CN102224601A - 太阳能电池的制造方法 - Google Patents

太阳能电池的制造方法 Download PDF

Info

Publication number
CN102224601A
CN102224601A CN2010800023412A CN201080002341A CN102224601A CN 102224601 A CN102224601 A CN 102224601A CN 2010800023412 A CN2010800023412 A CN 2010800023412A CN 201080002341 A CN201080002341 A CN 201080002341A CN 102224601 A CN102224601 A CN 102224601A
Authority
CN
China
Prior art keywords
solar cell
emitter
hole
wafer
manufacture method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800023412A
Other languages
English (en)
Other versions
CN102224601B (zh
Inventor
文仁植
赵银喆
李元载
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HD Hyundai Heavy Industries Co Ltd
Original Assignee
Hyundai Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Heavy Industries Co Ltd filed Critical Hyundai Heavy Industries Co Ltd
Publication of CN102224601A publication Critical patent/CN102224601A/zh
Application granted granted Critical
Publication of CN102224601B publication Critical patent/CN102224601B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明提供一种太阳能电池的制造方法。所述太阳能电池的制造方法,在硅晶片形成通孔,在所述通孔的内壁及连接所述通孔的所述晶片的前表面以及后表面上形成浅结发射极(shallow emitter),用掺杂剂(dopant)进行重掺杂(heavy doping)而形成选择性发射极,以使沿着连接所述浅结发射极的所述通孔的方向的大部分区域具有一定以上的高密度。因此,本发明可以通过在镀金属穿孔卷绕(MWT)太阳能电池的、与具有一定宽度和高度的前表面电极接触的区域上实施激光掺杂或蚀刻,形成选择性发射极。

