系统。可以借助于IQMS确定和记录制造过程期间的缺陷。在制造过程期间检测到不均匀性或缺陷的物体2然后被检验。以该方式可以确保和证明所制造的部件的高质量(例如表面质量)。还能够实现对激光器性能、扫描器运行以及温度分布的监视。所收集的数据用于对过程的进一步优化以及由制造者授予质量印记。此外,制造过程是能再现的,并且因此所制造的零件是能复制的。
此外还可以设置与该系统通信的外部部件。
图3示出了第一实施方式中的示例性地具有各个方法步骤“冷却”、“落砂”、“收集”、“混合”、“制造”(激光烧结设备1)的一种方法。
首先,激光烧结设备1在一个构造过程(作业)中制造一个物体2或同时制造多个物体2。该信息被记录在作业数据库18中,然后由时间服务器7调用。时间服务器7然后通知粉末追踪数据库8。同时,粉末3注入到激光烧结设备1的为其设置的粉末容器25中。在混合器17中,通过混合旧粉末4和/或新粉末5而生成新的粉末3。向描述系统中粉末数量和质量变化的粉末数据库6通知产生了多少新的粉末,并且粉末追踪数据库8得到关于所产生的粉末分配地获得什么ID。
如果粉末容器25和/或粉末输送段是空的,则其在粉末追踪数据库8控制下并且在操作者12或RFID13的支持下被重新填充。
可以以不同的粉末3构成物体2或在一个构造过程中制造的不同的物体2。也可以以另一粉末3构造每个单个层。如果在一个构造过程中新的粉末3或与先前所使用的粉末混合物不同的粉末混合物被供应,则在系统上记录粉末3在物体2的哪个层、即在什么构造高度改变。通过对经由粉末计量装置到激光烧结设备1中的粉末流的量采集,系统自动地识别粉末特性何时改变。
一旦构造过程结束,该信息就被传输到作业数据库18,并且然后被时间服务器7读出。时间服务器7又通知粉末追踪数据库8,从而现在可以结算所使用的新粉末5。这个结算例如可以通过以下方式进行,即物体2的制造者向粉末制造者购买新粉末份额并且为此获得一定量的粉末单元、例如kg单元,该单元然后在不同的构造过程中被使用。以该方式确保了只有与相应激光烧结设备1调准的粉末被使用。
通过结束构造过程,为未使用的旧粉末4和所制造的物体2生成新的标识号(ID)。因此为特定粉末组合分配一个ID,通过该ID能够追溯粉末组合的加工过程。粉末追踪数据库8向粉末数据库6通知系统中改变了的粉末组合。用于所生成的物体2的粉末3作为输出离开系统。为了冷却,所生成的物体2从构造容器100(参见1)中取出并且传输到冷却站30中。一旦物体2冷却了,其又被传送到落砂站31。在落砂时,由多个所生成的ID现在为物体2和旧粉末4分别生成一个ID。
设置收集器32,其包括两个旧粉末收集容器33。一旦一个旧粉末收集容器33满了,该容器就被搅拌混合。为了实现恒定的混合物,旧粉末4被传输到另一旧粉末收集容器33,并在那里被收集。从而混合器17只被供应以分析后的旧粉末4。例如还可以设想,一定的粉末3被储存,以便然后在需要时使用。这确保了准确复制一定零件或物体2的可能性。
因为在多个制造过程(作业)之后可能产生多个混合物,所以有利的是,从各个作业收集旧粉末4,然后搅拌混合这些旧粉末并且之后才将其与新粉末混合。优点在于,这些混合物可以以该方式保持为是相当的,并且因此可以确保稳定的粉末质量。
还可以设想,在没有收集器32的情况下执行该方法。
然后,旧粉末4被输送到混合器17中,并且在那里与新粉末5混合。
图4示出了具有将在下面描述的新步骤的一个材料流视图的一个例子。
该方法开始于提供加料新粉末。该加料的新粉末5部分用于一个或多个激光烧结机器1上的一个构造过程或多个构造过程。新粉末5事先标记以一标识号(ID),并且定量地(kg指示)供应到系统中。在该构造过程期间未硬化的旧粉末4在之后的一个构造过程中被重新使用。制造持续时间同样被系统采集。来自多个构造过程的旧粉末4相互混合为一个新的粉末混合物。这个新的粉末混合物得到一个新的ID,这个新的ID同样被系统采集。粉末混合物的组成成分对于系统而言是部分已知的。
在进一步的方法步骤中,可以向所生成的旧粉末混合物添加进一步的新粉末5。这个信息例如通过在终端11(参见图2)上输入新粉末量而同样被系统采集。每个新的粉末混合物获得一个自己的ID。
粉末3的例如从步骤1到步骤2的数量差(100kg输入–75kg输出)由所使用的粉末3(即物体2)以及由于清洁或再加工过程而导致的损耗粉末构成。
在步骤9中,例如来自机器的粉末ID11(46kg)、ID12(24)和ID13(17kg)被混合。其中生成具有ID14的87kg粉末3。该粉末3ID14包括加料234和加料302的分量。加料234的分量已经经过三个制造过程,加料302的分量已经经过两个或一个制造过程。这意味着,在粉末3ID14中,不仅存在“第一级”加料302(一次使用)的旧粉末分量,而且存在“第二级”加料302(二次使用)的旧粉末分量。
制造过程可以以该方式任意地进一步进行。例如除了所述激光烧结设备1之外还可以补充进一步的激光烧结设备1。
需要所涉及的粉末组合的标识(例如标识号)和重量作为材料流的最少信息。在需要时可以补充附加信息,如时间标志(例如制造或混合的时间点)、机器号、作业信息、粉末3在机器中的停留时间、加料以及诸如主导温度、材料这样的信息等。通过该材料流视图,可以从每个步骤跟踪材料组成成分和时龄。从而例如可以从机器SI777上的作业5追溯材料直到第一混合。由此可以确定所制造的物体2的粉末组成成分。在使用时间标记的情况下材料流的特定实施方式还使得能够在激光烧结机器1上一个作业期间进行一个或多个粉末ID转换。
根据本发明的方法不限于在激光烧结机器上的应用。更确切地,该方法能应用于所有分层构造方法,尤其是使用粉末材料的那些方法。

