CN102178640A - 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法 - Google Patents

将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法 Download PDF

Info

Publication number
CN102178640A
CN102178640A CN2011100631113A CN201110063111A CN102178640A CN 102178640 A CN102178640 A CN 102178640A CN 2011100631113 A CN2011100631113 A CN 2011100631113A CN 201110063111 A CN201110063111 A CN 201110063111A CN 102178640 A CN102178640 A CN 102178640A
Authority
CN
China
Prior art keywords
beta
solution
drug
hydrophobic drug
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100631113A
Other languages
English (en)
Other versions
CN102178640B (zh
Inventor
林坚涛
张黎明
胡剑灿
邓敏敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN2011100631113A priority Critical patent/CN102178640B/zh
Publication of CN102178640A publication Critical patent/CN102178640A/zh
Application granted granted Critical
Publication of CN102178640B publication Critical patent/CN102178640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

本发明公开了一种将疏水性药物负载于亲水性聚合物纳米电纺纳米纤维的方法。该方法包括步骤:(1)疏水性药物-β环糊精包合物的制备;(2)将疏水性药物-β环糊精包合物溶于水中,配成质量浓度为1.0~4.0%的溶液;(3)将亲水性聚合物原材料溶于水中,配成质量浓度为3.0~10.0%的溶液;(4)将上述溶液混合均匀,得到电纺丝液;利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。本发明实现了疏水性药物分子在亲水性聚合物纳米电纺纳米纤维中的均匀负载和可控释放。