Description

太阳能电池的制造方法
技术领域
本发明涉及一种太阳能电池的制造方法,尤其涉及一种可以通过在镀金属穿孔卷绕太阳能电池的、接触于具有一定宽度和高度的前表面电极的区域上实施激光掺杂或蚀刻而形成选择性发射极的太阳能电池的制造方法。
背景技术
最近,随着人们意识到诸如石油或煤炭等现有能源资源的枯竭,因而对替代这些现有能源的替代能源的关注度也在逐渐提高。其中,对于太阳能电池而言,由于能源资源丰富,并且不存在引起环境污染的问题,因此尤其受到瞩目。太阳能电池中有利用太阳热而产生旋转涡轮机所需的蒸汽的太阳热电池和利用半导体的性质将太阳光(photons)转换成电能的太阳光电池。通常太阳能电池是指太阳光电池(以下称为太阳能电池)。
现有的太阳能电池如同二极管,具有p型半导体101和n型半导体102的接合结构,并且当光入射于太阳能电池时,由于光与构成太阳能电池的半导体之间的物质相互作用而产生带负电荷的电子和因负电荷的移动而带正电荷的空穴,电子-空穴对移动时产生电流。这称为光电效应(photovoltaic effect)。构成太阳能电池的p型及n型半导体中,由于电子被吸引至n型半导体侧,而空穴被吸引至p型半导体侧,因此分别向与n型半导体接合的电极以及与p型半导体接合的电极移动,如果将该电极用电线连接,则电荷流动,从而产生电流。
其中,现有的背接触硅太阳能电池与在前表面(front surface)及后表面(rear surface)上具有触点的现有硅太阳能电池相比,具有以下几个优点。第一个优点是,因减少或消除了触点的遮蔽损耗(shading obscuration losses ),具有更高的转换效率(不能将从触点栅极(grid)反射的阳光转换成电而利用)。第二个优点是,更容易将背接触电池(cells)装配到电路内,由此可以降低成本,其原因在于两个极性触点在同一个表面(surface)上。例如,相比现有的光伏模块(photovoltaic module)装配,可以实现成本的大幅度降低,这是通过在单步工序中封装(encapsulate)太阳能电池的电路和光伏模块,与背接触电池一起实现。
制造背接触硅太阳能电池的方式有几种。这些方式包括MWA(Metallization Wrap Around,镀金属卷绕)结构、MWT(Metallization Wrap Through,镀金属穿孔卷绕)结构、EWT(Emitter Wrap Through,发射极穿孔卷绕)结构以及背面接合(back-junction)结构。
MWA及MWT在前表面上具有集电栅极(current collection grid)。该栅极分别卷绕(wrapping)边缘(edge)周围或通过孔(holes)卷绕至后表面,以制造背接触电池。
其中,对于MWT而言,钻孔之后实施纹理处理(texturing),接着形成磷硅酸盐玻璃(PSG)之后实施重掺杂,由此形成发射极。但是,此时,若晶片前表面上形成一定宽度及高度以下的细(细微)线形指状(finger)电极,则具有无法形成与其对应的选择性发射极的问题。
发明内容
技术问题
本发明是为了解决上述问题而提出的,本发明的第一个目的在于提供一种可以通过在镀金属穿孔卷绕(MWT)太阳能电池的接触于具有一定宽度和高度的前表面电极的区域上实施激光掺杂或蚀刻而形成选择性发射极的太阳能电池的制造方法。
并且,本发明的第二个目的在于提供一种前表面电极为形成精细的宽度和高度的细线形指状电极时,可以降低他们之间的接触电阻,从而减少电功耗的太阳能电池的制造方法。
技术方案
为了实现上述的目的,本发明提供一种太阳能电池的制造方法。
所述太阳能电池的制造方法为:在硅晶片上形成通孔;在所述通孔的内壁及连接所述通孔的所述晶片的前表面以及后表面上形成浅结发射极(shallow emitter);用掺杂剂(dopant)进行重掺杂(heavy doping)而形成选择性发射极,以使沿着连接所述浅结发射极的所述通孔的方向的大部分区域具有一定以上的高密度。
在此,优选地,所述重掺杂在所述晶片前表面上形成磷硅酸盐玻璃,并且使用激光,对所述磷硅酸盐玻璃进行退火,形成所述选择性发射极。
并且,优选地,所述重掺杂是在所述晶片前表面上形成扩散部,并掩蔽沿着连接所述通孔的方向的大部分区域,而且回蚀(each-back)所述被掩蔽的区域的外部区域,从而形成所述选择性发射极。
并且,优选地,所述选择性发射极形成之后,在所述晶片的前表面的重掺杂部上印刷银浆料,在晶片的后表面上印刷铝。
并且,优选地,在所述晶片的前表面的重掺杂部上印刷银时,为了使光反射最小化,沿着连接所述通孔的方向,形成与所述通孔连接的细线形指状电极,进行所述镀覆处理。
并且,优选地,形成所述浅结发射极之后,形成浅结发射极层,并且在所述浅结发射极层中印刷铝,并进行热处理,从而所述铝将所述浅结发射极层变为p型掺杂层。
有益效果
本发明通过在镀金属穿孔卷绕(MWT)太阳能电池的与具有一定宽度和高度的前表面电极接触的区域上实施激光掺杂或蚀刻,由此形成选择性发射极,从而减少发射极层及发射极表面的再结合,进而具有提高转换效率的效果。
并且,当本发明的前表面电极为形成精细的宽度和高度的细线形指状电极时,可以降低它们之间的接触电阻,从而具有减少电功耗的效果。
附图说明
图1至图5是示出本发明的太阳能电池的制造方法的剖视图;
图6是示出采用本发明的太阳能电池的制造方法而制造的太阳能电池的局部剖视图;
图7是示出具有普通细线形指状电极的太阳能电池的俯视图;
图8是示出根据本发明的具有细线形指状电极的太阳能电池的俯视图。
具体实施方式
以下,参照附图来说明本发明的太阳能电池的制造方法。
图1至图5是示出本发明的太阳能电池的制造方法的剖视图。图6是示出采用本发明的太阳能电池的制造方法而制造的太阳能电池的局部剖视图。图7是示出具有普通细线形指状电极的太阳能电池的俯视图。图8是示出根据本发明的具有细线形指状电极的太阳能电池的俯视图。
