CN102189339B - 用于形成成型气孔的工艺及系统 - Google Patents

用于形成成型气孔的工艺及系统 Download PDF

Info

Publication number
CN102189339B
CN102189339B CN201110037145.5A CN201110037145A CN102189339B CN 102189339 B CN102189339 B CN 102189339B CN 201110037145 A CN201110037145 A CN 201110037145A CN 102189339 B CN102189339 B CN 102189339B
Authority
CN
China
Prior art keywords
moulding section
pore
dip hatch
pulse laser
formation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110037145.5A
Other languages
English (en)
Other versions
CN102189339A (zh
Inventor
魏斌
J·C·谢菲尔
R·S·班克
张文武
K·B·莫里
J·M·利普金
B·P·莱西
W·D·谢德特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN102189339A publication Critical patent/CN102189339A/zh
Application granted granted Critical
Publication of CN102189339B publication Critical patent/CN102189339B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/384Removing material by boring or cutting by boring of specially shaped holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/13Manufacture by removing material using lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49348Burner, torch or metallurgical lance making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49799Providing transitory integral holding or handling portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Laser Beam Processing (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及用于形成成型气孔的工艺及系统。具体而言,提供诸如在涡轮叶片(10)中使用的用于形成成型气孔(12)的工艺和系统。本公开内容的方面涉及使用短脉冲激光形成(46)气孔(12)的成型部分(38)、形成(50)对应于各成型部分(38)的计量孔(40),以及使用短脉冲激光单独地精整(54)成型部分(38)。在其它实施例中,这些操作的顺序可变化,诸如在形成对应计量孔(40)之前使用短脉冲激光形成成型部分(38)和精整成型部分(38)。