Claims (12)

1.一种用于制造三维物体的选择性激光烧结方法,其中通过选择性地在与物体(2)在相应层中的截面相对应的位置处硬化粉末(3、4、5)的层而构造所述物体(2),所述方法包括以下步骤:
提供以至少一个特性来识别的至少一个第一粉末组合;
采集与所述第一粉末组合的所述至少一个特性相关的数椐,以及
存储与所述第一粉末组合的所述至少一个特性相关的数椐;
为所述第一粉末组合分配一个标识号(ID),通过该标识号能追溯所述粉末组合的加工过程,
通过将旧粉末(4)与第一粉末组合混合提供至少一个第二粉末组合,所述第二粉末组合以至少一个特性来识别,其中,第一粉末组合是另一种旧粉末(4)或者新粉末(5),
其中,新粉末(5)还没有经过制造过程,且旧粉末(4)经过了至少一个制造过程并且在制造过程中没有被硬化,
存储与所述第二粉末组合的所述至少一个特性相关的数据,
其中所述至少一个特性是所述粉末(3、4、5)的组成成分、所述粉末(3、4、5)的时龄或所述粉末(3、4、5)的量。
2.根据权利要求1所述的方法,其特征在于,在制造一个或多个物体(2)的过程中记录和/或调节粉末(3)的粉末流。
3.根椐权利要求2所述的方法,其特征在于,记录和/或调节输入和输出,其中所输送的粉末(3)构成输入,所生成的物体(2)和旧粉末(4)构成输出。
4.根据权利要求2所述的方法,其特征在于,同时管理多个构造过程。
5.根据权利要求4所述的方法,其特征在于,所述多个构造过程在时间上同步地被管理。
6.根椐权利要求1或2所述的方法,其特征在于,所述粉末(3)是聚合物粉末和/或金属粉末和/或陶瓷粉末。
7.根据权利要求1或2所述的方法,其特征在于,能为所生成的物体(2)分配旧粉末的标识号(ID)和所述粉末组合的特性。
8.根据权利要求1或2所述的方法,其特征在于,所述特性通过所述粉末组合的标识号(ID)而被分配。
9.根据权利要求1或2所述的方法,其特征在于,所述特性附加包括所述粉末(3)的类型。
10.根据权利要求1或2所述的方法,其特征在于,在提供另一粉末组合时,存储构成该另一粉末组合的粉末组合的数据。
11.根据权利要求1或2所述的方法,其特征在于,所述数据被存储在电子数据库中。
12.根据权利要求1或2所述的方法,其特征在于,所述旧粉末(4)由RFID芯片(13)来识别。
CN200980148257.9A 2008-12-02 2009-11-30 用于提供可识别的粉末组合的方法及用于制造物体的方法 Active CN102239045B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008060046.6 2008-12-02
DE102008060046A DE102008060046A1 (de) 2008-12-02 2008-12-02 Verfahren zum Bereitstellen einer identifizierbaren Pulvermenge und Verfahren zur Herstellung eines Objekts
PCT/EP2009/008525 WO2010063439A2 (de) 2008-12-02 2009-11-30 Verfahren zum bereitstellen einer identifizierbaren pulvermenge und verfahren zur herstellung eines objekts