Description

将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法
技术领域
本发明属于生物医学工程医药技术领域,特别涉及一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纤维的方法。
背景技术
作为一类新型药物载体,聚合物电纺纳米纤维近年来引起了国内外的广泛关注和兴趣。电纺纳米纤维具有更高的比表面积,结构上和细胞外基质有着很高的相似性,使得它在作为药物载体时优势明显(a.Travis J.Sill,Horst A.von Recum.Biomaterials,2008,29(13):1989-2006.b.鲁遥,蒋宏亮,朱康杰.中国生物医学工程学报,2008,27(6):926-932)。已被电纺的聚合物原材料主要包括疏水性的聚乳酸、聚己内酯、聚(乙交酯-丙交酯)和亲水性的海藻酸钠、壳聚糖、葡聚糖、明胶、透明质酸、聚乙烯醇(PVA)和聚环氧乙烷(PEO)等。已被负载的药物主要涉及非甾体抗炎药、抗生素、抗肿瘤药、生长因子及具有生物活性的蛋白等。其中,亲水性聚合物电纺纳米纤维用作药物控释载体,具有更好的生物相容性和应用前景,因而倍受青睐。例如,Ngawhirunpat(Ngawhirunpat,T.Opanasopit,P.Rojanarata,T.Akkaramongkolporn,P.Ruktanonchai,U.Supaphol,P.Pharmaceutical Development and Technology,2009,14(1):70-79)等通过将美洛昔康(meloxicam)混合在PVA成功制备了负载美洛昔康的PVA纳米纤维膜,和浇铸膜相比,纳米纤维膜的皮肤透过率要远高于浇铸膜,显示了纳米纤维膜在药物载体方面的潜在应用。Zeng(Zeng J,Aigner A,Czubayko F,Kissel T,Wendorff JH,Greiner A.Biomacromolecules,2005,6(3):1484-1488)等通过将牛血清蛋白(BSA)溶解在PVA溶液中电纺制备纳米纤维,得到的纤维结构均匀,说明亲水性的纳米纤维同时还可以作为蛋白质药物载体。
但迄今为止,这类研究工作大都局限于利用亲水性聚合物电纺纳米纤维负载和控释亲水性药物,当将其用于疏水性药物或水溶解度很低药物的负载和控释时,则会出现分散不均匀、易聚集成团和暴释等问题(a.Taepaiboon,P.Rungsardthong,U.Supaphol,P.2006,17(9):2317-2329.b.Kenawy,E.R. Abdel-Hay,F.1.El-Newehy,M.H.Wnek,G.E.Materials Science and Engineering a-Structural Materials Properties Microstructure  and Processing,2007,45(1-2):350-359)。因此,探索新的制备工艺路线、解决将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维中的技术难题,是当前生物医学工程技术领域的重要课题。
发明内容
为了解决上述现有技术中存在的缺点和不足,本发明的首要目的在于提供一种将疏水性药物均匀负载于亲水性聚合物纳米纤维的方法。本发明利用具有疏水性内核和亲水性表面的β-环糊精,首先与疏水性药物借助主客体相互作用形成药物-β-环糊精包合物,再将所得包合物在搅拌条件下均匀溶解在待电纺的亲水性聚合物水溶液中,然后利用静电纺丝技术制备出所需纳米纤维,进而实现了疏水性药物分子在亲水性聚合物纳米纤维中的均匀负载和可控释放。
本发明的另一目的在于提供上述方法制备得到的纳米纤维;所得纳米纤维大小均匀,直径范围在300~600纳米之间,无串珠结构,药物在体系中释放稳定,速率可控,可有效提高药物的利用率。
本发明的目的通过下述技术方案实现:一种将疏水性药物负载于亲水性聚合物纳米纤维的方法,包括以下操作步骤:
(1)疏水性药物-β环糊精包合物的制备
将β-环糊精溶于水中,形成β-环糊精水溶液;取疏水性药物溶于溶剂中,制成药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中,滴加完毕后保持50~80℃水浴,搅拌3~6小时,将所得溶液过0.45μm的滤纳米纤维,滤液于4~10℃保存过夜,抽滤,干燥,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为1.0~4.0%的溶液;
(3)将亲水性聚合物原材料溶于水中,配成质量浓度为5.0~10.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。
步骤(1)所述将β-环糊精溶于水是将β-环糊精在50~70℃水浴条件下 加热溶解于水中;所述搅拌的速度为300~500r/min;所述干燥是在40~60℃条件下真空干燥24~48小时。
步骤(1)所述疏水性药物为布洛芬、吲哚美辛或地塞米松。
当疏水性药物为布洛芬时,步骤(1)所述β-环糊精水溶液的质量浓度为7%~13%,药物溶液的质量浓度为7~9%,β-环糊精水溶液和药物溶液的体积比为4∶1。
当疏水性药物为吲哚美辛时,步骤(1)所述β-环糊精水溶液的浓度7%~13%,药物溶液的质量浓度为12%~17%,β-环糊精水溶液和药物溶液的体积比为4∶1。