Description

用于形成成型气孔的工艺及系统
技术领域
本文所公开的主题涉及燃气涡轮,并且更具体地涉及用于在涡轮叶片中形成孔的工艺及系统。
背景技术
一般而言,燃气涡轮燃烧压缩空气和燃料的混合物来产生热燃烧气体(热燃烧气体溢出)且导致附接到转子上的涡轮叶片的旋转。热燃烧气体可达到超过热气体通路中的涡轮叶片和其它构件的熔点的温度。为了防止此情况,气体通路中的涡轮叶片和其它构件典型地使用高熔点合金构成,且由热屏障覆层覆盖。此外,构件可包括气孔,气孔容许冷却剂空气通过或越过构件。当离开孔时,冷却剂空气就在构件上产生连续的隔热层。该冷却空气层通过限制从热燃烧气体到涡轮叶片的热传递来用作热屏蔽。通过限制来自于热燃烧气体的热传递,增加构件的寿命。
然而,形成气孔的行为其自身可造成问题,诸如在热屏障覆层中引入裂纹、应力或不均匀。此外,构件的多层构造由于不同层的物理性能不同而可对形成气孔提出挑战。此外,构件典型地为轮廓形状,其三维(3D)轮廓自身可对形成气孔提出挑战。
发明内容
在一个实施例中,提供了用于形成成型孔的方法。根据该实施例,构件定位在第一站点处。多个气孔成型部分使用由三维激光扫描仪控制的第一短脉冲激光形成在构件中。构件移动至第二站点,且计量孔形成在各相应的成型部分中。构件移动至第三站点或第一站点,且使成型部分平滑。
在另一个实施例中,提供了用于形成成型孔的方法。根据该实施例,涡轮叶片中的多个气孔成型部分使用由三维激光扫描仪控制的短脉冲激光形成。使用由三维激光扫描仪控制的短脉冲激光使成型部分平滑。短脉冲激光当使成型部分平滑时以不同于当形成成型部分时的扫描速率操作。涡轮叶片移动至分开的站点,且计量孔形成在各相应的成型部分处。
在附加的实施例中,提供用于验证制造工艺的方法。根据该方法,产生了所有或部分涡轮叶片的体积表现,其中,完全地或部分地形成了一个或更多个气孔。体积表现与CAD文件相比较,且制造工艺基于体积表现与CAD文件的比较来调整。
附图说明
当参照附图来阅读如下详细描述时,本发明的这些及其它特征、方面和优点将变得更容易理解,所有附图中的相似标号表示相似的零件,在附图中:
图1为根据本公开内容的一个实施例的包括成型气孔的涡轮叶片的等距视图。
图2为根据本公开内容的一个实施例的成型气孔的透视图;
图3为根据本公开内容的一个实施例的沿视线3截取的图2的成型气孔的横截面视图;
图4为根据本公开内容的一个实施例的在涡轮叶片中产生成型气孔的工艺;
图5为根据本公开内容的一个实施例的在涡轮叶片中产生成型气孔的工艺的验证工艺;以及
图6为根据本公开内容的一个实施例的用于在涡轮叶片中产生成型气孔的另一工艺。
零件清单
10涡轮叶片
12成型气孔
14外表面
16内部空腔
20表面圆周
32基底层
34中间层
36热屏障覆层
38成型部分
40计量孔
42工艺
44方框:定位涡轮叶片
46方框:成形气孔
48方框:验证
50方框:计量气孔
52方框:验证
54方框:精整气孔
56方框:验证
58工艺
60方框:采集x射线图像
62数据:体积绘制
64决定:将体积绘制与CAD模型相比较
66数据:CAD
68方框:调整成形计量或精整步骤
70方框:接受工艺
具体实施方式
下文将描述本发明的一个或更多个特定实施例。为了提供这些实施例的简要描述,在说明书中可不描述实际实施方式的所有特征。应当认识到,在任何这些实际实施方式的开发中,如任何工程或设计项目中一样,必须作出许多特定实施方式的决定,以实现开发者的特定目标,诸如遵循系统相关的和商业相关的限制,这从一个实施方式到另一个可存在变化。而且,应当认识到的是,这种开发工作可能很复杂且耗时,但对于受益于本公开的本领域技术人员来说,仍为设计、构造和制造的常规任务。
在介绍本发明各种实施例的元件时,冠词″一个″、″一种″、″该″和″所述″意在表示存在一个或更多个元件。用语″包括″、″包含″和″具有″旨在为包括性的,且意为可存在除所列元件外的附加元件。
本公开内容针对在涡轮叶片或需要薄膜冷却的任何其它构件中产生气孔的工艺。图1为具有三维(3D)曲面且包括多个成型气孔12的示例性涡轮叶片10的等距视图。根据本申请中将在下文中描述的一种工艺,这些成型气孔12已经钻入涡轮叶片10的外表面14。气孔12与涡轮叶片10的内部空腔16成流体接触。这容许空气从内部空腔16流动穿过孔12来产生覆盖涡轮叶片10的冷却空气薄膜,将它与燃气涡轮发动机中产生的热燃烧气体隔离开。由于它们相对于涡轮叶片10的表面的形状,故成型气孔12可有助于在涡轮叶片10上提供更均匀的空气流。
图2为成型气孔12的一个示例的透视图。成型气孔12已经钻入涡轮叶片10的外表面14。在所示的实施例中,孔12随成型气孔12朝涡轮叶片10的内部发展而从外表面14逐渐变小。在该实施例中,成型气孔12的表面圆周20在涡轮叶片10的外表面14处成形为类似于人字形。当成型气孔12朝涡轮叶片10的内部空腔16发展时,横截面面积就变小,且在一些情况下更圆。构思出的是,具有不同形状和尺寸的多个孔可使用本文所公开的工艺形成。
图3为沿图2中所示的视线3截取的涡轮叶片10的示例性成型气孔12的横截面视图。在一个实施例中,涡轮叶片10或涡轮叶片10的特定层可由任意种类的材料制成,包括金属合金。例如,在一个实施例中,涡轮叶片10由基底层32构成,基底层32可由金属或金属合金构成。在一个实施例中,基底层32大约160密耳厚(即,大约4.064mm)。在所示的实施例中,基底层32由诸如粘结覆层的中间层34覆盖。在该实施例中,热屏障覆层36位于中间层34的顶部上。热屏障覆层可为陶瓷覆层或另一适合的热覆层。在一个实施例中,热屏障覆层36大约40密耳厚(即,大约1.016mm)。热屏障覆层36和/或基底层32可比它们彼此粘结更强地与中间层34粘结。因此,在这种实施例中,中间层34可提供更强的多层结构。在其它实施例中,可没有中间层34存在,且热屏障覆层36可直接接触基底层32。而且,在其它实施例中,可存在附加的覆层或层。此外,其它实施例可不包括任何热屏障覆层或层。