Publications (2)

Publication Number Publication Date
CN102239045A CN102239045A (zh) 2011-11-09
CN102239045B true CN102239045B (zh) 2015-08-19

Family

ID=42129623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980148257.9A Active CN102239045B (zh) 2008-12-02 2009-11-30 用于提供可识别的粉末组合的方法及用于制造物体的方法

Country Status (8)

Country Link
US (1) US8260447B2 (zh)
EP (1) EP2285551B1 (zh)
JP (1) JP5731393B2 (zh)
CN (1) CN102239045B (zh)
BR (1) BRPI0921137A2 (zh)
DE (1) DE102008060046A1 (zh)
RU (1) RU2477219C2 (zh)
WO (1) WO2010063439A2 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382081A2 (de) * 2009-01-23 2011-11-02 EOS GmbH Electro Optical Systems Verfahren und system zur wiederverwendung von restpulver aus einer anlage zur generativen fertigung von dreidimensionalen objekten
JP2011098808A (ja) * 2009-11-05 2011-05-19 Nikon Corp 基板カートリッジ、基板処理装置、基板処理システム、基板処理方法、制御装置及び表示素子の製造方法
FR2975320B1 (fr) * 2011-05-20 2015-05-29 Snecma Installation de fabrication d'une piece par fusion selective de poudre
JP6200969B2 (ja) * 2013-02-27 2017-09-20 エスエルエム ソルーションズ グループ アーゲー 調整された微細構造を備えるワークピースの製造装置及び製造方法
CN105163930B (zh) 2013-03-15 2017-12-12 3D系统公司 用于激光烧结系统的滑道
WO2014144255A2 (en) * 2013-03-15 2014-09-18 Matterfab Corp. Laser sintering apparatus and methods
DE102013206542A1 (de) * 2013-04-12 2014-10-16 Matthias Fockele Pulveraufbereitungsvorrichtung
EP2813432B1 (en) 2013-06-13 2017-12-20 Airbus Operations GmbH Method of installing a fixture
EP2918395B1 (en) 2014-03-12 2018-07-04 Rolls-Royce Corporation Additive manufacturing including layer-by-layer imaging
JP6359316B2 (ja) 2014-03-31 2018-07-18 三菱重工業株式会社 三次元積層装置及び三次元積層方法
WO2015166068A1 (de) * 2014-04-30 2015-11-05 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG Mittels eines lasersinterverfahrens hergestelltes werkzeug
DE102014007408A1 (de) 2014-05-21 2015-11-26 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Objekte aus pulverartigem Baumaterial
WO2015196149A1 (en) 2014-06-20 2015-12-23 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
CA2953303A1 (en) * 2014-07-03 2016-01-07 Dws S.R.L. Stereolithography method comprising a vertical compensation process, as well as apparatus and computer program product suited to implement said method
US9999924B2 (en) 2014-08-22 2018-06-19 Sigma Labs, Inc. Method and system for monitoring additive manufacturing processes
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
SG10202002601QA (en) 2014-10-17 2020-05-28 Applied Materials Inc Cmp pad construction with composite material properties using additive manufacturing processes
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
DE102014016718A1 (de) * 2014-11-13 2016-05-19 Cl Schutzrechtsverwaltungs Gmbh Produktionsanlage zur simultanen, generativen Herstellung von mehreren Bauteilen
WO2016081651A1 (en) 2014-11-18 2016-05-26 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US10226817B2 (en) 2015-01-13 2019-03-12 Sigma Labs, Inc. Material qualification system and methodology
WO2016115284A1 (en) 2015-01-13 2016-07-21 Sigma Labs, Inc. Material qualification system and methodology
DE102015202964A1 (de) 2015-02-18 2016-08-18 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
US11040492B2 (en) * 2015-04-13 2021-06-22 Materialise N.V. System and method for monitoring and recoating in an additive manufacturing environment