当疏水性药物为地塞米松时,步骤(1)所述β-环糊精水溶液的质量浓度为7%~13%,药物溶液的质量浓度为13%~19%,β-环糊精水溶液和药物溶液的体积比为4∶1。
步骤(1)所述溶剂为乙醇、丙酮、二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)等。
步骤(3)所述亲水性聚合物材料的分子量≥10万;所述亲水性聚合物材料为聚乙烯醇(PVA)、聚乙二醇(PEO)、聚维酮(PVP)、壳聚糖(CS)或葡聚糖(DEX)等。
上述方法制备得到的电纺纳米纤维,纳米纤维的直径为300~600纳米。
与现有技术相比,本发明具有以下优点和有益效果:本发明制备得到的静电纺丝纳米纤维表面光滑,无串珠状结构,纤维直径在300~600纳米范围之间;设备简单,操作方便,制备得到的纳米纤维比表面积大,孔隙率高,制备得到的疏水性药物与环糊精的包合物使药物在亲水性的基质材料中分布均匀,同时对药物释放具有一定的缓释作用,避免了直接负载药物时的暴释。
附图说明
图1为制备得到的电纺纳米纤维电镜照片图,其中A为实施例1所得电纺纳米纤维,B为实施例2所得电纺纳米纤维,C为实施例3所得电纺纳米纤维,D为布洛芬与PVA共混电纺纳米纤维。
图2为药物在37℃,pH7.4磷酸盐缓冲液的释放曲线,其中A为实施例1所得电纺纳米纤维,B为实施例2所得电纺纳米纤维,C为实施例3所得电纺纳米纤维,D为布洛芬与PVA共混电纺纳米纤维。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
(1)疏水性药物-β环糊精包合物的制备
将β-环糊精在60℃水浴条件下加热溶解于水中,形成质量浓度为11.85%的β-环糊精水溶液;取疏水性药物布洛芬(Ibuprofen)溶于乙醇中,制成质量浓度为8.4%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持60℃水浴,以400r/min的速度搅拌3小时,将所得溶液过0.45μm的滤纳米纤维,滤液于5℃保存过夜,抽滤,在40℃条件下真空干燥24小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为1.0%的溶液;
(3)将亲水性聚合物聚乙烯醇(PVA,水解度≥95%,分子量60KDa)溶于水中,配成质量浓度为7.5%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。
实施例2
(1)疏水性药物-β环糊精包合物的制备
将β-环糊精在70℃水浴条件下加热溶解于水中,形成质量浓度为13%的β-环糊精水溶液;取疏水性药物布洛芬溶于乙醇中,制成质量浓度为9%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持60℃水浴,以300r/min的速度搅拌5小时,将所得溶液过0.45μm的滤纳米纤维,滤液于10℃保存过夜,抽滤,在60℃条件下真空干燥48小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓 度为2.0%的溶液;
(3)将亲水性聚合物聚乙烯醇(PVA,水解度≥95%,分子量60KDa)溶于水中,配成质量浓度为7.5%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。
实施例3
(1)疏水性药物-β环糊精包合物的制备
将β-环糊精在50℃水浴条件下加热溶解于水中,形成质量浓度为7%的β-环糊精水溶液;取疏水性药物布洛芬溶于乙醇中,制成质量浓度为7%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持80℃水浴,以300r/min的速度搅拌6小时,将所得溶液过0.45μm的滤纳米纤维,滤液于4℃保存过夜,抽滤,在50℃条件下真空干燥32小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为4.0%的溶液;
(3)将亲水性聚合物聚乙烯醇(PVA,水解度≥95%,分子量60KDa)溶于水中,配成质量浓度为7.5%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。
实施例4
将布洛芬0.43g与7.5%PVA溶液混合后得到电纺丝溶液,所得电纺丝液浑浊不清(这是因为疏水性药物无法溶解在水溶液中);采用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;
将实施例1-3所得电纺纳米纤维和上述所得电纺纳米纤维采用电镜扫描, 所得电镜照片如图1所示:由图A、B、C可知,不同量的包合物/PVA溶液混合制备得到的纳米纤维结构均匀,无串珠状结构,说明药物在PVA中分散均匀,无聚集;而图D图药物和PVA溶液混合制备得到的纳米纤维存在着许多串珠状的结构(图中箭头标示),说明药物在PVA中分散不匀,有聚集。
实施例5
将实施例1-3所得电纺纳米纤维和实施例4所得电纺纳米纤维在37℃,pH7.4磷酸盐缓冲液中进行释放,释放曲线如图2所示:由图A、B、C的释放曲线可知,随着包合物/PVA中包合物的量的增加,药物的累积释放率逐渐降低,说明可以通过增加体系中包合物的量来降低药物的释放速度;而由图D的释放曲线可知,直接混合的药物在前20分钟就达到了完全释放,暴释明显,相对而言,包合物的释放较慢,说明环糊精对药物的释放起到了一定的缓释作用。
实施例6
(1)疏水性药物-β环糊精包合物的制备