气孔12的成型(即,非圆的)部分38可限于热屏障覆层36或热屏障覆层36和中间层34。作为备选,在其它实施例中,气孔12的成型部分38可向下延伸到基底层32中。典型地,为了达到基底层32(和/或基底层32与中间层34)不由成型部分38刺穿的程度,直计量孔40(具有圆的或椭圆的横截面)就穿过基底层32从气孔12的成型部分38到涡轮叶片10的内部空腔16。在一个实施例中,直计量孔40相对于涡轮叶片10的表面成30°角钻取。
记住前述结构,图4为根据一个实施例的用于产生成型气孔12的工艺42。涡轮叶片10最初定位(方框44)在钻取设备上。涡轮叶片10的定位可手动地或自动地执行。作为定位工艺的一部分,用于形成成型气孔12的激光可与涡轮叶片10的三维几何形状对齐。
一旦定位好涡轮叶片10,气孔12的成型部分38可在涡轮叶片10中形成(方框46)。在一个实施例中,成型部分38使用短脉冲激光形成,短脉冲激光根据气孔12的成型部分38的特定三维几何形状加工出部分热屏障覆层36。在一些实施例中,短脉冲激光还可在形成气孔12的成型部分38时加工出中间层34和/或基底层32的部分。在一个实施例中,适合的短脉冲激光的示例具有小于10μs(诸如小于1μs)的脉冲持续时间。在一个实施方式中,飞秒和/或皮秒级脉冲持续时间激光可用于形成气孔12的成型部分38。例如,脉冲激光可为30W绿色激光,其具有在纳秒范围(例如,小于25ns)中的脉冲持续时间。
在一个实施例中,短脉冲在具有实时聚焦控制的三维激光扫描仪的控制之下。该聚焦控制机构可控制或调整脉冲持续时间、脉冲能量、重合比、扫描速度等,以确保几何形状准确度。在一个实施方式中,控制成形操作的扫描仪加载CAD文件(例如,3DSTLCAD文件),该CAD文件切成任意或可配置的层(例如,5μm,10μm,20μm等)。CAD文件与激光控制结合,使得扫描仪控制短脉冲激光,以根据CAD文件加工出用于气孔12的成型部分38的所期望的几何形状。在一个这种实施例中,大约3mm宽和8mm长的成型部分38可在大约6分钟内形成。在另一个实施例中,大约1mm宽和8mm长的成型部分38可在大约1.5分钟内形成。
在一个实施例中,形成在涡轮叶片10的弯曲表面上的嵌入的和倾斜的成型部分38可使用适合的方法为了质量目的来测量和/或评估。例如,在某些实施例中,IR成像、共焦显微镜3D测量和/或X射线照相术中的一种或更多种可用于评估几何形状的保真度和/或检测成形工艺引起的微裂纹。这些工艺可在涡轮叶片保持在钻取夹具中的情况下执行或从钻取夹具中除去并且在另一站点执行。例如,在一个实施方式中,3D共焦光学几何形状测量和/或X射线照相术可用于测量成型部分38的几何形状。这种测量结果然后可与CAD文件中特定的测量结果相比较作为质量控制措施。同样,成型部分38的IR成像可利用横截面分析来校准,以便提供成型部分38的快速在线质量监测。这种质量控制活动可在各成型部分38和/或涡轮叶片10上执行,或根据适合的统计抽样技术在有限数目的成型部分38和/或涡轮叶片10上执行。
例如,在一个实施例中,全局校准或验证(方框48)还可执行以周期性地(例如,一天一次、一天两次、一周一次)评估和/或校准成形工艺。图5中绘出该验证工艺58的一个示例。在一个这种实施例中,其中已经形成成型部分38的涡轮叶片10使用体积成像模态成像(方框60),诸如适合的三维光学或X射线成像模态(例如,计算机断层照相术(CT)成像系统、层析X射线照相组合成像系统或其它体积X射线成像模态)。在一个这种实施例中,采集到的X射线投影数据或三维光学测量结果用于重建涡轮叶片10的体积绘制62来进一步分析。体积绘制62可与CAD模型66(诸如三维STLCAD文件)比较(方框64),以确定涡轮叶片10的形成的三维表面特征(例如,成型部分38)是否对应于CAD模型66中表示的特定形状。在一个实施例中,由X射线图像产生的体积绘制图像62和/或对应的CAD模型66可切成可配置厚度的层(例如,5μm层、20μm层等),从而容许涡轮叶片10(如由体积绘制62代表)与CAD模型66的详细的一层接一层的比较。详细的检查可比较成型气孔12与CAD模型66的位置、形状、横截面和/或尺寸,以及检查可由气孔12的成型部分38的形成引起的裂纹和/或其它不均匀。
如果成型部分38确定为相对于CAD模型66不正确地定位、成形或设定尺寸,则用于形成气孔12的成型部分38的计算机和工具被调整和/或校准(方框68)以解决缺陷。这种调整可包括改变激光强度、脉冲持续时间、扫描模式、扫描速度、涡轮叶片定位等。该验证工艺可在随后形成的涡轮叶片10上重复,直到成像的成型部分38确定在CAD模型的一些特定公差内,在该点,确定调整是令人满意的,且验证的工艺参数可被接受(方框70)。
回到图4,在形成气孔12的成型部分38之后,对应的计量孔40可钻穿(方框50)由各成型部分38暴露出的基底层32的区域。在一个实施例中,计量孔40大致为直的圆孔,其穿过一些或所有基底层32到达涡轮叶片10的内部空腔16。计量孔40可垂直于涡轮叶片10的表面或成相对角度(例如,30°)来钻取。在一个实施例中,计量孔40使用大功率长脉冲激光钻取,诸如具有在1μs至1ms之间的脉冲持续时间和大于50W的额定功率(诸如,100W至1000W,其中一个实例为500W的激光)的激光。在其它实施例中,计量孔40可使用其它适合的途径钻取,诸如水喷射器、放电加工(EDM)、电化学加工(ECM)、撞击打眼、电子束加工等。在一个实施方式中,使用除EDM之外的工艺来形成计量孔40。在用于形成计量孔40的机构不同于用于形成成型部分38的机构的实施例中,涡轮叶片可自动地或手动地移动至制造线或组装线的不同物理站点。
如同成型部分38,可执行测量和/或质量控制工艺,诸如使用销规,以在形成计量孔40之后评估计量孔40的定位和穿透。尽管对各计量孔40和/或涡轮叶片10执行一些质量控制评估,但在其它实施例中,可使用计量孔40和/或涡轮叶片10的有限总体的统计抽样来执行质量控制。此外,如同成型部分30,验证工艺(方框52)可周期性地执行(例如,每天、每周等),以验证和/或校准用于形成计量孔40的设备和/或钻取规程。该验证工艺可评估计量孔40的定位、角度、穿透或其它特征,且可用于调整或校准设备和/或钻取工艺来保持在特定质量公差内。可基于验证工艺进行的调整的示例包括改变激光强度、脉冲持续时间、涡轮叶片的定位、扫描速度、扫描模式等。