US20180264722A1 (en) * 2015-04-14 2018-09-20 Hewlett-Packard Development Company, L.P. Marking build material
US20180036950A1 (en) * 2015-04-14 2018-02-08 Hewlett-Packard Development Company, L.P. Determining a parameter of a process associated with a 3d printing process
US9662840B1 (en) 2015-11-06 2017-05-30 Velo3D, Inc. Adept three-dimensional printing
JP6582639B2 (ja) * 2015-07-07 2019-10-02 日本電気株式会社 積層造形装置及び積層造形方法
JP6746286B2 (ja) * 2015-09-28 2020-08-26 キヤノン株式会社 管理システム、それを構成する装置、制御方法、およびプログラム
US10207489B2 (en) 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US10336053B2 (en) 2015-10-01 2019-07-02 Ricoh Company, Ltd. Control apparatus for three dimensional object fabrication apparatus, control method for three-dimensional object fabrication apparatus, and three-dimensional object fabrication system
JP6798184B2 (ja) * 2015-10-01 2020-12-09 株式会社リコー 立体造形装置の制御装置、立体造形装置の制御方法、立体造形装置の制御プログラム、立体造形システム、及び立体造形物の製造方法
JP6901697B2 (ja) * 2015-10-15 2021-07-14 セイコーエプソン株式会社 流動性組成物セット及び流動性組成物
KR20230169424A (ko) 2015-10-30 2023-12-15 어플라이드 머티어리얼스, 인코포레이티드 원하는 제타 전위를 가진 연마 제품을 형성하는 장치 및 방법
US10593574B2 (en) 2015-11-06 2020-03-17 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10252335B2 (en) 2016-02-18 2019-04-09 Vel03D, Inc. Accurate three-dimensional printing
EP3228441A1 (en) * 2016-04-05 2017-10-11 Siemens Aktiengesellschaft Control system and method for additive manufacturing
WO2017194107A1 (en) * 2016-05-12 2017-11-16 Hewlett-Packard Development Company, L.P., Additive manufacturing particulate build material management station
EP3389997A1 (en) 2016-05-12 2018-10-24 Hewlett-Packard Development Company, L.P. Build material management
GB2550552A (en) * 2016-05-12 2017-11-29 Hewlett Packard Development Co Lp Mixer unit
US10259044B2 (en) 2016-06-29 2019-04-16 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018017069A1 (en) * 2016-07-19 2018-01-25 Hewlett-Packard Development Company, L.P. 3d printer fresh and recycled powder supply management
DE102016213609A1 (de) 2016-07-25 2018-01-25 Eos Gmbh Electro Optical Systems Verfahren und Vorrichtung zur Ermittlung der Bauteilqualität
KR102182754B1 (ko) * 2016-07-27 2020-11-25 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 3차원(3d) 적층 제조에 있어서의 분말 제공
US10814391B2 (en) 2016-09-13 2020-10-27 General Electric Company Additive manufacturing material analysis system and related method
US20180126460A1 (en) 2016-11-07 2018-05-10 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186082A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10888925B2 (en) 2017-03-02 2021-01-12 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
WO2018169826A1 (en) * 2017-03-15 2018-09-20 Carbon, Inc. Integrated additive manufacturing systems incorporating identification structures
US20180281284A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
US20180304539A1 (en) 2017-04-21 2018-10-25 Applied Materials, Inc. Energy delivery system with array of energy sources for an additive manufacturing apparatus
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. ABRASIVE DISTRIBUTION POLISHING PADS AND METHODS OF MAKING SAME
US11938544B2 (en) * 2017-09-28 2024-03-26 Schlumberger Technology Corporation Systems and methods for manufacturing or repairing components at a remote work site
