CN102204132A - 对光纤中光信号的色度色散进行相干均衡的方法和系统 - Google Patents

对光纤中光信号的色度色散进行相干均衡的方法和系统 Download PDF

Info

Publication number
CN102204132A
CN102204132A CN2010800031048A CN201080003104A CN102204132A CN 102204132 A CN102204132 A CN 102204132A CN 2010800031048 A CN2010800031048 A CN 2010800031048A CN 201080003104 A CN201080003104 A CN 201080003104A CN 102204132 A CN102204132 A CN 102204132A
Authority
CN
China
Prior art keywords
path
aaf
distortion
equalizer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800031048A
Other languages
English (en)
Other versions
CN102204132B (zh
Inventor
丹·撒多特
吉拉德·卡茨
奥马里·利维
阿利克·格尔斯藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Multiphy Ltd
Original Assignee
Multiphy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Multiphy Ltd filed Critical Multiphy Ltd
Publication of CN102204132A publication Critical patent/CN102204132A/zh
Application granted granted Critical
Publication of CN102204132B publication Critical patent/CN102204132B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/613Coherent receivers including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种用于对具有给定模拟带宽B、载送相干光信号的光数据信道的失真进行最佳均衡的方法和系统。具有IQ路径的接收端用于接收光信号,并且用于通过平衡检波器来检测各路径中的光信号。通过利用具有截止频率的被最优化成各路径的模拟带宽为2B/N的AAF对各路径的输出进行滤波,来将检测到的光信号的带宽缩减至1/N,其中该AAF具有确定性属性并且引入已知ISI。通过ADC以2B/N的采样速率在各AAF的输出处对信号进行采样。接着,通过以2B/N的数据速率操作的数字处理器对各路径的采样进行后处理,使得该后处理表示所述失真的补偿,并且通过利用补偿所引入的ISI的解码器对所述处理器的输出进行最佳解码来重建输入数据流。