尽管用于计量孔40的验证工艺(方框52)示为与用于成型部分38的验证工艺(方框48)分开,但应当认识到的是,在某些实施例中,可同时和/或以相同的方式执行验证工艺。例如,计量孔40可使用体积图像62和CAD模型66与成型部分38的验证同时地或分开地进行验证,体积图像62使用三维光学或射线照相成像技术(诸如CT或层析X射线照相组合)产生。在其它实施例中,计量孔40的验证可使用诸如销规的机械装置来执行,该机械装置评估计量孔40的定位和穿透。
如图4中所示,由成型部分38和计量孔40形成的气孔12可精细地清洁或精整(方框54),以基于由成形工艺提供的轮廓来将所期望的表面质地、平滑度和/或表面轮廓应用在气孔12上,诸如气孔12的成型部分38。例如,精整工艺可除去在形成计量孔40时产生的裂纹。当在正常工作期间施加各种应力时,裂纹的消除就改善了涡轮叶片的完整性。
在一个实施例中,可利用短脉冲激光来执行精整,诸如相对于形成气孔12的成型部分38讨论的短脉冲激光。在其它实施例中,机械研磨或EDM可用于气孔12的精整。在短脉冲激光用于形成成型部分38和精整气孔12而不用于钻取计量孔40的实施例中,涡轮叶片10可自动地或手动地移动至制造线或组装线的不同物理站点,或使涡轮叶片回到先前站点。例如,在一个实施方式中,涡轮叶片10最初可在短脉冲激光站点加工来形成气孔12的成型部分38,然后在回到短脉冲激光站点使用与用于形成成型部分38的不同的加工或扫描规程精整气孔12之前,移动至长脉冲激光站点来钻取计量孔40。
在采用短脉冲激光的一个实施例中,短脉冲激光可以以比形成成型部分38所采用的更快的扫描速率进行操作用于精整工艺。同样,一个实施例中,用于精整工艺的短脉冲激光可在具有实时聚焦控制的激光扫描仪的控制之下,激光扫描仪操作激光来根据特定三维几何形状精整气孔12。该聚焦控制机构可控制或调整脉冲持续时间、脉冲能量、重合比、扫描速度等,以确保几何形状的准确度。
在一个实施例中,气孔12的精整表面可使用适合的方法出于质量目的来测量和/或评估。例如,在某些实施例中,IR成像、共焦显微镜3D测量和/或X射线照相术中的一种或更多种可用于评估几何形状的保真度和/或检测成形工艺引起的微裂纹。这些质量控制活动可在各气孔12上执行或根据适合的统计抽样技术在有限数目的气孔上执行。
此外,如同上述成型部分38和计量孔40,验证工艺(方框56)可周期性地(例如,每天、每周等)执行,以验证和/或校准精整工艺中使用的设备和/或钻取规程。该验证工艺可评估精整气孔12的表面、质地、轮廓等,且可用于调整或校准设备和/或精整工艺来保持在特定的质量公差内。可基于验证工艺进行的调整的示例包括改变激光角度、激光强度、使用激光的时间、涡轮叶片的定位等。
尽管用于精整工艺的验证工艺(方框56)示为与用于成型部分38和计量孔40的验证工艺(方框48,52)分开,但应当认识到的是,在某些实施例中,可同时和/或以相同的方式执行验证工艺。例如,精整气孔12(包括计量孔40和成型部分38)可在一个步骤中使用体积图像62和CAD模型66来验证,如上文所述,体积图像62使用三维光学或射线照相成像技术(诸如CT或层析X射线照相组合)产生。作为备选,这些验证步骤中的所有或一些可单独地和/或不使用与CAD模型66的比较来执行。
前文描述在形成计量孔40之前形成气孔12的成型部分38的实施例。如上文所述,该实施例可涉及将涡轮叶片移动至两个分开的站点(即,短脉冲激光站点、计量站点,并且返回短脉冲激光站点用于精整),或至三个分开的站点(即,短脉冲激光站点、计量站点和可采用或不采用短脉冲激光的精整站点)。在涡轮叶片从一个站点移动至另一个的实施例中,涡轮叶片的定位可涉及孔识别或配准,以确保执行成形、计量和/或精整步骤的装置的适当对准。
在其它实施例中,形成气孔12的部分的顺序可为不同的。例如,现在参看图6,在一个实施例中,本文所述的各种计量、成形和精整工艺可以以不同的顺序执行,其中,计量孔40在气孔12的成型部分38的成形(方框46)和气孔12的精整(方框54)之前首先形成(方框50)。在该实施例中,涡轮叶片可仅移动至两个分开的站点(即,计量站点和成形/精整站点),其中成形和精整工艺在相同的站点发生,但使用不同的扫描规程(即,成形扫描规程和精整扫描规程)。
此外,在单个可配置或可调节的激光用于执行如本文所述的长脉冲和短脉冲形成操作的另一实施例中,气孔12可在单个物理站点形成在涡轮叶片10中,其中可配置的激光的操作适当地调整成用于计量、成形和/或精整工艺中的每种。例如,在一个这种实施例中,具有小于1ms的脉冲持续时间、适合的波长特征(例如,532nm、355nm、317nm等)和大功率(例如,大于100W)的脉冲激光可用于成形、计量和精整气孔12。该脉冲激光可在扫描仪(诸如本文所述的CAD驱动的扫描仪)或平移阶段的控制之下。在一个实施方式中,脉冲激光具有小于1ms的脉冲持续时间,且具有大功率和高重复率,诸如大功率纳秒级准分子激光或大功率纳秒级或皮秒级绿色激光。
本发明的技术效果包括形成具有用于在使用时冷却涡轮叶片的成型气孔的涡轮叶片。成型气孔可在两个或三个步骤工艺中形成,诸如长脉冲激光用于形成各气孔的计量部分而短脉冲激光用于形成气孔的成型部分且对气孔提供精整(例如,精细清洁)的工艺。此外,一个技术效果在于在质量控制工艺中使用IR成像、共焦显微术和/或X射线照相术中的一种或多种。另一技术效果在于,验证工艺使用具有形成的气孔的涡轮叶片所产生的体积表现,其中,体积表现与涡轮叶片的公知CAD表现相比较来验证和/或调整制造工艺。
本书面说明使用示例来公开本发明,包括最佳模式,且还使本领域技术人员能够实施本发明,包括制作和使用任何装置或系统,以及执行任何包括的方法。本发明的专利范围由权利要求限定,并且可包括本领域技术人员所构思的其它实例。如果这些其它的示例具有并非不同于本权利要求的书面语言的结构元件,或者,如果这些其它示例包括与本权利要求的书面语言无实质差异的同等结构元件,则这些实例意图在本权利要求的范围之内。