首先,参照图1及图2,在晶片100上形成通孔200。在此,使用激光形成能够贯穿所述准备好的硅晶片100的前表面和后表面的通孔200。在此,优选地,所述通孔200形成为其内径从所述晶片100的前表面到后表面逐渐变小。
并且,蚀刻及清洗形成所述通孔200的晶片100。在此,该步骤包括碱性蚀刻或酸性蚀刻,并对前表面进行纹理处理,以提高吸收。
并且,参照图3,在所述晶片100的后表面上形成与所述通孔200接触的n型第一接触孔。
接着,在所述通孔200的内壁以及连接所述通孔200的所述晶片100的前表面及后表面上形成浅结发射极(shallow emitter)300。
因此,在所述晶片100的前表面和所述晶片100的后表面及通孔200的内壁上形成低密度的浅结发射极300。
如图4和图6所示,附图符号“301”是浅结发射极层。之后,在印刷铝(Al)并进行热处理的工序中,通过铝补偿(compensation)发射极掺杂层,使发射极掺杂层变成p型掺杂层。在此,所述补偿是以相比发射极(n型-磷)更高浓度掺杂铝(p型掺杂剂),以变成p型的过程。
并且,为使沿着连接所述浅结发射极300的所述通孔200的方向的大部分区域具有一定以上的高密度,用掺杂剂(dopant)进行重掺杂(heavy doping),从而形成选择性发射极500。
在此,本发明中的重掺杂可以在以下两种方法中选择任意一个。即,第一种方法是激光掺杂方法,而另一种方法是回蚀方法。
对于第一种方法来说,重掺杂可以在所述晶片100前表面上形成PSG(磷硅酸盐玻璃),使用激光,对所述PSG进行退火,由此可以形成所述选择性发射极500。在此,优选地,形成高密度的选择性发射极500的位置为布置有电极或下述细线形指状电极700的区域。
对于另一种方法来说,重掺杂可以在所述晶片100的前表面上形成具有高密度的PSG,并掩蔽沿着连接所述通孔200的方向的大部分区域,回蚀(each-back)所述被掩蔽的区域的外部区域,由此可以形成所述选择性发射极500。
在此,另一个可以使用的方法是掺杂浆料(doping paste)方法。该方法在所述晶片100上涂布含有磷的掺杂浆料,在高温下进行热处理,以使包含在浆料中的磷掺杂到晶片100内,由此形成重掺杂的发射极,并进行浅结发射极工艺,从而形成选择性发射极500。所述浆料涂布用丝网印刷、喷墨印刷等方法。优选地,所述高温处理工序利用管状炉,在一次工艺中依次形成重掺杂和轻掺杂。
如此,在如上所述的两种方法中选择一个,以形成选择性发射极500之后,进行蚀刻,以去除因扩散而残留的PSG。在此,蚀刻剂可以包含水溶性HF化学蚀刻剂、HF气相蚀刻剂或电浆蚀刻剂。
接着,为了形成抗反射涂膜,在晶片100前表面上蒸镀氮化硅层。在此,所述氮化硅使用电浆化学气相蒸镀而进行蒸镀。
并且,晶片100前表面印刷银(Ag),晶片的后表面上印刷铝。
接着,经过金属成型过程,并进行太阳能电池测试过程。
发明的实施方式
另外,参照图6,形成所述浅结发射极300,并且采用所述重掺杂形成选择性发射极500之后,去除因扩散而残留的PSG,并且采用如上所述的化学气相蒸镀,在晶片100的前表面、后表面上蒸镀氮化硅,而且在晶片100后表面上印刷铝。
并且,在晶片100的后表面上印刷银。此时,沿着连接所述通孔200的方向形成细线形指状电极700,以连接所述通孔200。
并且,在金属成型过程中实施镀覆处理,进行太阳能电池测试过程。
在此,参照图7及图8,将所述细线形指状电极700的高度H2形成为9μm,将宽度W2为60μm,并使横截面为270μm2
此时,与图7的普通细线形指状电极700相比,当假设所述普通细线形指状电极700的高度为18μm,宽度W1为120μm,横截面为1080μm2,并且假设细线形指状电极的材质相同,具有一定的密度,且具有一定的电流密度时,可以得知使用根据本发明的细线形指状电极时,阴影损耗(%)为2.6%;使用普通细线形指状电极时,阴影损耗(%)为5.2%。在此,细线形指状电极的间距D为2.3mm。
权利要求书(按照条约第19条的修改)
1.一种太阳能电池的制造方法,其特征在于:
在硅晶片上形成通孔;
在所述通孔的内壁及连接所述通孔的所述晶片的前表面以及后表面上形成浅结发射极;
用掺杂剂进行重掺杂而形成选择性发射极,以使沿着连接所述浅结发射极的所述通孔的方向的大部分区域具有一定密度。
2.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上形成磷硅酸盐玻璃,并且使用激光,对所述磷硅酸盐玻璃进行退火,形成所述选择性发射极。
3.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上形成重掺杂的发射极层,并掩蔽沿着连接所述通孔的方向的大部分区域,而且回蚀所述被掩蔽的区域的外部区域,从而形成所述选择性发射极。
4.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上涂布含有磷的掺杂浆料,并进行高温热处理,制造重掺杂的发射极层,并且形成浅结发射极,从而形成所述选择性发射极。
5.根据权利要求1所述的太阳能电池的制造方法,其特征在于形成所述选择性发射极之后,在所述晶片的前表面的重掺杂部上印刷银浆料,在所述晶片的后表面上印刷铝。
6.根据权利要求5所述的太阳能电池的制造方法,其特征在于在所述晶片的前表面的重掺杂部上印刷银时,为了使光反射最小化,沿着连接所述通孔的方向,形成与所述通孔连接的细线形指状电极,然后进行镀覆处理。
7.根据权利要求5所述的太阳能电池的制造方法,其特征在于形成所述浅结发射极之后,形成浅结发射极层,并且在所述浅结发射极层中印刷铝,并进行热处理,从而所述铝将所述浅结发射极层变为p型掺杂层。