将2.37gβ-环糊精在60℃水浴条件下加热溶解于20ml水中,形成质量浓度为11.85%的β-环糊精水溶液;取疏水性药物吲哚美辛溶于丙酮中,制成质量浓度为15%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持70℃水浴,以300r/min的速度搅拌5小时,将所得溶液过0.45μm的滤纳米纤维,滤液于8℃保存过夜,抽滤,在50℃条件下真空干燥28小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为1.0%的溶液;
(3)将亲水性聚合物原材料壳聚糖(分子量60KDa)溶于水中,配成质量浓度为3.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~300 纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的30%,随后进入缓慢释放,24小时内的释放率为43%。
实施例7
(1)疏水性药物-β环糊精包合物的制备
将2.37g β-环糊精在60℃水浴条件下加热溶解于20ml水中,形成质量浓度为7%的β-环糊精水溶液;取疏水性药物吲哚美辛溶于二甲基甲酰胺中,制成质量浓度为12%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持70℃水浴,以500r/min的速度搅拌5小时,将所得溶液过0.45μm的滤纳米纤维,滤液于4℃保存过夜,抽滤,在50℃条件下真空干燥32小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为2.0%的溶液;
(3)将亲水性聚合物原材料聚乙二醇(分子量60KDa)溶于水中,配成质量浓度为3.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~300纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的30%,随后进入缓慢释放,24小时内的释放率为40%。
实施例8
(1)疏水性药物-β环糊精包合物的制备
将2.37gβ-环糊精在60℃水浴条件下加热溶解于20ml水中,形成质量浓度为13%的β-环糊精水溶液;取疏水性药物吲哚美辛溶于丙酮中,制成质量浓度为17%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持70℃水浴,以400r/min的速度搅拌5小时,将所得溶液过0.45μm的滤纳米纤维,滤液于6℃保存过夜,抽滤,在50℃条件下真空干燥35小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为3.0%的溶液;
(3)将亲水性聚合物原材料聚乙二醇(分子量60KDa)溶于水中,配成质量浓度为3.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~300纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的29%,随后进入缓慢释放,24小时内的释放率为39%。
实施例9
(1)疏水性药物-β环糊精包合物的制备
将2.37gβ-环糊精在50℃水浴条件下加热溶解于20ml水中,形成质量浓度为11.85%的β-环糊精水溶液;取疏水性药物地塞米松溶于溶剂二甲基亚砜中,制成质量浓度为16.4%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持50℃水浴,以500r/min的速度搅拌6小时,将所得溶液过0.45μm的滤纳米纤维,滤液于6℃保存过夜,抽滤,在45℃条件下真空干燥40小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为2.0%的溶液;
(3)将亲水性聚合物原材料聚维酮(分子量100K Da)溶于水中,配成质量浓度为6.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~400纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的28%,随后 进入缓慢释放,24小时内的释放率为45%。
实施例10
(1)疏水性药物-β环糊精包合物的制备
将2.37gβ-环糊精在60℃水浴条件下加热溶解于20ml水中,形成质量浓度为7%的β-环糊精水溶液;取疏水性药物地塞米松溶于溶剂二甲基甲酰胺中,制成质量浓度为13%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持80℃水浴,以500r/min的速度搅拌5小时,将所得溶液过0.45μm的滤纳米纤维,滤液于9℃保存过夜,抽滤,在55℃条件下真空干燥36小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为3.0%的溶液;
(3)将亲水性聚合物原材料壳聚糖(分子量100K Da)溶于水中,配成质量浓度为6.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~400纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的28%,随后进入缓慢释放,24小时内的释放率为43%。
实施例11
(1)疏水性药物-β环糊精包合物的制备