Claims (9)

1.一种用于形成成型孔(12)的方法,包括:
使用由三维激光扫描仪控制的第一短脉冲激光来在涡轮构件(10)中形成多个气孔的成型部分(38);
在形成所述多个气孔的成型部分之后,再在各相应的成型部分(38)处形成计量孔(40),所述计量孔从所述多个气孔中相应的气孔的成型部分延伸贯穿到所述涡轮构件的内腔;其中,每个计量孔对应于所述多个气孔的成型部分中的一个气孔的成型部分;以及
在形成所述计量孔之后,再通过对所述成型部分(38)进行精整将所期望的表面质地、平滑度和/或表面轮廓应用在所述多个气孔对应的成型部分上,以完成所述气孔。
2.根据权利要求1所述的方法,其特征在于,所述三维激光扫描仪基于提供给所述三维激光扫描仪的CAD文件来控制所述第一短脉冲激光。
3.根据权利要求1所述的方法,其特征在于,所述气孔的成型部分(38)至少形成在所述涡轮构件(10)的热屏障覆层(36)中。
4.根据权利要求1所述的方法,其特征在于,包括:
基于体积重建和CAD文件(66)来验证所述成型部分(38)、所述计量孔(40)或经精整的所述气孔中的一个或更多个。
5.一种用于形成成型孔的方法,包括:
使用由三维激光扫描仪控制的短脉冲激光来在涡轮构件(10)中形成多个气孔(12)的成型部分(38);
使用由所述三维激光扫描仪控制的所述短脉冲激光来对所述成型部分(38)进行精整,将所期望的表面质地、平滑度和/或表面轮廓应用在所述多个气孔对应的成型部分上,其中,所述短脉冲激光当使所述成型部分(38)平滑时以不同于当形成所述成型部分(38)时的扫描速率操作;
使所述涡轮构件(10)移动至分开的站点;以及
在各相应的成型部分(38)处形成计量孔(40),所述计量孔从所述多个气孔中相应的气孔的成型部分延伸贯穿到所述涡轮构件的内腔。
6.根据权利要求5所述的方法,其特征在于,对所述成型部分(38)进行精整的步骤(54)包括从所述相应的成型部分(38)上除去裂纹。
7.根据权利要求5所述的方法,其特征在于,包括:
产生所述成型部分(38)的体积表现(62);以及
将所述体积表现与CAD文件(66)相比较(64)。
8.根据权利要求7所述的方法,其特征在于,包括如果所述体积表现不大致对应于所述CAD文件(66),则调整用于形成所述气孔的工艺和/或精整工艺。
9.根据权利要求5所述的方法,其特征在于,包括使用IR成像、共焦显微术或X射线照相术中的一种或更多种来评估所述成型部分(38)的精整表面。
CN201110037145.5A 2010-01-29 2011-01-28 用于形成成型气孔的工艺及系统 Active CN102189339B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/697005 2010-01-29
US12/697,005 US8857055B2 (en) 2010-01-29 2010-01-29 Process and system for forming shaped air holes

Publications (2)

Publication Number Publication Date
CN102189339A CN102189339A (zh) 2011-09-21
CN102189339B true CN102189339B (zh) 2016-01-06

Family

ID=44316222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110037145.5A Active CN102189339B (zh) 2010-01-29 2011-01-28 用于形成成型气孔的工艺及系统

Country Status (5)