Description

对光纤中光信号的色度色散进行相干均衡的方法和系统
技术领域
本发明涉及相干光数据通信领域。更具体地说,本发明涉及用于在利用降低的采样速率和处理速率的同时均衡光数据信道失真的方法和系统。
背景技术
当前,对40Gbp/s和100Gbp/s相干光纤通信系统中色度色散(CD-光信号的相速度对光信号的波长的依赖性)和偏振模色散(PMD-光的两个不同偏振在波导中以不同速度传播、导致光脉冲随机展宽的模态色散)的数字补偿引起了极大关注。现今,不仅精确检测载送光信号的数据的振幅而且精确检测其相位的可能性允许利用这些信号的相位来传输数据。因此,相干检测和均衡允许补偿非常长的光纤引入的失真。
现今,以100Gb/s的速率对光信号进行采样存在问题,因为即使利用不同偏振并且将数据分成I和Q(同相和正交)信道而按28Gb/s来载送信息,采样速率也必须为56Gs/s。这需要分辨率大约为5比特的专用设备,这种专用设备非常昂贵。另外,存在在400Gb/s的范围中进行发送和接收的需求,这给可行设备带来了更大的限制。
CD和PMD补偿的常见做法是使用分数间隔均衡器,每符号采样2次,甚至更多。众所周知,在无失真媒体中,以符号速率进行采样形成恢复数字数据的足够信息。然而,当信道引入诸如CD和PMD的线性失真时,为了应用数字补偿,需要完全重建接收的模拟信号。不先进行滤波就以符号速率对此信号进行采样违反了奈奎斯特(Nyquist)采样定理,从而导致造成性能劣化的混叠效应。另一方面,在符号速率采样之前使用抗混叠滤波(AAF)引入了实质上的低通滤波,这进而又导致实质上的符号间干扰(ISI)。在具有ISI的信道的最小差错概率的意义上,最佳均衡器是最大似然序列估计器(MLSE)。
为了降低VLSI实现的成本和复杂度,利用AAF进行了一些处理符号间隔均衡器的尝试。然而,这些尝试仅处理由于混叠和ISI的组合效应而遭受重大功率代价的低CD值。
针对在利用降低的采样速率和处理速率的同时最佳均衡光数据信道失真的问题,上述所有方法都尚未提供令人满意的解决方案。
因此,本发明的一个目的是,提供一种用于在利用降低的采样速率和处理速率的同时最佳均衡光数据信道失真的方法和系统。
本发明的另一目的是,提供一种用于在不需要昂贵的采样和处理设备的情况下均衡光数据信道失真的方法和系统。
本发明的又一目的是,提供一种用于在引入低功率代价的同时均衡光数据信道失真的方法和系统。
本发明的其它目的和优点将随着描述的进行而变得明显。
发明内容
本发明致力于提供一种用于对具有给定模拟带宽B、载送相干光信号的光数据信道的失真(如CD或PMD)进行最佳均衡的方法。设置具有I路径和Q路径的接收端,用于接收光信号,并且用于通过平衡检波器来检测各路径中的光信号。通过利用具有对应于N的截止频率(并且被最优化成各路径的模拟带宽为2B/N)的AAF对各路径的输出进行滤波,来将检测到的光信号的带宽缩减至1/N,其中该AAF具有确定性属性并且引入已知ISI。通过ADC以2B/N的采样速率对各AAF的输出处的信号进行采样。接着,通过以2B/N的数据速率操作的数字处理器对各路径的采样进行后处理,使得该后处理表示所述失真的补偿,并且通过利用能够最佳补偿所引入的ISI的解码器(如MLSE、线性均衡器、非线性均衡器或FFE)对所述处理器的输出进行最佳解码来重建输入数据流。
所述解码器可以用于补偿振幅失真和相位失真。
优选地,所述AAF可以被最优化成各路径的模拟带宽为2B/N。
本发明致力于提供一种用于对具有给定模拟带宽B、载送相干光信号的光数据信道的失真(如CD或PMD)进行最佳均衡的系统,该系统包括:
a)具有I路径和Q路径的接收端,所述接收端用于接收光信号,并且用于通过平衡检波器来检测各路径中的光信号;
b)针对各路径的具有对应于N的截止频率的AAF,所述AAF用于通过对各路径的输出进行滤波来将所述路径中检测到的光信号的带宽缩减至1/N;
c)ADC,所述ADC以2B/N的采样速率对各AAF的输出处的信号进行采样;
d)以2B/N的数据速率操作的数字后处理单元,所述数字后处理单元用于对各路径的采样进行后处理,使得所述后处理表示所述失真的补偿;以及
e)能够最佳补偿所引入的ISI的解码器,所述解码器用于通过对所述处理器的输出进行最佳解码来重建输入数据流。
所述后处理单元可以包括:
a)在时域或频域中实现的CD均衡器,所述CD均衡器用于恢复所述信道之前的信号;
b)时钟恢复单元,所述时钟恢复单元用于对接收的信号进行重定时;
c)偏振解复用器,所述偏振解复用器用于补偿PMD效应,并且对根据双偏振格式调制的两个不同数据流进行解复用;
d)中频估计器,所述中频估计器用于恢复中频;
e)载波相位估计器,所述载波相位估计器用于恢复光载波的相位;以及
f)输出均衡器,所述输出均衡器用于补偿各路径中通过所述AAF引入的确定性ISI。
附图说明
参照附图,通过下列对本发明优选实施方式的例示性和非限制性详细描述,将更好地理解本发明的上述和其它特征以及优点,其中:
图1a是根据本发明实施方式的用于最佳均衡光数据信道失真的系统的框图;
图1b例示了根据一个实施方式的后处理单元的可能实现;