将2.37gβ-环糊精在70℃水浴条件下加热溶解于20ml水中,形成质量浓度为13%的β-环糊精水溶液;取疏水性药物地塞米松溶于溶剂二甲基亚砜中,制成质量浓度为19%的药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中(β-环糊精水溶液和药物溶液的体积比为4∶1),滴加完毕后保持60℃水浴,以400r/min的速度搅拌6小时,将所得溶液过0.45μm的滤纳米纤维,滤液于 10℃保存过夜,抽滤,在40℃条件下真空干燥29小时,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为4.0%的溶液;
(3)将亲水性聚合物原材料葡聚糖(分子量100K Da)溶于水中,配成质量浓度为6.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液,所得电纺丝液澄清透明,因为环糊精的外亲水作用使得包合物很好地溶解在PVA水溶液中;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维;所得电纺纳米纤维用电镜扫描观察其表面光滑,无串珠状结构,纤维直径在100~400纳米。纳米纤维中药物的在前30min快速释放,释放率达到总量的27%,随后进入缓慢释放,24小时内的释放率为41%。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种将疏水性药物负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于包括以下操作步骤:
(1)疏水性药物-β环糊精包合物的制备
将β-环糊精溶于水中,形成β-环糊精水溶液;取疏水性药物溶于溶剂中,制成药物溶液;将药物溶液缓慢滴入β-环糊精水溶液中,滴加完毕后保持50~80℃水浴,搅拌3~6小时,将所得溶液过0.45μm的滤纳米纤维,滤液于4~10℃保存过夜,抽滤,干燥,得到疏水性药物-β环糊精包合物;
(2)将步骤(1)所得疏水性药物-β环糊精包合物溶于水中,配成质量浓度为1.0~4.0%的溶液;
(3)将亲水性聚合物原材料溶于水中,配成质量浓度为3.0~10.0%的溶液;
(4)将步骤(2)和步骤(3)所得溶液按照等体积混合均匀,得到电纺丝液;将电纺丝液利用静电纺丝仪,使用电压15~20kV,纺丝温度50~60℃,推进速度0.001~0.003mm/s,制备得到电纺纳米纤维。
2.根据权利要求1所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:步骤(1)所述将β-环糊精溶于水是将β-环糊精在50~70℃水浴条件下加热溶解于水中;所述搅拌的速度为300~500r/min;所述干燥是在40~60℃条件下真空干燥24~48小时。
3.根据权利要求1所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:步骤(1)所述疏水性药物为布洛芬、吲哚美辛或地塞米松。
4.根据权利要求3所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:当疏水性药物为布洛芬时,步骤(1)所述β-环糊精水溶液的质量浓度为7%~13%,药物溶液的质量浓度为7~9%,β-环糊精水溶液和药物溶液的体积比为4∶1。
5.根据权利要求3所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:当疏水性药物为吲哚美辛时,步骤(1)所述β-环糊精水溶液的浓度7%~13%,药物溶液的质量浓度为12%~17%,β-环糊精水溶液和药物溶液的体积比为4∶1。
6.根据权利要求3所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:当疏水性药物为地塞米松时,步骤(1)所述β-环糊精水溶液的质量浓度为7%~13%,药物溶液的质量浓度为13%~19%,β-环糊精水溶液和药物溶液的体积比为4∶1。
7.根据权利要求1所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:步骤(1)所述溶剂为乙醇、丙酮、二甲基甲酰胺或二甲基亚砜。
8.根据权利要求1所述的一种将疏水性药物均匀负载于亲水性聚合物纳米电纺纳米纤维的方法,其特征在于:步骤(3)所述亲水性聚合物材料的分子量≥10万;所述亲水性聚合物材料为聚乙烯醇、聚乙二醇、聚维酮、壳聚糖或葡聚糖。
9.根据权利要求1~8任一项所述方法制备得到的电纺纳米纤维,其特征在于:所述电纺纳米纤维的直径为300~600纳米。
CN2011100631113A 2011-03-16 2011-03-16 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法 Expired - Fee Related CN102178640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100631113A CN102178640B (zh) 2011-03-16 2011-03-16 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100631113A CN102178640B (zh) 2011-03-16 2011-03-16 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法