Country Link
US (1) US8857055B2 (zh)
JP (1) JP5864861B2 (zh)
CN (1) CN102189339B (zh)
CH (1) CH702610B1 (zh)
DE (1) DE102011000144A1 (zh)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387245B2 (en) 2010-11-10 2013-03-05 General Electric Company Components with re-entrant shaped cooling channels and methods of manufacture
US8673397B2 (en) 2010-11-10 2014-03-18 General Electric Company Methods of fabricating and coating a component
US20120148769A1 (en) 2010-12-13 2012-06-14 General Electric Company Method of fabricating a component using a two-layer structural coating
US8601691B2 (en) 2011-04-27 2013-12-10 General Electric Company Component and methods of fabricating a coated component using multiple types of fillers
US9434025B2 (en) 2011-07-19 2016-09-06 Pratt & Whitney Canada Corp. Laser drilling methods of shallow-angled holes
US20130020291A1 (en) * 2011-07-19 2013-01-24 Pratt & Whitney Canada Corp. Laser drilling methods of shallow-angled holes
US9206696B2 (en) 2011-08-16 2015-12-08 General Electric Company Components with cooling channels and methods of manufacture
US20130086784A1 (en) 2011-10-06 2013-04-11 General Electric Company Repair methods for cooled components
US8861673B2 (en) * 2011-11-30 2014-10-14 United Technologies Corporation Component aperture location using computed tomography
EP2604378B1 (de) * 2011-12-15 2015-04-01 Siemens Aktiengesellschaft Wiederöffnung von Kühlluftbohrungen mit Nanosekundenlaser im Mikrosekundenbereich
US9249670B2 (en) 2011-12-15 2016-02-02 General Electric Company Components with microchannel cooling
US8572983B2 (en) 2012-02-15 2013-11-05 United Technologies Corporation Gas turbine engine component with impingement and diffusive cooling
US9284844B2 (en) 2012-02-15 2016-03-15 United Technologies Corporation Gas turbine engine component with cusped cooling hole
US9273560B2 (en) 2012-02-15 2016-03-01 United Technologies Corporation Gas turbine engine component with multi-lobed cooling hole
US9598979B2 (en) 2012-02-15 2017-03-21 United Technologies Corporation Manufacturing methods for multi-lobed cooling holes
US9279330B2 (en) 2012-02-15 2016-03-08 United Technologies Corporation Gas turbine engine component with converging/diverging cooling passage
US10422230B2 (en) 2012-02-15 2019-09-24 United Technologies Corporation Cooling hole with curved metering section
US9422815B2 (en) 2012-02-15 2016-08-23 United Technologies Corporation Gas turbine engine component with compound cusp cooling configuration
US8683814B2 (en) 2012-02-15 2014-04-01 United Technologies Corporation Gas turbine engine component with impingement and lobed cooling hole
US9482100B2 (en) 2012-02-15 2016-11-01 United Technologies Corporation Multi-lobed cooling hole
US9416971B2 (en) 2012-02-15 2016-08-16 United Technologies Corporation Multiple diffusing cooling hole
US8584470B2 (en) 2012-02-15 2013-11-19 United Technologies Corporation Tri-lobed cooling hole and method of manufacture
US8733111B2 (en) 2012-02-15 2014-05-27 United Technologies Corporation Cooling hole with asymmetric diffuser
US8522558B1 (en) 2012-02-15 2013-09-03 United Technologies Corporation Multi-lobed cooling hole array
US9410435B2 (en) 2012-02-15 2016-08-09 United Technologies Corporation Gas turbine engine component with diffusive cooling hole
US9416665B2 (en) 2012-02-15 2016-08-16 United Technologies Corporation Cooling hole with enhanced flow attachment
US8850828B2 (en) 2012-02-15 2014-10-07 United Technologies Corporation Cooling hole with curved metering section
US8683813B2 (en) 2012-02-15 2014-04-01 United Technologies Corporation Multi-lobed cooling hole and method of manufacture
US8763402B2 (en) 2012-02-15 2014-07-01 United Technologies Corporation Multi-lobed cooling hole and method of manufacture
US9024226B2 (en) 2012-02-15 2015-05-05 United Technologies Corporation EDM method for multi-lobed cooling hole
US8689568B2 (en) 2012-02-15 2014-04-08 United Technologies Corporation Cooling hole with thermo-mechanical fatigue resistance
US8707713B2 (en) 2012-02-15 2014-04-29 United Technologies Corporation Cooling hole with crenellation features
US9435208B2 (en) 2012-04-17 2016-09-06 General Electric Company Components with microchannel cooling
US9650900B2 (en) 2012-05-07 2017-05-16 Honeywell International Inc. Gas turbine engine components with film cooling holes having cylindrical to multi-lobe configurations
US9243503B2 (en) 2012-05-23 2016-01-26 General Electric Company Components with microchannel cooled platforms and fillets and methods of manufacture
DE102013109116A1 (de) 2012-08-27 2014-03-27 General Electric Company (N.D.Ges.D. Staates New York) Bauteil mit Kühlkanälen und Verfahren zur Herstellung
US9238265B2 (en) 2012-09-27 2016-01-19 General Electric Company Backstrike protection during machining of cooling features
US10113433B2 (en) 2012-10-04 2018-10-30 Honeywell International Inc. Gas turbine engine components with lateral and forward sweep film cooling holes
US9562436B2 (en) 2012-10-30 2017-02-07 General Electric Company Components with micro cooled patterned coating layer and methods of manufacture
US9200521B2 (en) 2012-10-30 2015-12-01 General Electric Company Components with micro cooled coating layer and methods of manufacture
US20140302278A1 (en) 2013-04-09 2014-10-09 General Electric Company Components with double sided cooling features and methods of manufacture
US9798839B2 (en) 2013-11-11 2017-10-24 General Electric Company System and methods of generating a computer model of a component
FR3013360B1 (fr) * 2013-11-19 2015-12-04 Snecma Procede integre de frittage pour microfissuration et tenue a l'erosion des barrieres thermiques
US9476306B2 (en) 2013-11-26 2016-10-25 General Electric Company Components with multi-layered cooling features and methods of manufacture
DE102014207789A1 (de) * 2014-04-25 2015-10-29 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Wärmedämmschicht an einem Bauteil
CN103990910B (zh) * 2014-05-20 2015-08-05 西安交通大学 一种带热障涂层涡轮叶片气膜冷却孔的制备方法
DE102015206004A1 (de) * 2015-04-02 2016-10-06 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur Formung eines Langpulslasers und Verfahren zur Herstellung eines geformten Lochs
US20170014945A1 (en) * 2015-07-17 2017-01-19 Laserax Inc. Methods and systems for laser marking an identifier on an industrial product
US11065715B2 (en) 2016-05-03 2021-07-20 General Electric Company Combined liquid guided laser and electrical discharge machining
CA3024122A1 (en) * 2016-05-18 2017-11-23 Gary FRANCOEUR A milling and laser drilling system
US11021965B2 (en) 2016-05-19 2021-06-01 Honeywell International Inc. Engine components with cooling holes having tailored metering and diffuser portions
US10605092B2 (en) 2016-07-11 2020-03-31 United Technologies Corporation Cooling hole with shaped meter
EP3492912A4 (en) * 2016-07-29 2020-11-04 Nikon Corporation SETTING PROCEDURES, INSPECTION PROCEDURES, DEFECT EVALUATION DEVICE AND STRUCTURAL MANUFACTURING PROCEDURES
CN106513996B (zh) * 2016-12-30 2019-02-15 中国科学院宁波材料技术与工程研究所 全激光复合增材制造方法和装置
DE102019218292A1 (de) * 2019-11-26 2021-05-27 Siemens Aktiengesellschaft Vorgehensweise beim Laserbohren von mehreren Löchern auf Basis der Fokuslage
JP7362997B2 (ja) * 2021-06-24 2023-10-18 ドゥサン エナービリティー カンパニー リミテッド タービンブレードおよびこれを含むタービン
CN113634790A (zh) * 2021-08-09 2021-11-12 华东师范大学 一种激光与机械结合对发动机涡轮叶片气膜孔的加工方法及装置
US11959396B2 (en) * 2021-10-22 2024-04-16 Rtx Corporation Gas turbine engine article with cooling holes for mitigating recession
US20230193772A1 (en) * 2021-12-21 2023-06-22 Raytheon Technologies Corporation Fabrication of cooling holes using laser machining and ultrasonic machining