图2a例示了利用MLSE解码器获得的、10-3BER所需的作为AAF截止频率函数的ONSR;以及
图2b例示了利用FFE解码器获得的、10-3BER所需的作为AAF截止频率函数的ONSR。
具体实施方式
本发明提出了一种每符号一次采样的相干检测方法和系统,并且允许以非常低的有关光信噪比(OSNR)的损耗来降低信息带宽、采样速率以及处理速率。通过跟随有MLSE的抗混叠滤波(AAF)来缩减带宽,其中MLSE用于补偿抗混叠滤波引入的ISI。仅用1dB的代价就完全补偿了50000ps/nm的CD。AAF和MLSE的组合允许针对高达50000ps/nm的CD,利用每符号1次采样的111Gbps传输来完全均衡,而仅有1dB的OSNR劣化。
图1a是根据本发明实施方式的用于最佳均衡光数据信道失真的系统的框图。该示例描绘了出自仿真的双偏振正交相移键控(DP-QPSK)111Gbp/s系统的单偏振信道模型。以27.75Gbaud的波特(符号每秒)率,仅检查单偏振信道(包括同相和正交分量二者)。
系统包括常规的光发送器10以及接收器13的光接收端(前端)12。光信道11被认为与色度色散呈线性关系。前端包括用于降频转换的本机振荡器。平衡检波器14a的输出对应于同相(I)分量,平衡检波器14b的输出对应于正交(Q)分量。
各输出跟随有用于对各路径输出进行滤波的AAF 15。AAF 15可以通过5阶巴特沃斯(Butterworth)低通滤波器来建模,其将各路径处信号的模拟带宽(BW)缩减至1/N,同时引入了具有确定性属性的已知确定性ISA。AAF 15的截止频率对应于N。
通过模数转换器(ADC)16利用5比特分辨率以2BW/N千兆次采样/秒(在这种情况下,为27.75千兆次采样/秒)的采样速率对各路径处(各AAF的输出处)的信号进行采样和量化。I和Q两条路径被馈送至后处理单元17,后处理单元17按同样缩减至1/N的处理速率对各路径的采样进行数字后处理。后处理单元17(其处理表示失真补偿,失真可以包括振幅失真和相位失真)反转信道的频率响应,并向接收的信号应用信道反转,以恢复信道之前的信号,并且可以在时域或频域中实现。后处理单元的最后级是判定块。最佳判定算法基于MLSE。其补偿各路径中通过AAF 15引入的确定性ISI,并且执行理论上可能最好的判定。
图1B例示了根据一个实施方式的后处理单元17的可能实现。后处理单元17可以包括:
CD均衡器17a(图1b中的CD-1),其根据迫零准则(zero forcing criterion)(用于恢复信道之前的信号的线性均衡)设计,并且可以在时域或频域中实现:
时钟恢复单元17b,其用于对接收的信号进行重定时;
偏振解复用器17c,其用于补偿PMD效应,并且对根据双偏振格式调制的两个不同数据流进行解复用;
IFE(中频估计器)17d,其用于恢复和取消中频;
CPE(载波相位估计器)17e,其用于恢复光载波的相位;以及
输出解码器18(其例如可以是16态MLSE,或者另选地,可以是利用最小均方(LMS)准则的具有13个抽头(tap)的前馈均衡器(FFE)),以便补偿各路径中通过AAF 15引入的确定性ISI。
通过使用输出解码器18对处理器输出进行最佳解码而重建输入数据流,输出解码器18可以最佳补偿所引入的ISI。
所有这些单元都按1次采样/符号来操作(与使用更高采样/符号率的现有技术相反)。
为了确定最佳AAF带宽以确保10-3的BER值,已经执行了一些仿真。在这些仿真中,使用200000比特来确保针对10-3的误比特率(BER)的充分统计。使用直方图估计方法,利用50000个观察训练序列进行信道估计,这些训练序列随后从BER计算丢弃。
图2a例示了针对一些光纤长度,利用MLSE解码器获得的、10-3BER所需的作为AAF截止频率函数的ONSR。可以看出,提出的具有MLSE解码器的系统允许完全补偿高达50000ps/nm的CD。此外,与背靠背(B-t-B)传输情况相比,利用仅1dB的OSDR劣化完全补偿了通过AAF引入的ISI。虽然对于10-3的BER来说,具有19GHz AAF截止频率的B-t-B系统需要13.7dB的OSNR,但CD=50000ps/nm的情况利用14.7dB的OSNR达到了相同的BER值。而且,对于高于11GHz的AAF截止频率值来说,混叠效应导致不能通过MLSE来补偿的性能劣化,增强了在符号间隔采样系统中使用AAF的需要。
图2b例示了针对一些光纤长度,利用FFE解码器获得的、10-3BER所需的作为AAF截止频率函数的ONSR。可以看出,对于高CD值来说,尽管事实是使用了最佳采样相位,但系统性能严重劣化。
图2a和2b示出了在符号间隔系统(即,利用1次采样/符号的系统)中MLSE对采样相位不敏感。提出的符号间隔采样器的方案使得能够在111Gbps相干数字均衡系统中使用27.75千兆次采样/秒ADC,其中完全补偿了色度色散。可以按类似方式完全补偿PMD。另外,其允许显著的VLSI硬件减少、功耗降低和成本降低。
上述示例和描述当然仅出于例示的目的而提供,并不意图以任何方式来限制本发明。本领域技术人员将理解,可以采用上述技术中的一种以上技术以各种方式来执行本发明,这些全部都不超出本发明的范围。