Claims (7)

1.一种太阳能电池的制造方法,其特征在于:
在硅晶片上形成通孔;
在所述通孔的内壁及连接所述通孔的所述晶片的前表面以及后表面上形成浅结发射极;
用掺杂剂进行重掺杂而形成选择性发射极,以使沿着连接所述浅结发射极的所述通孔的方向的大部分区域具有一定以上的高密度。
2.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上形成磷硅酸盐玻璃,并且使用激光,对所述磷硅酸盐玻璃进行退火,形成所述选择性发射极。
3.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上形成重掺杂的发射极层,并掩蔽沿着连接所述通孔的方向的大部分区域,而且回蚀所述被掩蔽的区域的外部区域,从而形成所述选择性发射极。
4.根据权利要求1所述的太阳能电池的制造方法,其特征在于所述重掺杂在所述晶片前表面上涂布含有磷的掺杂浆料,并进行高温热处理,制造重掺杂的发射极层,并且形成浅结发射极,从而形成所述选择性发射极。
5.根据权利要求1所述的太阳能电池的制造方法,其特征在于形成所述选择性发射极之后,在所述晶片的前表面的重掺杂部上印刷银浆料,在所述晶片的后表面上印刷铝。
6.根据权利要求5所述的太阳能电池的制造方法,其特征在于在所述晶片的前表面的重掺杂部上印刷银时,为了使光反射最小化,沿着连接所述通孔的方向,形成与所述通孔连接的细线形指状电极,进行所述镀覆处理。
7.根据权利要求5所述的太阳能电池的制造方法,其特征在于形成所述浅结发射极之后,形成浅结发射极层,并且在所述浅结发射极层中印刷铝,并进行热处理,从而所述铝将所述浅结发射极层变为p型掺杂层。
CN2010800023412A 2009-04-28 2010-05-13 太阳能电池的制造方法 Expired - Fee Related CN102224601B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090037050A KR101072543B1 (ko) 2009-04-28 2009-04-28 태양 전지의 제조 방법
PCT/KR2010/003028 WO2010126346A2 (ko) 2009-04-28 2010-05-13 태양 전지의 제조 방법

Publications (2)

Publication Number Publication Date
CN102224601A true CN102224601A (zh) 2011-10-19
CN102224601B CN102224601B (zh) 2013-12-25

Family

ID=43032720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800023412A Expired - Fee Related CN102224601B (zh) 2009-04-28 2010-05-13 太阳能电池的制造方法

Country Status (5)

Country Link
US (1) US20120270356A1 (zh)
EP (1) EP2410574A4 (zh)
KR (1) KR101072543B1 (zh)
CN (1) CN102224601B (zh)
WO (1) WO2010126346A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683484A (zh) * 2012-04-13 2012-09-19 苏州阿特斯阳光电力科技有限公司 背接触硅太阳能电池的制备方法
CN102820343A (zh) * 2012-08-16 2012-12-12 常州天合光能有限公司 具有无发射极区的太阳能电池及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120122265A1 (en) * 2010-11-17 2012-05-17 Hitachi Chemical Company, Ltd. Method for producing photovoltaic cell
US9153713B2 (en) 2011-04-02 2015-10-06 Csi Cells Co., Ltd Solar cell modules and methods of manufacturing the same
US8916410B2 (en) 2011-05-27 2014-12-23 Csi Cells Co., Ltd Methods of manufacturing light to current converter devices
CN102903786A (zh) * 2011-07-29 2013-01-30 刘莹 一种新型超浅结晶体硅太阳能电池
GB2508792A (en) 2012-09-11 2014-06-18 Rec Modules Pte Ltd Back contact solar cell cell interconnection arrangements
WO2014179366A1 (en) * 2013-04-29 2014-11-06 Soiexel, Inc. Annealing for damage free laser processing for high efficiency solar cells
US9716192B2 (en) * 2014-03-28 2017-07-25 International Business Machines Corporation Method for fabricating a photovoltaic device by uniform plating on emitter-lined through-wafer vias and interconnects