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049795A1 (en) * 2000-12-20 2002-06-27 Chromalloy Gas Turbine Corporation Laser machining cooling holes in gas turbine components
CN1469792A (zh) * 2000-10-18 2004-01-21 �ֹ��� 在具有隔热涂层的金属工件上钻孔的方法
US7092484B1 (en) * 2002-06-14 2006-08-15 Iowa State University Research Foundation, Inc. Model-assisted reconstruction of volumetric data
CN1863638A (zh) * 2003-08-04 2006-11-15 阿尔斯通技术有限公司 冷却钻孔的参数化加工
CN101119826A (zh) * 2005-01-14 2008-02-06 西门子公司 制造孔的方法和设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609779A (en) * 1996-05-15 1997-03-11 General Electric Company Laser drilling of non-circular apertures
US6243948B1 (en) * 1999-11-18 2001-06-12 General Electric Company Modification and repair of film cooling holes in gas turbine engine components
US7204019B2 (en) * 2001-08-23 2007-04-17 United Technologies Corporation Method for repairing an apertured gas turbine component
GB2383769B (en) 2001-10-06 2004-10-13 Rolls Royce Plc Method of laser drilling a hole
US6380512B1 (en) * 2001-10-09 2002-04-30 Chromalloy Gas Turbine Corporation Method for removing coating material from a cooling hole of a gas turbine engine component
GB2381489B (en) 2001-10-30 2004-11-17 Rolls Royce Plc Method of forming a shaped hole
US6847004B2 (en) * 2003-01-10 2005-01-25 General Electric Company Process of removing a ceramic coating deposit in a surface hole of a component
GB2384734A (en) 2003-02-11 2003-08-06 M J Technologies Ltd Micromachining holes in a coated workpiece
DE10319019B4 (de) * 2003-04-27 2006-03-30 Mtu Aero Engines Gmbh Verfahren zur Wartung, insbesondere Reparatur, von Gasturbinen
DE60316942T2 (de) * 2003-08-27 2008-08-14 Alstom Technology Ltd. Adaptive automatisierte Bearbeitung von überfüllten Kanälen
US6977356B2 (en) * 2003-09-30 2005-12-20 United Technologies Corporation Stereovision guided laser drilling system
US8237082B2 (en) * 2004-09-02 2012-08-07 Siemens Aktiengesellschaft Method for producing a hole
EP1810774A1 (de) * 2006-01-24 2007-07-25 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Loches
EP1767743A1 (de) * 2005-09-26 2007-03-28 Siemens Aktiengesellschaft Verfahren zum Herstellen eines zu beschichtenden Gasturbinen-Bauteils mit freigelegten Öffnungen, Vorrichtung zur Durchführung des Verfahrens und beschichtbare Turbinenschaufel mit Filmkühlöffnungen
EP1806203A1 (de) 2006-01-10 2007-07-11 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Lochs
US7858897B2 (en) * 2006-10-27 2010-12-28 United Technologies Corporation Insert weld repair
JP2008284579A (ja) * 2007-05-16 2008-11-27 Fuji Xerox Co Ltd 液滴吐出ヘッドの製造方法、および液滴吐出ヘッド
JP4790737B2 (ja) * 2008-02-01 2011-10-12 本田技研工業株式会社 レーザ加工装置及びレーザ加工方法
US8319146B2 (en) 2009-05-05 2012-11-27 General Electric Company Method and apparatus for laser cutting a trench