Claims (16)

1.一种用于对具有给定模拟带宽B、载送相干光信号的光数据信道的失真进行最佳均衡的方法,该方法包括以下步骤:
a)设置具有I路径和Q路径的接收端,该接收端用于接收所述光信号,并且用于通过平衡检波器来检测各路径中的光信号;
b)通过利用具有对应于N的截止频率的AAF对各路径的输出进行滤波,来将检测到的光信号的带宽缩减至1/N,所述AAF具有确定性属性并且引入已知ISI;
c)通过ADC以2B/N的采样速率对各AAF的输出处的信号进行采样;
d)通过以2B/N的数据速率操作的数字处理器对各路径的采样进行后处理,使得所述后处理表示所述失真的补偿;以及
e)通过利用能够最佳补偿所引入的ISI的解码器对所述处理器的输出进行最佳解码来重建输入数据流。
2.根据权利要求1所述的方法,其中,所述数据信道的所述失真是CD。
3.根据权利要求1所述的方法,其中,所述数据信道的所述失真是PMD。
4.根据权利要求1所述的方法,其中,所述解码器是MLSE。
5.根据权利要求1所述的方法,其中,所述解码器选自包括以下均衡器的组:
线性均衡器;
非线性均衡器。
6.根据权利要求1所述的方法,其中,所述解码器补偿振幅失真和相位失真。
7.根据权利要求1所述的方法,其中,所述AAF被最优化成各路径的模拟带宽为2B/N。
8.一种用于对具有给定模拟带宽B、载送相干光信号的光数据信道的失真进行最佳均衡的系统,该系统包括:
a)具有I路径和Q路径的接收端,所述接收端用于接收所述光信号,并且用于通过平衡检波器来检测各路径中的光信号;
b)针对各路径的具有对应于N的截止频率的AAF,所述AAF用于通过对各路径的输出进行滤波来将所述路径中检测到的光信号的带宽缩减至1/N;
c)ADC,所述ADC以2B/N的采样速率对各AAF的输出处的信号进行采样;
d)以2B/N的数据速率操作的数字后处理单元,所述数字后处理单元用于对各路径的采样进行后处理,使得所述后处理表示所述失真的补偿;以及
e)能够最佳补偿所引入的ISI的解码器,所述解码器用于通过对所述处理器的输出进行最佳解码来重建输入数据流。
9.根据权利要求8所述的系统,其中,所述数据信道的所述失真是CD。
10.根据权利要求8所述的系统,其中,所述数据信道的所述失真是PMD。
11.根据权利要求8所述的系统,其中,所述解码器是MLSE。
12.根据权利要求8所述的系统,其中,所述解码器选自包括以下均衡器的组:
线性均衡器;
非线性均衡器。
13.根据权利要求7所述的系统,其中,所述解码器补偿振幅失真和相位失真。
14.根据权利要求7所述的系统,其中,所述AAF被最优化成各路径的模拟带宽为2B/N。
15.根据权利要求8所述的系统,其中,所述后处理单元包括:
a)在时域或频域中实现的CD均衡器,所述CD均衡器用于恢复所述信道之前的信号;
b)时钟恢复单元,所述时钟恢复单元用于对接收的信号进行重定时;
c)偏振解复用器,所述偏振解复用器用于补偿PMD效应,并且对根据双偏振格式调制的两个不同数据流进行解复用;
d)中频估计器,所述中频估计器用于恢复中频;
e)载波相位估计器,所述载波相位估计器用于恢复光载波的相位;以及
f)输出均衡器,所述输出均衡器用于补偿各路径中通过所述AAF引入的确定性ISI。
16.根据权利要求15所述的系统,其中,所述均衡器选自包括以下均衡器的组:
线性均衡器;
非线性均衡器。
CN201080003104.8A 2009-12-15 2010-12-13 对光纤中光信号的色度色散进行相干均衡的方法和系统 Active CN102204132B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28640009P 2009-12-15 2009-12-15
US61/286,400 2009-12-15
PCT/IL2010/001046 WO2011073974A1 (en) 2009-12-15 2010-12-13 Method and system for coherent equalization of chromatic dispersion of optical signals in a fiber