Publications (2)

Publication Number Publication Date
CN102178640A true CN102178640A (zh) 2011-09-14
CN102178640B CN102178640B (zh) 2012-07-04

Family

ID=44565049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100631113A Expired - Fee Related CN102178640B (zh) 2011-03-16 2011-03-16 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法

Country Status (1)

Country Link
CN (1) CN102178640B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102657898A (zh) * 2012-04-18 2012-09-12 暨南大学 具有双释放性能的可降解纳米纤维防粘连膜及其制备方法
CN102851789A (zh) * 2012-09-14 2013-01-02 东华大学 一种含有β-环糊精包合物电纺纤维的制备方法
CN102926029A (zh) * 2012-10-25 2013-02-13 四川省新材料研究中心 静电纺丝制备纳米硝化β-环糊精纤维的方法
CN105220362A (zh) * 2015-11-06 2016-01-06 吉林大学 一种β-环糊精基纳米纤维膜及其制备方法以及在染料吸附、分离中的应用
CN105420852A (zh) * 2015-12-24 2016-03-23 东华大学 一种原液着色氨纶纺丝液的制备方法
CN105568552A (zh) * 2016-01-14 2016-05-11 武汉轻工大学 一种槲皮素包合物电纺丝纳米膜、其制备方法及应用
CN105671647A (zh) * 2016-01-26 2016-06-15 中国科学院长春应用化学研究所 聚合物膜材料及其制备方法
CN106367955A (zh) * 2016-09-22 2017-02-01 金陵科技学院 一种具有ph敏感特性纳米粒子复合电纺纤维的制备方法
CN106757778A (zh) * 2016-12-01 2017-05-31 华南协同创新研究院 一种缓释型防虫害纳米纤维膜及其制备方法与应用
CN106978633A (zh) * 2016-01-15 2017-07-25 南京林业大学 电纺超细粒径的聚合物纳米纤维
EP2580960B1 (en) * 2011-10-12 2018-08-15 Shin-Etsu Chemical Co., Ltd. Water dispersion type sex pheromone sustained release preparation
CN109569347A (zh) * 2018-12-14 2019-04-05 苏州大学 一种疏水性材料水相转移的方法
WO2021114459A1 (zh) * 2019-12-13 2021-06-17 江苏集萃先进高分子材料研究所有限公司 一种无卤阻燃超抑烟纤维及其制备方法
CN113122960A (zh) * 2021-04-29 2021-07-16 大连工业大学 一种岩藻黄素的复合纳米纤维及其制备方法
CN113509452A (zh) * 2020-04-09 2021-10-19 天津工业大学 一种淀粉基载药纳米纤维膜及其制备方法和应用
CN114645377A (zh) * 2022-03-17 2022-06-21 广东工业大学 一种聚乙烯醇与牛血清白蛋白的静电纺丝复合薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057891A2 (en) * 2005-11-15 2007-05-24 Semorex Inc. Methods and kits for detecting fungal infection
WO2008081718A1 (ja) * 2006-12-28 2008-07-10 Sumitomo Seika Chemicals Co., Ltd. ヨウ素含有微細繊維
CN101705529A (zh) * 2009-10-29 2010-05-12 无锡中科光远生物材料有限公司 生物相容壳核结构复合超细纤维膜及其制作方法
US20110052691A1 (en) * 2009-08-28 2011-03-03 Kaohsiung Medical University Sustained Release Systems and Preparation Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057891A2 (en) * 2005-11-15 2007-05-24 Semorex Inc. Methods and kits for detecting fungal infection
WO2008081718A1 (ja) * 2006-12-28 2008-07-10 Sumitomo Seika Chemicals Co., Ltd. ヨウ素含有微細繊維
US20110052691A1 (en) * 2009-08-28 2011-03-03 Kaohsiung Medical University Sustained Release Systems and Preparation Method Thereof
CN101705529A (zh) * 2009-10-29 2010-05-12 无锡中科光远生物材料有限公司 生物相容壳核结构复合超细纤维膜及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《2009年第十五次全国电化学学术会议论文集》 20091231 张旺等 静电纺丝beta-环糊精/聚乙烯醇纳米纤维修饰电极的制备及其电化学性能研究 , *
《药学学报》 20091012 余灯广等 电纺载药纳米纤维改善难溶药物溶解性能研究 , 第10期 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2580960B1 (en) * 2011-10-12 2018-08-15 Shin-Etsu Chemical Co., Ltd. Water dispersion type sex pheromone sustained release preparation
CN102657898A (zh) * 2012-04-18 2012-09-12 暨南大学 具有双释放性能的可降解纳米纤维防粘连膜及其制备方法
CN102851789A (zh) * 2012-09-14 2013-01-02 东华大学 一种含有β-环糊精包合物电纺纤维的制备方法
CN102926029A (zh) * 2012-10-25 2013-02-13 四川省新材料研究中心 静电纺丝制备纳米硝化β-环糊精纤维的方法
CN105220362A (zh) * 2015-11-06 2016-01-06 吉林大学 一种β-环糊精基纳米纤维膜及其制备方法以及在染料吸附、分离中的应用
CN105420852A (zh) * 2015-12-24 2016-03-23 东华大学 一种原液着色氨纶纺丝液的制备方法
CN105568552A (zh) * 2016-01-14 2016-05-11 武汉轻工大学 一种槲皮素包合物电纺丝纳米膜、其制备方法及应用
CN106978633A (zh) * 2016-01-15 2017-07-25 南京林业大学 电纺超细粒径的聚合物纳米纤维