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1469792A (zh) * 2000-10-18 2004-01-21 �ֹ��� 在具有隔热涂层的金属工件上钻孔的方法
WO2002049795A1 (en) * 2000-12-20 2002-06-27 Chromalloy Gas Turbine Corporation Laser machining cooling holes in gas turbine components
US7092484B1 (en) * 2002-06-14 2006-08-15 Iowa State University Research Foundation, Inc. Model-assisted reconstruction of volumetric data
CN1863638A (zh) * 2003-08-04 2006-11-15 阿尔斯通技术有限公司 冷却钻孔的参数化加工
CN101119826A (zh) * 2005-01-14 2008-02-06 西门子公司 制造孔的方法和设备

Also Published As

Publication number Publication date
US8857055B2 (en) 2014-10-14
CH702610A8 (de) 2011-12-15
JP5864861B2 (ja) 2016-02-17
DE102011000144A1 (de) 2011-08-04
JP2011157964A (ja) 2011-08-18
CH702610A2 (de) 2011-07-29
CN102189339A (zh) 2011-09-21
US20110185572A1 (en) 2011-08-04
CH702610B1 (de) 2015-07-15

Similar Documents

Publication Publication Date Title
CN102189339B (zh) 用于形成成型气孔的工艺及系统
CA2731756C (en) Method for repairing and/or upgrading a component, especially of a gas turbine
JP5563083B2 (ja) 自動修復方法およびシステム
AU2014204284B2 (en) Object production using an additive manufacturing process and quality assessment of the object
US20100251546A1 (en) System and method for adjusting performance of manaufacturing operations or steps
US7602963B2 (en) Method and apparatus for finding anomalies in finished parts and/or assemblies
RU2417869C2 (ru) Способ ремонта лопатки моноблочного, оснащенного лопатками диска турбомашины и опытный образец для реализации указанного способа
Piya et al. Virtual repair: geometric reconstruction for remanufacturing gas turbine blades
Gao et al. Investigation of a 3D non‐contact measurement based blade repair integration system
JP2007009908A (ja) 1つまたは複数の孔の位置および角度方向の特定方法および特定装置
JP2007010654A (ja) 孔のパターンの位置および角度方向の特定方法および特定装置
EP4141408A1 (en) Nondestructive testing method for crack defects, and testing standard part and manufacturing method therefor
US20080183325A1 (en) Process for producing holes
HU191162B (en) Test body for evaluating the results of non-destructive testing as well as method for producing test bodies
US20230158572A1 (en) A non-destructive testing method for lof defects, and a testing standard part and a manufacturing method thereof
Zhang et al. Voxel-based geometry reconstruction for repairing and remanufacturing of metallic components via additive manufacturing
US20180371922A1 (en) Composite turbomachine component and related methods of manufacture and repair
Charles et al. Development of a method to repair gas turbine blades using electron beam melting additive manufacturing technology
CA3226666A1 (en) Representative part, methods of designing representative parts, methods of forming and testing representative parts, and methods of qualifying additive manufacturing systems
Przysowa et al. CT inspection of cooled turbine blades
Yan et al. Advances in Aeroengine Cooling Hole Measurement: A Comprehensive Review
CN113727833A (zh) 用于处理部件中的内部缺陷的方法
Smith Vibration Bending Fatigue Analysis of Additively Repaired Ti-6Al-4V Airfoil Blades
Agarwal et al. Inspection of Computed Tomography (CT) Data and Finite Element (FE) Simulation of Additive Manufactured (AM) Components
JP2019138640A (ja) タービン部品の劣化評価方法及びタービンのメンテナンス方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231227

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.