Publications (2)

Publication Number Publication Date
CN102204132A true CN102204132A (zh) 2011-09-28
CN102204132B CN102204132B (zh) 2014-10-15

Family

ID=44166814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080003104.8A Active CN102204132B (zh) 2009-12-15 2010-12-13 对光纤中光信号的色度色散进行相干均衡的方法和系统

Country Status (6)

Country Link
US (1) US9537578B2 (zh)
EP (1) EP2514093B1 (zh)
JP (1) JP2013514027A (zh)
CN (1) CN102204132B (zh)
HK (1) HK1158844A1 (zh)
WO (1) WO2011073974A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401616A (zh) * 2013-08-06 2013-11-20 电子科技大学 一种高线性度的射频光传输系统及方法
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN104106229A (zh) * 2012-02-10 2014-10-15 中兴通讯(美国)公司 用于结合相干检测和数字信号处理的系统和方法
CN105681237A (zh) * 2016-01-15 2016-06-15 电子科技大学 一种通过数字光预均衡法来抑制符号间串扰的方法
CN106330322A (zh) * 2015-06-30 2017-01-11 深圳市中兴微电子技术有限公司 频偏相偏处理方法及装置
CN106797251A (zh) * 2014-08-28 2017-05-31 日本电气株式会社 偏振色散添加器和光学接收器
CN106896619A (zh) * 2015-12-17 2017-06-27 中国航天科工集团八五研究所 基于光子拉伸的模数转换装置及方法
CN109314683A (zh) * 2016-08-29 2019-02-05 Ntt 电子株式会社 光传输失真补偿装置、光传输失真补偿方法以及通信装置
CN109981500A (zh) * 2017-12-28 2019-07-05 海思光电子有限公司 一种信号处理的方法及信号处理装置
CN112314007A (zh) * 2018-04-20 2021-02-02 瑞典爱立信有限公司 使用混叠来进行信号的节能传输和接收的方法和设备
CN115001591A (zh) * 2022-05-25 2022-09-02 西安交通大学 一种100g以上相干光检测用高速模拟复用器
CN115242584A (zh) * 2022-07-21 2022-10-25 苏州大学 一种优化基于查找表的mlse算法复杂度的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294190B2 (en) * 2010-11-08 2016-03-22 Ben-Gurion University Of The Negev, Research And Development Authority Low cost direct modulation and coherent detection optical OFDM
US9426000B2 (en) * 2012-01-06 2016-08-23 Multiply Ltd. Symbol spaced adaptive MIMO equalization for ultra high bit rate optical communication systems
JP2013183455A (ja) * 2012-02-29 2013-09-12 Zte (Usa) Inc ナイキスト波長分割多重システム
US8886058B2 (en) * 2012-06-04 2014-11-11 Cisco Technology, Inc. Cycle slip reduction in coherent optical communications
CN105610517B (zh) * 2014-11-14 2018-05-08 中兴通讯股份有限公司 相干光接收机的迭代后均衡
US9887729B2 (en) * 2014-11-21 2018-02-06 Nec Corporation RF sub-band de-multiplexing for ultra-wide band optical digital coherent detection
US10128958B1 (en) 2016-10-24 2018-11-13 Inphi Corporation Forward and backward propagation methods and structures for coherent optical receiver