EP3482931B1 (en) * 2017-11-10 2022-01-12 CL Schutzrechtsverwaltungs GmbH Method for operating at least one apparatus for additively manufacturing of three-dimensional objects
WO2019094278A1 (en) 2017-11-10 2019-05-16 General Electric Company Powder refill system for an additive manufacturing machine
US12005637B2 (en) 2017-11-10 2024-06-11 General Electric Company Gas flow systems for an additive manufacturing machine
DE102017220640A1 (de) 2017-11-17 2019-05-23 Volkswagen Aktiengesellschaft Vorrichtung zum Auspacken zumindest eines Bauteils sowie ein Verfahren, um dieses Auspacken zu realisieren
WO2019125420A1 (en) * 2017-12-19 2019-06-27 Hewlett-Packard Development Company, L.P. Additive manufacturing apparatus, devices and methods
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US20190303782A1 (en) * 2018-03-30 2019-10-03 The Boeing Company Quester evaluation foir additive manufacturing of a vehicle part
GB201806273D0 (en) * 2018-04-17 2018-05-30 Lpw Technology Ltd Apparatus and method for producing an article by additive manufacturing
JP7299970B2 (ja) 2018-09-04 2023-06-28 アプライド マテリアルズ インコーポレイテッド 改良型研磨パッドのための配合物
US11376792B2 (en) 2018-09-05 2022-07-05 Carbon, Inc. Robotic additive manufacturing system
US20210046711A1 (en) * 2018-09-14 2021-02-18 Hewlett-Packard Development Company, L.P. Build material quality level based on temperatures
WO2020068076A1 (en) * 2018-09-26 2020-04-02 Hewlett-Packard Development Company, L.P. Mix of build materials
WO2020072032A1 (en) * 2018-10-01 2020-04-09 Hewlett-Packard Development Company, L.P. Determine ratios of build materials to achieve selected features
JP7220615B2 (ja) * 2019-04-16 2023-02-10 日本電産マシンツール株式会社 管理システム及び管理方法
EP3756793A1 (de) * 2019-06-28 2020-12-30 Siemens Aktiengesellschaft Verfahren und anordnung zum separieren überschüssigen werkstoffs von einem additiv hergestellten bauteil
EP3756792A1 (de) * 2019-06-28 2020-12-30 Siemens Aktiengesellschaft Verfahren und anordnung zum separieren überschüssigen werkstoffs von einem additiv hergestellten bauteil
JP2022544339A (ja) 2019-07-26 2022-10-17 ヴェロ3ディー,インコーポレーテッド 三次元オブジェクトの形成における品質保証
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
DE102020115777A1 (de) * 2020-06-16 2021-12-16 Fette Compacting Gmbh Verfahren zur Produktverfolgung in einer Anlage
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
EP3960340A1 (de) * 2020-08-25 2022-03-02 Siemens Aktiengesellschaft Additives herstellen eines objekts und aktualisieren eines pulver-datensatzes
US11878389B2 (en) 2021-02-10 2024-01-23 Applied Materials, Inc. Structures formed using an additive manufacturing process for regenerating surface texture in situ
IL305383A (en) * 2021-03-01 2023-10-01 Carpenter Tech Corporation Metal powder management system for additive manufacturing
DE102021213393B3 (de) 2021-11-29 2023-03-16 Volkswagen Aktiengesellschaft Verfahren zur Bestimmung der Durchlaufhäufigkeit und Historie einer Fertigungspulvermischung für den 3D-Druck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405095B1 (en) * 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
WO2003058505A1 (en) * 2001-12-28 2003-07-17 Kimberly-Clark Worldwide, Inc. Quality management by validating a bill of materials in event-based product manufacturing
CN1608832A (zh) * 2003-09-15 2005-04-27 特鲁普工具机械有限及两合公司 制造三维成形主体的设备和方法
EP1938952A2 (en) * 2002-11-12 2008-07-02 Objet Geometries Ltd. Three-dimensional object printing