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
WO2008068336A2 (de) * 2006-12-08 2008-06-12 Q-Cells Se Solarzelle und verfahren zur herstellung einer solarzelle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5468652A (en) * 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
JP3844552B2 (ja) * 1997-02-26 2006-11-15 株式会社半導体エネルギー研究所 半導体装置の作製方法
EP0881694A1 (en) * 1997-05-30 1998-12-02 Interuniversitair Micro-Elektronica Centrum Vzw Solar cell and process of manufacturing the same
US6441297B1 (en) * 1998-03-13 2002-08-27 Steffen Keller Solar cell arrangement
AUPP437598A0 (en) * 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
US6524880B2 (en) * 2001-04-23 2003-02-25 Samsung Sdi Co., Ltd. Solar cell and method for fabricating the same
US20060060238A1 (en) * 2004-02-05 2006-03-23 Advent Solar, Inc. Process and fabrication methods for emitter wrap through back contact solar cells
KR20060007172A (ko) * 2004-07-19 2006-01-24 매그나칩 반도체 유한회사 반도체 소자의 구리 금속배선 형성방법
JP5285880B2 (ja) * 2007-08-31 2013-09-11 シャープ株式会社 光電変換素子、光電変換素子接続体および光電変換モジュール
JP5111063B2 (ja) * 2007-11-12 2012-12-26 シャープ株式会社 光電変換素子及びその製造方法
US20090229665A1 (en) * 2008-03-13 2009-09-17 E. I. Du Pont De Nemours And Company Aluminum pastes and use thereof in the production of silicon solar cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050172996A1 (en) * 2004-02-05 2005-08-11 Advent Solar, Inc. Contact fabrication of emitter wrap-through back contact silicon solar cells
US7144751B2 (en) * 2004-02-05 2006-12-05 Advent Solar, Inc. Back-contact solar cells and methods for fabrication
WO2008068336A2 (de) * 2006-12-08 2008-06-12 Q-Cells Se Solarzelle und verfahren zur herstellung einer solarzelle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683484A (zh) * 2012-04-13 2012-09-19 苏州阿特斯阳光电力科技有限公司 背接触硅太阳能电池的制备方法
CN102683484B (zh) * 2012-04-13 2015-05-13 苏州阿特斯阳光电力科技有限公司 背接触硅太阳能电池的制备方法
CN102820343A (zh) * 2012-08-16 2012-12-12 常州天合光能有限公司 具有无发射极区的太阳能电池及其制备方法
CN102820343B (zh) * 2012-08-16 2014-12-10 常州天合光能有限公司 具有无发射极区的太阳能电池及其制备方法

Also Published As

Publication number Publication date
EP2410574A4 (en) 2015-08-19
WO2010126346A3 (ko) 2011-02-17
KR101072543B1 (ko) 2011-10-11
WO2010126346A2 (ko) 2010-11-04
CN102224601B (zh) 2013-12-25
WO2010126346A4 (ko) 2011-04-07
EP2410574A2 (en) 2012-01-25
KR20100118292A (ko) 2010-11-05
US20120270356A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
CN102224601B (zh) 太阳能电池的制造方法
US8569614B2 (en) Solar cell and method of manufacturing the same
EP2371010B1 (en) Solar cell and method of manufacturing the same
JP4767110B2 (ja) 太陽電池、および太陽電池の製造方法
US8912035B2 (en) Solar cell and fabricating method thereof
JP4727607B2 (ja) 太陽電池
US20110139250A1 (en) Bifacial solar cell
US9209342B2 (en) Methods of manufacturing light to current converter devices
CN108666376B (zh) 一种p型背接触太阳电池及其制备方法
CN201112399Y (zh) 具有浓硼浓磷扩散结构的太阳能电池
CN108666386B (zh) 一种p型背接触太阳电池及其制备方法
CN116525697A (zh) 一种背接触式太阳能电池及其制备方法
CN115207136A (zh) 一种p型ibc电池的制作方法
CN112133774A (zh) 一种背结背接触太阳能电池及其制作方法
CN216597603U (zh) 一种提升绝缘隔离效果的背接触异质结太阳能电池
CN114050105A (zh) 一种TopCon电池的制备方法
KR101198430B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
CN113555470A (zh) 一种太阳能电池及其制作方法、光伏组件
KR101181625B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR101251878B1 (ko) 양면 수광형 태양전지 제조 방법
CN220290821U (zh) 电池结构及太阳电池
US8852982B2 (en) Photoelectric device and manufacturing method thereof
KR101114198B1 (ko) 국부화 에미터 태양전지 및 그 제조 방법
KR101251857B1 (ko) 양면 수광형 태양전지 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131225

Termination date: 20150513

EXPY Termination of patent right or utility model