CN105671647A (zh) * 2016-01-26 2016-06-15 中国科学院长春应用化学研究所 聚合物膜材料及其制备方法
CN105671647B (zh) * 2016-01-26 2018-02-13 中国科学院长春应用化学研究所 聚合物膜材料及其制备方法
CN106367955A (zh) * 2016-09-22 2017-02-01 金陵科技学院 一种具有ph敏感特性纳米粒子复合电纺纤维的制备方法
CN106757778A (zh) * 2016-12-01 2017-05-31 华南协同创新研究院 一种缓释型防虫害纳米纤维膜及其制备方法与应用
CN106757778B (zh) * 2016-12-01 2019-04-23 华南协同创新研究院 一种缓释型防虫害纳米纤维膜及其制备方法与应用
CN109569347A (zh) * 2018-12-14 2019-04-05 苏州大学 一种疏水性材料水相转移的方法
WO2021114459A1 (zh) * 2019-12-13 2021-06-17 江苏集萃先进高分子材料研究所有限公司 一种无卤阻燃超抑烟纤维及其制备方法
CN113509452A (zh) * 2020-04-09 2021-10-19 天津工业大学 一种淀粉基载药纳米纤维膜及其制备方法和应用
CN113509452B (zh) * 2020-04-09 2022-08-16 天津工业大学 一种淀粉基载药纳米纤维膜及其制备方法和应用
CN113122960A (zh) * 2021-04-29 2021-07-16 大连工业大学 一种岩藻黄素的复合纳米纤维及其制备方法
CN114645377A (zh) * 2022-03-17 2022-06-21 广东工业大学 一种聚乙烯醇与牛血清白蛋白的静电纺丝复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN102178640B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102178640B (zh) 将疏水性药物均匀负载于亲水性聚合物电纺纳米纤维的方法
Avossa et al. Electrospinning based on benign solvents: Current definitions, implications and strategies
Lu et al. Coaxial electrospun fibers: applications in drug delivery and tissue engineering
Nie et al. Effects of chain conformation and entanglement on the electrospinning of pure alginate
Feng et al. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL
Klossner et al. Correlation of chitosan’s rheological properties and its ability to electrospin
Liang et al. Functional electrospun nanofibrous scaffolds for biomedical applications
Ma et al. Electrospun sodium alginate/poly (ethylene oxide) core–shell nanofibers scaffolds potential for tissue engineering applications
Jeong et al. Electrospun chitosan–alginate nanofibers with in situ polyelectrolyte complexation for use as tissue engineering scaffolds
Yu et al. Electrospun scaffolds composing of alginate, chitosan, collagen and hydroxyapatite for applying in bone tissue engineering
Chang et al. Preparation of electrospun alginate fibers with chitosan sheath
CN100535212C (zh) 胶原蛋白和壳聚糖复合纳米纤维静电纺丝的制备方法
CN106048892A (zh) 一种载有纳米银粒子的go/sa/pva复合纳米纤维膜的制备方法
CN101078134A (zh) 一种天然材料/聚合物材料同轴静电纺纳米纤维的制备
Wei et al. Degradation controllable biomaterials constructed from lysozyme-loaded Ca-alginate microparticle/chitosan composites
Guo et al. Characterization and application of chondroitin sulfate/polyvinyl alcohol nanofibres prepared by electrospinning
Chen et al. Preparation and application of chitosan-based medical electrospun nanofibers
Sapkota et al. Electrospun chitosan-based fibers for wound healing applications
Nasari et al. Poly (ε-caprolactone)/poly (N-vinyl-2-pyrrolidone) core–shell nanofibers loaded by multi-walled carbon nanotubes and 5-fluorouracil: An anticancer drug delivery system
CN110292652B (zh) 巯基苯硼酸活化金纳米颗粒、其制备方法及应用
Li et al. Functional nanofibrous biomaterials of tailored structures for drug delivery—a critical review
Zhang et al. Fabrication of green poly (vinyl alcohol) nanofibers using natural deep eutectic solvent for fast-dissolving drug delivery
CN103451849B (zh) 含纳米银的聚丁二酸丁二醇酯纳米纤维膜及其制备方法和应用
Kalluri et al. Effect of electrospinning parameters on the fiber diameter and morphology of PLGA nanofibers
Doğan et al. Single-needle electrospinning of PVA hollow nanofibers for core–shell structures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20150316

EXPY Termination of patent right or utility model