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1227338A1 (ru) * 1984-01-16 1986-04-30 Таллинский Политехнический Институт Способ получени спеченных твердосплавных слоистых изделий
US5386500A (en) * 1987-06-02 1995-01-31 Cubital Ltd. Three dimensional modeling apparatus
DE68929542D1 (de) * 1988-04-18 2006-01-19 3D Systems Inc Stereolithografie mit verschiedenen Vektorabtastungsmoden
US5999184A (en) * 1990-10-30 1999-12-07 3D Systems, Inc. Simultaneous multiple layer curing in stereolithography
DE4233812C1 (de) * 1992-10-07 1993-11-04 Eos Electro Optical Syst Verfahren und vorrichtung zum herstellen von dreidimensionalen objekten
US5393482A (en) * 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
MX9705844A (es) * 1995-02-01 1997-11-29 3D Systems Inc Recubrimiento rapido de objetos tridimensionales con una base en seccion transversal.
US6391245B1 (en) * 1999-04-13 2002-05-21 Eom Technologies, L.L.C. Method for creating three-dimensional objects by cross-sectional lithography
US6916441B2 (en) * 2001-10-03 2005-07-12 3D Systems, Inc. Post processing three-dimensional objects formed by solid freeform fabrication
US6782303B1 (en) * 2001-11-30 2004-08-24 3D Systems, Inc. Calibrating deposition rates in selective deposition modeling
US7035877B2 (en) * 2001-12-28 2006-04-25 Kimberly-Clark Worldwide, Inc. Quality management and intelligent manufacturing with labels and smart tags in event-based product manufacturing
US7270528B2 (en) * 2002-05-07 2007-09-18 3D Systems, Inc. Flash curing in selective deposition modeling
JP3770206B2 (ja) * 2002-05-28 2006-04-26 松下電工株式会社 三次元形状造形物の製造装置
US6907307B2 (en) * 2002-07-02 2005-06-14 3D Systems, Inc. Support volume calculation for a CAD model
EP1590149B1 (en) * 2002-12-03 2008-10-22 Objet Geometries Ltd. Process of and apparatus for three-dimensional printing
JP4366538B2 (ja) * 2003-09-04 2009-11-18 リコープリンティングシステムズ株式会社 三次元積層造形物用支持体材料、三次元積層造形物の中間体、三次元積層造形物の製造方法、三次元積層造形物の製造装置
EA007448B1 (ru) * 2004-05-17 2006-10-27 Государственное Научное Учреждение "Институт Молекулярной И Атомной Физики Нан Беларуси" Способ лазерного спекания изделий из порошковых материалов и устройство для его осуществления
US20060105663A1 (en) 2004-10-04 2006-05-18 Stefan Greulich Polymer assemblies with decorative surfaces
RU2280630C1 (ru) * 2005-01-11 2006-07-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Способ смешения компонентов взрывчатых составов
US20060161287A1 (en) * 2005-01-14 2006-07-20 Simonis Steven F Rapid prototyping and manufacturing of photocured objects using LCD panel as programmably variable photomask
US7236166B2 (en) * 2005-01-18 2007-06-26 Stratasys, Inc. High-resolution rapid manufacturing
US20060214335A1 (en) * 2005-03-09 2006-09-28 3D Systems, Inc. Laser sintering powder recycle system
DE112006001961T5 (de) * 2005-07-27 2008-05-15 Shofu Inc. Vorrichtung zum Bilden eines geschichteten Objekts
US7700016B2 (en) * 2005-08-02 2010-04-20 Solidscape, Inc. Method and apparatus for fabricating three dimensional models
US20070075461A1 (en) * 2005-09-30 2007-04-05 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US7621733B2 (en) * 2005-09-30 2009-11-24 3D Systems, Inc. Rapid prototyping and manufacturing system and method
US7690909B2 (en) * 2005-09-30 2010-04-06 3D Systems, Inc. Rapid prototyping and manufacturing system and method
DE102006023484A1 (de) 2006-05-18 2007-11-22 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum schichtweisen Herstellen eines dreidimensionalen Objekts aus einem pulverförmigen Aufbaumaterial
US7848838B2 (en) * 2006-06-23 2010-12-07 Massachusetts Institute Of Technology Digital assembler for digital materials
EP1880831A1 (en) * 2006-07-11 2008-01-23 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Method and system for layerwise production of a tangible object
US20080018018A1 (en) * 2006-07-20 2008-01-24 Nielsen Jeffrey A Solid freeform fabrication methods and systems
DE102007006478B4 (de) * 2007-02-09 2011-06-30 Universität Stuttgart, 70174 Vorrichtung und Verfahren zum Zuführen von sinterbarem Pulver auf eine Auftragsstelle einer Lasersintereinrichtung
US8784723B2 (en) * 2007-04-01 2014-07-22 Stratasys Ltd. Method and system for three-dimensional fabrication
US20100021638A1 (en) * 2008-07-28 2010-01-28 Solidscape, Inc. Method for fabricating three dimensional models
JP5186306B2 (ja) * 2008-08-25 2013-04-17 パナソニック株式会社 三次元形状造形物の製造方法
WO2010043274A1 (en) * 2008-10-17 2010-04-22 Huntsman Advanced Materials (Switzerland) Gmbh Improvements for rapid prototyping apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405095B1 (en) * 1999-05-25 2002-06-11 Nanotek Instruments, Inc. Rapid prototyping and tooling system
WO2003058505A1 (en) * 2001-12-28 2003-07-17 Kimberly-Clark Worldwide, Inc. Quality management by validating a bill of materials in event-based product manufacturing
EP1938952A2 (en) * 2002-11-12 2008-07-02 Objet Geometries Ltd. Three-dimensional object printing
CN1608832A (zh) * 2003-09-15 2005-04-27 特鲁普工具机械有限及两合公司 制造三维成形主体的设备和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Product News Polymere Laser-Sintering;Thomas MATTES;《EOS International User Meeting 2008》;20080415;第23-25页 *