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160661A1 (en) * 2003-02-19 2004-08-19 Hurrell John P. Optical fiber quadrature demodulator
US20070154221A1 (en) * 2003-06-10 2007-07-05 Nortel Networks Limited Frequency agile transmitter and receiver architecture for dwdm systems
CN101442364A (zh) * 2007-11-19 2009-05-27 富士通株式会社 光相干接收机、光相干接收机用频差估计装置及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1305768C (en) * 1987-11-16 1992-07-28 Masanobu Arai Digital signal receiving circuit with means for controlling a baud rate sampling phase by a power of sampled signals
US5276712A (en) * 1989-11-16 1994-01-04 Digital Equipment Corporation Method and apparatus for clock recovery in digital communication systems
US5889827A (en) * 1996-12-12 1999-03-30 Ericsson Inc. Method and apparatus for digital symbol detection using medium response estimates
US6574293B1 (en) * 1998-10-28 2003-06-03 Ericsson Inc. Receivers and methods for reducing interference in radio communications
EP1371154B1 (de) * 2000-10-09 2005-10-12 Reinhold Noe Anordnung und verfahren für eine optische informationsübertragung
US7031405B1 (en) * 2000-11-15 2006-04-18 Ati Research, Inc. Carrier phase estimation based on single-axis constant modulus cost criterion and Bussgang criteria
US7460793B2 (en) * 2002-12-11 2008-12-02 Michael George Taylor Coherent optical detection and signal processing method and system
US7266310B1 (en) * 2003-04-29 2007-09-04 Nortel Networks Limited Digital compensation for optical transmission system
US7233632B1 (en) * 2003-08-21 2007-06-19 L-3 Communications Corporation Symbol timing correction for a phase modulated signal with mutually interfering symbols
US7522847B2 (en) * 2003-12-19 2009-04-21 Broadcom Corporation Continuous time filter-decision feedback equalizer architecture for optical channel equalization
US7522842B1 (en) * 2005-09-30 2009-04-21 Nortel Networks Limited Optical transmission system using Raman amplification
GB0606489D0 (en) 2006-03-31 2006-05-10 Qinetiq Ltd System and method for processing imagery from synthetic aperture systems
US8787771B2 (en) * 2006-10-06 2014-07-22 Ciena Corporation All-optical regenerator and optical network incorporating same
US7970289B2 (en) * 2007-03-14 2011-06-28 Opnext Subsystems, Inc. GT decoder having bandwidth control for ISI compensation
US20100296819A1 (en) * 2008-04-24 2010-11-25 Kahn Joseph M Optical Receivers and Communication Systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040160661A1 (en) * 2003-02-19 2004-08-19 Hurrell John P. Optical fiber quadrature demodulator
US20070154221A1 (en) * 2003-06-10 2007-07-05 Nortel Networks Limited Frequency agile transmitter and receiver architecture for dwdm systems
CN101442364A (zh) * 2007-11-19 2009-05-27 富士通株式会社 光相干接收机、光相干接收机用频差估计装置及方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104106229A (zh) * 2012-02-10 2014-10-15 中兴通讯(美国)公司 用于结合相干检测和数字信号处理的系统和方法
CN103634054A (zh) * 2012-08-23 2014-03-12 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN103634054B (zh) * 2012-08-23 2016-01-20 北京邮电大学 用于高速相干接收系统的线性损伤补偿和偏振解复用方法
CN103401616A (zh) * 2013-08-06 2013-11-20 电子科技大学 一种高线性度的射频光传输系统及方法
CN103401616B (zh) * 2013-08-06 2015-08-26 电子科技大学 一种高线性度的射频光传输系统及方法
US10338316B2 (en) 2014-08-28 2019-07-02 Nec Corporation Polarization dispersion adder and optical receiver
CN106797251B (zh) * 2014-08-28 2019-11-01 日本电气株式会社 偏振色散添加器和光学接收器
CN106797251A (zh) * 2014-08-28 2017-05-31 日本电气株式会社 偏振色散添加器和光学接收器
CN106330322A (zh) * 2015-06-30 2017-01-11 深圳市中兴微电子技术有限公司 频偏相偏处理方法及装置
CN106330322B (zh) * 2015-06-30 2019-02-05 深圳市中兴微电子技术有限公司 频偏相偏处理方法及装置
CN106896619A (zh) * 2015-12-17 2017-06-27 中国航天科工集团八五研究所 基于光子拉伸的模数转换装置及方法
CN105681237B (zh) * 2016-01-15 2018-10-16 电子科技大学 一种通过数字光预均衡法来抑制符号间串扰的方法
CN105681237A (zh) * 2016-01-15 2016-06-15 电子科技大学 一种通过数字光预均衡法来抑制符号间串扰的方法
CN109314683A (zh) * 2016-08-29 2019-02-05 Ntt 电子株式会社 光传输失真补偿装置、光传输失真补偿方法以及通信装置
CN109314683B (zh) * 2016-08-29 2021-06-01 Ntt 电子株式会社 光传输失真补偿装置、光传输失真补偿方法以及通信装置
CN109981500A (zh) * 2017-12-28 2019-07-05 海思光电子有限公司 一种信号处理的方法及信号处理装置
CN109981500B (zh) * 2017-12-28 2023-04-28 海思光电子有限公司 一种信号处理的方法及信号处理装置
CN112314007A (zh) * 2018-04-20 2021-02-02 瑞典爱立信有限公司 使用混叠来进行信号的节能传输和接收的方法和设备
CN112314007B (zh) * 2018-04-20 2024-04-23 瑞典爱立信有限公司 使用混叠来进行信号的节能传输和接收的方法和设备
CN115001591A (zh) * 2022-05-25 2022-09-02 西安交通大学 一种100g以上相干光检测用高速模拟复用器
CN115001591B (zh) * 2022-05-25 2023-08-04 西安交通大学 一种100g以上相干光检测用高速模拟复用器
CN115242584A (zh) * 2022-07-21 2022-10-25 苏州大学 一种优化基于查找表的mlse算法复杂度的方法和装置
CN115242584B (zh) * 2022-07-21 2023-12-01 苏州大学 一种优化基于查找表的mlse算法复杂度的方法和装置

Also Published As

Publication number Publication date
EP2514093B1 (en) 2018-01-24
US20120251112A1 (en) 2012-10-04
US9537578B2 (en) 2017-01-03
HK1158844A1 (zh) 2012-07-20
JP2013514027A (ja) 2013-04-22
EP2514093A4 (en) 2015-09-02
EP2514093A1 (en) 2012-10-24
CN102204132B (zh) 2014-10-15
WO2011073974A1 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
CN102204132B (zh) 对光纤中光信号的色度色散进行相干均衡的方法和系统
US8260156B2 (en) Adaptive crossing frequency domain equalization (FDE) in digital PolMux coherent systems
US20110052216A1 (en) Electronic dispersion compensation within optical communications using reconstruction
Weiss On the performance of electrical equalization in optical fiber transmission systems
CA2765362C (en) Method for carrier frequency recovery and optical intradyne coherent receiver
US9426000B2 (en) Symbol spaced adaptive MIMO equalization for ultra high bit rate optical communication systems
Cheng et al. A low-complexity adaptive equalizer for digital coherent short-reach optical transmission systems
CN112789814A (zh) 用于短距离光通信的低功率相干接收器
US9608735B2 (en) MIMO equalization optimized for baud rate clock recovery in coherent DP-QPSK metro systems
Gorshtein et al. Coherent CD equalization for 111Gbps DP-QPSK with one sample per symbol based on anti-aliasing filtering and MLSE
Gorshtein et al. Coherent compensation for 100G DP-QPSK with one sample per symbol based on antialiasing filtering and blind equalization MLSE
Zhang et al. 60-Gb/s CAP-64QAM transmission using DML with direct detection and digital equalization
Huo et al. Modified DDFTN algorithm for band-limited short-reach optical interconnects
CN104025527A (zh) 数字滤波器、部分响应均衡器及数字相干接收机设备及方法
Zhou et al. Digital signal processing for coherent optical communication
Gorshtein et al. Symbol spaced adaptive MIMO equalization for ultrahigh bit rate metro coherent optical links
Gorshtein et al. Advanced modulation formats and digital signal processing for fiber optic communication
CN111869157B (zh) 用于数据传输系统中的定时恢复装置和定时恢复方法
Lv et al. Direct detection of PAM4 signals with receiver-side digital signal processing for bandwidth-efficient short-reach optical transmissions
CN102111207B (zh) 高速相移键控(dpsk)光信号的分集探测-联合判决方法和系统
Fatadin et al. DSP techniques for 16-QAM coherent optical systems
Hauske et al. Iterative electronic equalization utilizing low complexity MLSEs for 40 Gbit/s DQPSK modulation
Gorshtein et al. MIMO equalization optimized for baud rate clock recovery in coherent 112 Gbit/sec DP-QPSK metro systems
Li et al. Chromatic dispersion compensation of OOK signals with MLSE utilizing diverse VSB filtering
Maggio et al. Maximum likelihood sequence detection receivers for nonlinear optical channels

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1158844

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1158844

Country of ref document: HK