Also Published As

Publication number Publication date
JP5731393B2 (ja) 2015-06-10
US8260447B2 (en) 2012-09-04
JP2012510390A (ja) 2012-05-10
BRPI0921137A2 (pt) 2016-02-23
RU2477219C2 (ru) 2013-03-10
RU2011120910A (ru) 2012-11-27
CN102239045A (zh) 2011-11-09
DE102008060046A1 (de) 2010-06-10
US20100161102A1 (en) 2010-06-24
EP2285551A2 (de) 2011-02-23
WO2010063439A3 (de) 2010-10-21
WO2010063439A2 (de) 2010-06-10
EP2285551B1 (de) 2014-10-01

Similar Documents

Publication Publication Date Title
CN102239045B (zh) 用于提供可识别的粉末组合的方法及用于制造物体的方法
Vock et al. Powders for powder bed fusion: a review
Clayton et al. The application of powder rheology in additive manufacturing
Mercado Rivera et al. Additive manufacturing methods: techniques, materials, and closed-loop control applications
Clayton Optimising metal powders for additive manufacturing
Perez Analysis of the surface roughness and dimensional accuracy capability of fused deposition modelling processes
KR101196087B1 (ko) 3차원 객체 생성을 위한 트랜잭션 방법
JPWO2019189639A1 (ja) 装置調整機器、付加製造装置、付加製造方法、及びプログラム
Tay et al. Creating functionally graded concrete materials with varying 3D printing parameters
US20220244703A1 (en) Method for the additive manufacturing of at least one component of defined component properties
Bourell et al. Improvements in ductility and reliability of mechanical properties of polyamide 11 produced using laser-based powder bed fusion
Pei et al. Future challenges in functionally graded additive manufacturing
EP4301535A1 (en) Metal powder management system for additive manufacturing
O’Regan et al. Engineering a more sustainable manufacturing process for metal Additive Layer Manufacturing using a productive process pyramid
Sassaman et al. A model for bonding mechanisms in indirect laser powder bed fusion of nylon/alumina blends
Peng Research framework of sustainability in additive manufacturing: a case of fused deposition modeling
Fontana et al. Selection of high-variety components for selective laser sintering: An industrial case study
Sapkal et al. Dimensional Variation and Wear Analysis of 3D Printed Pattern for Sand Casting
De Oliveira et al. Application of calcium carbonate in resin transfer molding process: An experimental investigation: Anwendung von Calciumkarbonat beim Harz‐Injektionsverfahren: Eine experimentelle Untersuchung
Phillips et al. Evaluation of a feed-forward laser control approach for improving consistency in selective laser sintering
Ali Benchmarking Studies on Energy Usage and Lattice Infill Pattern for Common Additive Manufacturing Technologies
Phillips et al. Smart manufacturing in additive manufacturing
CN109808174A (zh) 用于添加式地制造三维物体的设备的校准装置
Omar et al. Effects of Different Polyamide (PAa12) Composition on Dimensional Accuracy in Selective Laser Sintering
Deuser et al. Process planning and control for functionally graded material fabrication using freeze-form extrusion fabrication

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1163606

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1163606

Country of ref document: HK